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Before we start:

• Download Truss Me! (freely available)

Google Play Apple’s App Store



Outline

• Part 1: Tensegrity structures for planetary landers.

• Motivation

• Model development

• Impact behavior

• Part 2: Truss Me! A game-based learning tool for 
structural mechanics.

• Introduction

• Hands-on activities



Part 1
Tensegrity planetary landers



Planetary landing structures 101
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Background

• SunSpiral first proposed the use 
of tensegrity structures for 
planetary landers [1].

• Solution inspired by tensegrity 
toy’s ability to recover from 
extreme deformation.

• Main idea:
• Structure composed of rigid bars 

and elastic cables

• Generate locomotion by actuating 
cable members

• Main limitation:
• Assumed rigid bars, and all energy 

absorbed by cables

• This would lead to mass that does 
not contribute to energy storage!

[1] V. SunSpiral et al, International Journal of Planetary Probes, 2013



Tensegrity Planetary Lander:
our concept
• Design a tensegrity 

structure that exploits 
elasticity of bars.

• Tensegrity octahedron’s 
super-stable property [1] 
makes it a good candidate.

• Payload located at the 
center (cable suspended)

• Main advantages:
• Higher impact velocity (or 

higher payload)

• Strain energy evenly 
distributed throughout the 
structure.

[1] Zhang et al, International Journal of Solids and Structures, 2019



Our lander idea in one slide!



A distinctive design approach:

Let it buckle

• We propose to design 
tensegrity structures whose 
bar members are allowed to 
buckle in the elastic regime.

• This will bring several 
benefits (to be discussed 
later in this presentation) for 
impact problems.

• From a design perspective, a 
bar can be easily 
dimensioned to ensure 
elastic buckling:
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Post-buckling behavior
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• When loading a simply supported bar 
axially, the response is linear up to the 
buckling point.

• Consequently, the stored strain energy is 
quadratic. This is the amount of energy 
we would be able to store if buckling is 
not allowed.

• Beyond buckling, the load does not drop. 
On the contrary, it remains almost 
constant (slightly increases)

• Since relatively large displacements can 
be applied after buckling, large amounts 
of additional strain energy can be stored 
on the bar.

• In this example, a 58cm long Ti tubular bar 
with 19mm diameter and 1mm thickness 
can store 58.5 J in the post-buckling 
regime vs 2.1 J if buckling is not allowed 
(27x increase in this case)



Modeling tensegrity structures



Modeling tensegrity structures

• The continuum bar is discretized as a symmetric system with 4 masses, 3 axial springs and 2 
angular springs.

• We must determine all stiffnesses and masses to reproduce required bar properties.

• Computation of stiffness of axial springs is trivial.

• The distance between the two interior masses is left as a discretization parameter (h=αL)

h= L (L-h)/2
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Rimoli, MOMS, 2018



Mass properties

• By forcing the discrete system to have the same mass and mass moment 
of inertia as the continuum bar we obtain:

• To have positive mass, the previous expressions impose a limit on the 
value of α

Rimoli, MOMS, 2018



Buckling load

• Let us consider the discretized system in the buckled configuration.

• The potential energy of the system is given by

• Where d1, d2, and ! are the generalized coordinates of the problem, and 
the displacement at the end of the bar is given by

• The non-trivial solution gives us:
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Buckling load

• Equating the critical buckling load for the discrete and 
continuum systems, and solving for kt we get

h= L (L-h)/2
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Discretized system

• The discretized system has the following properties:

• Same mass as continuum bar

• Same mass moment of inertia as the continuum bar

• Same axial stiffness as the continuum bar

• Same buckling load as the continuum bar

• Nearly same post-buckling load as the continuum bar

• Low error on first two natural frequencies, with second frequency 
exactly twice the first one (with α=1/2)

h= L (L-h)/2
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With only 12 DOFs per bar we 

can study dynamic and post-

buckling behavior of truss and 

tensegrity structures/lattices

Rimoli, MOMS, 2018



Implementation details
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Implementation details



Tensegrity planetary lander: 
concept design
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Tensegrity planetary lander:
rugged terrain test (v=10 m/s)



Tensegrity planetary lander:
vertical impact test (v = 6 m/s)



Force history on bars
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Maximum peak forces on bars 
and cables
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• By allowing them to buckle, bars act as a load-limiting mechanism.

• It is not only the load that bars experience that is limited: they also limit 
the maximum load experienced by cables.



3D tensegrity lattice



3D tensegrity lattice



Part 2
A game-based learning tool for structural mechanics



: Combining advanced simulations and 
gaming for engineering education

• Designed an educational app to help 
students build a conceptual 
understanding on how truss structures 
behave and fail.

• Based on a state-of-the-art simulation 
engine to provide the most realistic 
experience.

• Game-like approach: students solve 
puzzles, of increasing difficulty, by 
designing load-bearing structures.

• Available on Google Play and iOS App 
Store
• Over 450,000 downloads in 150 countries

• Incorporated for teaching in numerous 
middle and elementary schools, and 
some of the most prestigious engineering 
schools including  ETH Zurich, Georgia 
Tech, Vanderbilt University, Rutgers, and 
Caltech.



Classroom implementation I:

Simulation of engineering design cycle in the classroom

Design/Analysis

Advanced Manufacturing

Testing



Classroom implementation II:

Semester-long truss design competition



Hands-on activities!

• Start Truss Me! on your phone or tablet

• For this activity, please wait for the instructor for 
each step to avoid spoilers!
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Thanks!

• Questions?


