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What is a Tensegrity System?

A configuration of rigid bodies forms a tensegrity configuration if the given
configuration can be stabilized by some set of tensile members connected
between the rigid bodies.

Not a Tensegrity Configuration Tensegrity Configuration Tensegrity System

A tensegrity system is composed of a tensegrity configuration of rigid bodies
and any given set of strings connecting the rigid bodies.

Note that a tensegrity configuration without strings forms an unstable
tensegrity system. (An insufficient set of strings might be added, even though a
stabilizing set exists).
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Tensegrity in art

Ioganson’s 3-bar, 9-string stable structure, 1921. Snelson’s X-piece, 1948
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Animal locomotion systems

The elbow can be thought of as a class 3 tensegrity joint, the shoulder as a
class 2 tensegrity joint, and the foot as a class 2 tensegrity joint. The total
system would be called a class 3 tensegrity system



Cat locomotion

The flexor tendons (red) and the extensor tendons (blue) of a cat’s hind legs.
The plot shows the time profile of the forces in each tendon during a walk



The dragline silk of a Nephila Clavipes

The molecular structure of nature’s strongest fiber. A class 1 tensegrity model.
The rigid bodies are the β -pleated sheets, and the tensile members are the

amorphous strands that connect to the β -pleated sheets



Tensegrity in red blood cells

The network of junctional complexes underneath the red blood cell membrane.
The protofilament (33,000 in each red blood cell) is the rigid body and the
spectrin dimer are the tensile members. Each spectrin is stapled to the lipid
bilayer



Tensegrity network in red blood cells

A single junctional complex within the network of 33,000 junctional complexes
underneath the red blood cell membrane. Each of the 6 binding sites where the
strings connect to the rigid body are known. The actin protofilament (rod) has
a radius of 4.5 nm and a length of 37 nm.



Fullerenes and Carbon Nanotubes

a) Diamond
b) Graphite
c) Lonsdaleite
d) C60 Fullerene
e) C540 Fullerene
f) C70 Fullerene
g) Amorphous carbon
h) Carbon nanotube

Image by Michael Strck



Tensegrity in Engineering: A Bicycle

A class 1 tensegrity structure
rigid body one: rim
rigid body two: hub



Tensegrity in Engineering: A class 1 wing

A class 1 tensegrity wing. One rigid body has the shape of the airfoil, and the
other body has the shape of a long rod (the spar). None of these rigid bodies

touch each other.



Regular minimal tensegrity prism

Top view of A regular minimal tensegrity prism for p = 3.



Regular non-minimal tensegrity prism

A stiff regular non-minimal tensegrity prism. The minimal number of strings
that can stabilize is 9. This structure has 12 strings.



class 1 tensegrity plate

Top view Perspective view
A plate constructed from regular minimal tensegrity prisms



Robustness from prestress

FF F F
increasing pretension

This string slack at force F=fforce F h
bending stiffness =

f
A class 1 tensegrity structure in bending. The bending stiffness is dominated by
geometry, and the robustness to uncertainty in external moments is dictated by
prestress. The stiffness drops when a string goes slack



Tensegrity duals

Stable primal and 3D unstable dual 3D unstable primal and dual
Any system of bars and strings (primal) has a dual obtained by replacing bars
by strings and vice-versa



Optimal Tensegrity for Bending Loads



What is Optimal Structure for Bending?

Statement of the Problem to be solved:
Given:
an upper bound q on the number of elements to be used in construction of the
structure (this will be called the complexity q of the system), and
an aspect ratio (the ratio of the length of the structure and the foundation
dimension attached to the structure)
Find:
the structure that has minimal mass, subject to material yield constraints



Some useful tools, A Michell Spiral

Define circles of radii rℓ. Define members of lengths pℓ. Define Michell spiral:

rℓ+1 = arℓ, pℓ = crℓ, ℓ = 0,1,2, · · · ,q, (1)

where a > 0 and c > 0.
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A
Michell Spiral of Order 4 (φ = π/16, β = π/6), where a and c are

a =
sinβ

sin(β +φ)
, c =

sinφ
sin(β +φ)



More Michell spirals

Discrete Michell Spirals of Order 3, 4, 6, 12 and ∞ (continuous) (q φ = π,
β = π/4)



Michell Topologies of order 8

A Michell Topology of order k is formed
by the set of all Michell spirals of order ≤ k , and their conjugates (mirror images).

(φ = π/48, β = π/6) (φ = π/12, β = π/6)



numbering convention
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Michell Topology of Order 4 (φ = π/16, β = π/6)



Summing forces at node nik

β
β

β
β

φ

φ

θik

nik

wik

mik

mki

mk,i−1

mi ,k−1

Forces along directions mik , mki , mi ,k−1, mk,i−1, respectively have
magnitudes, fik , tki , fi ,k−1, tk,i−1.



Force equilibrium

fik
mik

‖mik‖
+ tki

mki

‖mki‖
− fi ,k−1

mi ,k−1

‖mi ,k−1‖
− tk,i−1

mk,i−1

‖mk,i−1‖
+wik = 0.

which reduces to:
(

tki
fik

)

pi+k = Ω

(

tk,i−1

fi ,k−1

)

pi+k−1 +Φikwik ,

with “initial” conditions,
(

t00

f00

)

p0 = Φ00w00,

where,

Φik =
pi+k

sin(2β )

[

sin(θik −β )
−sin(θik +β )

]

,

Ω =
1

2

[

g −h
−h g

]

, g = 1+
tanβ

tan(β +φ)
, h =

sinφ
cosβ sin(β +φ)

.

and g +h = 2, a useful fact.



Vector form of equilibrium

Define vector xα ∈ R
2(α+1) by the forces in all members that lie within the

radii rα and rα+1. That is,
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The normalized forces in all members between radii r0 and r1, between radii r1
and r2, between radii r2 and r3, and between radii r3 and r4, are shown



Recursive force equations

The vectors xα and xα+1 are related by the recursive form,

xα+1 = Aαxα +Bαuα , α = 0,1,2, · · · ,q−1.

where

Aα ∈ R
2(α+2)×2(α+1), Bα ∈ R

2(α+2)×(α+2), xα ∈ R
2(α+1), uα ∈ R

α+2.

It follows that
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Recursive form, cont’d

Bα =






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with

J = Ω

[

0 1
1 0

]

=
[

J1 J2

]

.

Note that all elements in Bα have arguments in Φik such that i +k = α +1,
and all elements in uα have arguments wik such that i +k = α +1.



Theorem for Equilibria of Michell Toplogies

Let a truss be arranged according to the Michell Topology of order q, having
external forces wik applied at the nodes nik with i ≥ 0, j ≥ 0 and i + j ≤ q. Let
xα contain the forces (normalized by the member length) in all members within
the band of members between radii rα and rα+1 and uα contain the magnitude
of the forces at the nodes with radius α. Then the forces propagate from one
band to the next according to the linear recursive equation,

xα+1 = Aαxα +Bαuα , α = 0,1,2, · · · ,q−1.



Loads at only one node

Michell Topology of Order 4 (φ = π/16, β = π/6) showing bending region; blue
and red indicate a member in compression or tension.
The members remain uni-directionally loaded for all forces within the region
shown. These will be called admissible forces.



Material volume

If strings and bars are made from same material, then the total material volume
of a Michell Topology of order q, with any admissible force is

Jq = (λ̄ + γ̄)
q

∑
i=0

i

∑
k=0

(tik − fik )pi+k .

Jq = q r0 w00 (λ̄ + γ̄)
sin |θ |
sinβ

sinφ
sin(β +φ)

,

where θ is the direction of the force, and w00 is the magnitude of the force.
For any given material and external force, we need only minimize J ′q ,

J ′q :=
Jq

r0w00 (λ̄ + γ̄)sin |θ |
=

q sinφ
sinβ sin(β +φ)



Aspect ratio

Define the aspect ratio ρ by

ρ :=
rq
r0

= aq =

(

sinβ
sin(β +φ)

)q

,



Minimal Volume Solution

For any given aspect ratio ρ and any given complexity q, and any admissible
force, J ′q is minimized by

cosφ∗ =

(

2

ρ−1/q +ρ1/q

)

, tanβ ∗ = ρ1/q

and the minimum volume of material required to build the structure is

J ′q
∗
= q ρ1/q sinφ∗

(

1+
1

tan2 β ∗

)

= q (ρ−1/q −ρ1/q).

As the chosen complexity q goes to ∞, J ′∞
∗ := limq→∞ J ′q

∗ can be computed as

J ′∞
∗
= lim

q→∞
q (ρ−1/q −ρ1/q) = 2 lnρ−1.



How does volume relate to complexity q and aspect ratio ρ?
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penalizing joint mass

J∗total = J ′q
∗
+ µ q(q +1) = q (ρ1/q −ρ−1/q)+ µ q(q +1).
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Optimal Michell Trusses of complexity q = 8

(ρ = 0.59, q = 8), ⇒ (ρ = 0.12, q = 8) ⇒
(φ = 3.75◦, β = 43.125◦) (φ = 15◦, β = 37.5◦)

qφ = 30◦ qφ = 300◦



An Optimal Michell Truss of complexity q = 4
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Optimal Michell Truss for (q = 4, ρ = 0.199), leads to (φ = 22.5◦, β = 33.75◦)



Sub-Optimal Tensegrity bunk bed

Wall-mounted tensegrity bunk bed, with (q = 5, ρ = 0.133) leading to
φ∗ = 22.5◦, β ∗ = 33.5◦ Sub-optimal due to truncated boundary (flat wall).



Optimal Compressive Structures



Hollow Cylinders in Compression

Buckling force f (ℓ0) for a hollow tube with inner radius ri and outer radius r0,
length ℓ0, and mass m(ℓ0)

f (ℓ0) =
Eπ3(r4

0 − r4
i )

4ℓ20
, m(ℓ0) = ρbπ(r2

0 − r2
i )ℓ0,

These equations yield the mass of the hollow cylinder m(ℓ0)

m(ℓ0) = πρbℓ0r
2
i

(
√

1+
ℓ20f (ℓ0)

Eπ3r4
i

−1

)

where m(ℓ0) → 0 as ri → ∞.
Therefore in FINITE environments a cylinder is not necessarily the minimal
mass structure for compression!



Buckling Constraints for rods

Buckling force f (ℓ0) for a rod of length ℓ0, and mass m(ℓ0), without external
load

f (ℓ0) =
Eπ3r4

0

4ℓ20
, m(ℓ0) = ρbπr2

0 ℓ0,

From these equations it follows that

m(ℓ0) = cbℓ20
√

f (ℓ0), cb =
2ρb√

πE
.



Self-Similar Concepts and Fractals

Existing Theory:
Fractal theory deals with the filling of space by replacing a given geometrical
object A with yet another object B composed of some arrangements of object
A of smaller dimensions.
New Theory:
Add a mechanical property requirement to fractals theory.
Assign a mechanical property to the geometrical object A (hence, object A will
now be called Structure A) and replace Structure A by yet another Structure B,
so that the specified mechanical property is preserved or improved.



A 4-bar, 16-string Class 1 Tensegrity

h

w

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

ℓ0
A 4-bar, 16 String structure under compressive load



A T-Bar Unit and its Dual, the D-Bar Unit

f (ℓ0)f (ℓ0)

ℓ0

s1

s1

s1

s1

ℓ1 ℓ1

ℓv1

ℓv1

A T-Bar unit, a class-4 tensegrity

f (ℓ0) f (ℓ0)

ℓ0
A D-Bar unit, (the Dual of the T-Bar unit) results when we choose h = w = 0.
This is a class-2 tensegrity and there is a string-to-string connection.



The T-Bar system

A T-Bar structure under critical compressive load, f (ℓ0).
Goal: Replace a bar of length ℓ0 by a T-Bar tensegrity system.

f (ℓ0)f (ℓ0)

ℓ0

s1

s1

s1

s1

ℓ1 ℓ1

ℓv1

ℓv1

Assume a ball joint at the intersection of the 4 bars. (This is unstable in 3D,
but stable in the 2D work here)



T-Bar Forces in the presence and absence of external loads

In the unloaded case (f (ℓ0) = 0), we require the same load f̄ (ℓ1) in bar ℓ1 as in
the loaded case, f (ℓ1) (where f (ℓ0) 6= 0, with t(s1) = 0). To9 achieve this, for
the unloaded (prestressed) case, f (ℓ0) = 0, and

f̄ (ℓ1) = f (ℓ0), f̄ (ℓv1) = f (ℓ0)tanα1, t̄(s1) =
1

2cosα1
f (ℓ0).

f̄ (ℓ1)

f̄ (ℓv1)

t̄(s1)t̄(s1)

t̄(s1)

t̄(s1) α1

s1

ℓ1

ℓv1

For the loaded case,

f (ℓv1) = 0, f (ℓ1) = f (ℓ0), t(s1) = 0.



Mass of T-Bar System

Mass of all bars in the T-Bar unit is mb1
, where,

mb1
= 2m(ℓv1)+2m(ℓ1)

= 2cb(ℓv1)
2[(f̄ (ℓv1))

1/2 +(f (ℓ1))
1/2]

= 2cb(ℓ0/2)
2[tan2 α1(f (ℓ0)tanα1)

1/2 +(f (ℓ0))
1/2]

= 2cb (ℓ0/2)
2 (f (ℓ0))

1/2[tan5/2 α1 +1].

Hence, the mass of the T-Bar unit is less than the mass of the original bar if
µb1

< 1, where,

µb1 =
mb1

m(ℓ0)
=

1

2
[tan5/2 α1 +1],

where it is clear that µb1
< 1 if α1 < 45◦.



Adding String Mass

The string mass is 4m(s1) = 4cs s1t̄(s1), and t̄(s1) = f (ℓ0)/(2cosα1) is the
string tension in the externally unforced case. The total mass ratio is

µ1 =
1

2
(tan5/2 α1 +1)+4m(s1)/m(ℓ0)

=
1

2
(tan5/2 α1 +1)+4

cs

m(ℓ0)

(

ℓ0
2cosα1

)(

f (ℓ0)

2cosα1

)

=
1

2
(tan5/2 α1 +1)+4

(

cs

√

f (ℓ0)

cbℓ0

)

(

1

2cosα1

)2

=
1

2
(tan5/2 α1 +1)+ ε(1+tan2 α1),

where

ε =
cs

√

f (ℓ0)

cbℓ0
=

ρs

√

πEf (ℓ0)

2σsρbℓ0

is a dimensional parameter.



Mass versus Choice of Geometry, α

Since µ1 ≥ 1/2+ ε, for µ1 ≤ 1, ε ≤ 1/2 is required, yielding:

f (ℓ0)

ℓ20
<

(

ρ2
b

πE

)

(

σs

ρs

)2

.
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For steel cs/cb = 0.5829×10−3 , f (ℓ0) = 2.942, ℓ20 Newtons, we have ε = 0.001,
choosing tanα1 = 0.25, then µ1 = 0.517. This point is marked with a square in

the plot.



The T-Bar Self-similar Rule

f (ℓi−1)f (ℓi−1) f (ℓi ) αiαi+1

si

ℓi

ℓvi

si+1

ℓi+1

ℓv(i+1)

ℓi+1 =
1

2
ℓi , si = ℓi/cosαi , ℓvi = ℓi tanαi ,

f (ℓi ) = f (ℓi−1)+2t(si )cosαi , f (ℓvi ) = 2t(si )sinαi ,

m(ℓi )

m(ℓ0)
=

(

ℓi
ℓ0

)2
√

f (ℓi )

f (ℓ0)
.

Choosing t(s1) = 0, yields f (ℓi ) = f (ℓi−1), and f (ℓvi ) = 0.



Mass of Bars ℓn After n Self-Similar Iterations

After n iterations the number of bars of length ℓn is 2n,
The number of bars of lengths ℓv1, ℓv2, ...ℓvn sum to ∑n

i=1 2i bars.
After n iterations, the total mass of the bars ℓn is given by,

2nm(ℓn) = cb2n(ℓn)
2
√

f (ℓn) = cb2n

(

ℓ0
2n

)2
√

f (ℓ0).

Hence,

2nm(ℓn)

m(ℓ0)
=

1

2n
.



Total Mass After n Iterations

Mass of bars ℓvi

n

∑
i=1

2im(ℓvi )/m(ℓ0) =
n

∑
i=1

2i

(

tan5/2 αi

22i

)

=
n

∑
i=1

tan5/2 αi

2i

Mass of the strings si .

n

∑
i=1

2i+1m(si )/m(ℓ0) =
n

∑
i=1

ε(1+tan2 αi ),

Total mass after n iterations:

µn = mn/m(ℓ0) =
1

2n
+

n

∑
i=1

tan5/2 αi

2i
+

n

∑
i=1

ε(1+tan2 αi ).

Special case: If we choose αi = α, then the total mass ratio is

µn(αi = α) = 2−n +tan5/2 α(1−2−n)+nε(1+tan2 α).



Constant α , for n = 4

ℓ0



Mass vs Self-Similar Iterations, with Constant α
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ε = 0.05.
As n → ∞, tendon mass → ∞ and bar mass ratio → (tan5/2 α).



Optimal Complexity

Pretend that n is any real number, rather than an integer. Compute ∂ µn

∂n
= 0 to

obtain:

2n∗
=

ln2(1− tan5/2 α)

(1+tan2 α)ε
,

or, explicitly, rounding down to the nearest integer,

n∗ = ⌊ ln[(ln2)(1− tan5/2 α)]− ln[(1+tan2 α)ε]

ln2
⌋,

The number of tensegrity components required to build the minimal mass
structure in compression is

q = 2n∗
+

n∗

∑
i=1

(2i +2i+1)

= 3(2n∗
)−2.



Examples

Example

For steel strings and bars cs/cb = 0.5829×10−3 . With external force
f (ℓ0) = 2.942ℓ20 Newtons, we have ε = 0.001, and from the above equation,
choosing n = 6 and tanα = 0.25, we obtain µ6 = 0.0528, indicating a structure
of q = 190 components that has about 1/20th the mass the original bar of
length ℓ0, and the same buckling strength.

Example

Verify that the optimal mass in the above example occurs with a structure of
complexity n∗ = 9, in which case the minimal mass is 0.0427 times the mass of
the original bar.



Constant Width Column

ℓ0
T-Bar self-similar n = 4, constant α

ℓ0

w

Constant-Width T-Bar column ℓ0/w = 2.3, n = 3, k = 2, [αi ≤ 45o,
i = 1, . . . ,k], [αi = α1, i = k +1, . . . ,n]

Optimal constant width T-Bar column ℓ0/w = 10, n∗ = 5, k = 4



Yielding in T-Bar Self-Similar Systems

The bar ℓn yields when the bar force is f (ℓn) = σbπr2
n , or, equivalently

r2
n = f (ℓn)/(πσb) = f (ℓ0)/(πσb).

The bar buckles when the bar force is f (ℓn) = f (ℓ0) = π3Er4
n /(4ℓ2n), or

equivalently, (using the fact ℓn = ℓ0/(2
n)),

r2
n = 2n+1ℓ0

√

f (ℓ0)/(π3E).

Equating these expressions for rn yields the iteration number n∗∗ at which the
buckling force and the yield force are the same, for bar ℓn.

2n∗∗
=

2ℓ0σb
√

πEf (ℓ0)
=

(ρs/σs)

(ρb/σb)

1

ε
.

If n > n∗∗ the failure of bar ℓn is by yielding.
If n < n∗∗, the failure of bar ℓn is by buckling, in which case

2n∗
=

ln2(1− tan5/2 α)

(1+tan2 α)ε
,



Optimal Complexity for Constant Width T-Bar Columns
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ℓ0/w = 10; yielding is the mode of failure in green area.



Constant Width Column

Example

For T-Bar columns with steel materials:
The number of self-similar iterations before yielding satisfies
2n∗∗

= 232.9(f (ℓ0)
−1/4,

where f (ℓ0) is the external force applied.
Hence, for steel materials with f (ℓ0) = 1, the largest number of self-similar
iterations before yielding is 7.



3D T-Bar Systems, with N-Polygonal cross-sections

ℓ0

f (ℓ0)

f (ℓ0)

A T-Bar Unit with N=3



3D T-Bar Systems

For any N, the mass is

µN
n =

1

2n
+

N

2

n

∑
i=1

tan5/2 αi

2i
+

N

2

n

∑
i=1

ε(1+tan2 αi ).

where, for constant α

µN
n (αi = α) = 2−n +(N/2)tan5/2 α(1−2−n)+(N/2)nε(1+tan2 α).

Differentiating this with respect to n and solving for n∗ yields the optimal
complexity

2n∗
=

2ln2(1− N
2 tan5/2 α)

εN(1+tan2 α)
.



Mass of N-Dimensional T-Bar Self-Similar Systems

Now substitute 2n∗
into µN

n (αi = α) to get the minimal mass

µN
n∗ =

N

2
tan5/2 +ε

N(1+tan2 α)

2ln2

[

1+ ln

(

2ln2(1− N
2 tan5/2 α)

εN(1+tan2 α)

)]

.

Observe that the total bar mass is smallest for N = 3.
For N = 3, constant αi = α, and any n:

µ3
n (αi = α) = 2−n +(3/2)tan5/2 α(1−2−n)+(3/2)nε(1+tan2 α).



Mass of T-Bar Systems for N=2 and N=3

ε = 0.05.
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n

(N = 2, dashed) and (N = 3, solid), The plot for N = 3 has solid lines. Dashed
lines for N = 2
Note for N = 3 that α must be at least 4.63◦ smaller than for the N = 2 case
(to get µN

n ≤ 1 when ε = 0), requiring tan5/2 α ≤ 2/N.



The Dual of the A T-Bar Unit: the D-Bar Unit

f (ℓ0)f (ℓ0)

ℓ0

s1

s1

s1

s1

ℓ1 ℓ1

ℓv1

ℓv1

A T-Bar unit, a class-4 tensegrity

f (ℓ0) f (ℓ0)

ℓ0
A D-Bar unit, (the Dual of the T-Bar unit) results when we choose h = w = 0.
This is a class-2 tensegrity and there is a string-to-string connection.



The 3D D-Bar Unit

ℓ0

f (ℓ0)

f (ℓ0)



Self-Similar D-Bar Systems

i = 3i = 3

i = 4

i = 5

i = 6

f (ℓ0)

f (ℓ0)

f (ℓ0)

f (ℓ0)

f (ℓ0)

f (ℓ0)

f (ℓ0)

f (ℓ0)

Configurations of the planar D-Bar Self-Similar structure with constant
α = 15◦. The svi strings are red. The si strings are not shown since they take
no tension in these critical states



Mass of the D-Bar System, after n Iterations

µN
n =

(

N

4cos5 α

)n/2

+ ε (cos−2n α −1)/sin2 α.

The string mass does not depend on N. For n = 1, N = 3:

µ3
1 =

(

3

4cos5 α

)1/2

+ ε (1+tan2 α).

µ3
1 < 1 requires α < 19.25◦ for N=3, and α < 29.48◦ for N=2. The plot

compares (N = 2, dashed) and (N = 3, solid), with ε = 0.05.

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 

 

α = 10o

α = 15o

α = 20o

µ n

n



Deployable Combination of T-Bar and D-Bar Systems

Optimal constant width T-Bar column ℓ0/w = 10, n∗ = 5, k = 4, with last
iteration using D-Bar units

It is easy to collapse a D-Bar unit by controlling the string sv1, while the
collapse of the T-Bar unit requires a folding procedure which seems more
complex. Yet the T-Bar self-similar system can reduce more mass on each
iteration than the D-Bar system. To combine the advantages of both, one can
use the T-Bar self-similar iteration except on the last iteration, where D-Bar
units will be employed.



Unit-Self-Similar Designs

PREVIOUS: REPLACING EACH BAR ELEMENT WITH A SELF-SIMILAR
UNIT
AHEAD: REPLACING EACH UNIT WITH TWO SIMILAR UNITS



Unit-Self-Similar Designs with Box Units

w

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

ℓ0

w

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

ℓ0

w

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

1
2 f (ℓ0)

ℓ0
Under these compressive loads, how many Unit-Self-similar iterations give
minimal mass?



Mass of Unit-Self-Similar Designs with Box Units

The sum of forces at the typical node yields,

f (ℓn)sinαn = t(s), f (ℓ0) = f (ℓn)cosαn.

and the mass is composed of 2n bars, leading to

m = 2ncbℓ2n
√

f (ℓn)

= 2ncb[w2 +(ℓ0/n)2]{f (ℓ0)
2[1+(nw/ℓ0)

2]}1/4.

Differentiating this mass expression with respect to n yields the optimal
complexity,

n = (ℓ0/w)
√

2/3.



Regular Tensegrity Prisms

A regular minimal 3-bar tensegrity prism
regular = tops and bottoms have same vertical centerline and are parallel.
minimal = stabilized with smallest number of strings possible



Equilibrium for a Regular Tensegrity Prism

γt , γb, γv : = force densities in strings st , sb, sv .
λb: = force density in each bar





γt

γb

γv



= λb





ρ−1(2sin(π/p))−1

ρ (2sin(π/p))−1

1



 ,

where ρ := rt/rb is the ratio of top and bottom radii.
The twist angle is

α =
π
2
− π

p
,

for p = 3 then α = 30◦,
for p = 4 then α = 45◦,
for p = 6 then α = 60◦

Also note that γb = ρ2γt .



Equilibria and Mass for a Single Unit

Force densities in all members,

λb = γv =
f (ℓ0)

ℓ0 p
, γt = γb =

λb

2sin(π/p)
=

f (ℓ0)

2 ℓ0 p sin(π/p)
,

Total normalized mass for a single minimal regular tensegrity p-bar prism:

µ1 =
√

p

(

1+2z4 +sin(π/p)

2

)5/4

+ ε
(

1+
1+sin(π/p)

2z4

)

.



Unit-Self-Similar Columns from Tensegrity Prisms

Perspective view:

f/3f/3f/3
h

rt = rb = r and stable minimal regular p-bar prisms can be stacked as shown.



Mass of Unit-Self-Similar Columns from Tensegrity Prisms

bar and string mass:

µn = µbn + µsn,

µbn =

√
p

nz5

(

n2 +2z4 +n2 sin(π/p)

2

)5/4

,

µsn = ε
(

1+
n2[1+sin(π/p)]

2z4

)

.

differentiating µbn with respect to n yields optimal bar complexity:

n∗ =

⌊

2z2

√

3[1+sin(π/p)]

⌋

=

⌊

2
√

3(1+sin(π/p)

ℓ0
w

⌋

.



Example: Unit-self-similar 3-bar prism, ε = 0.001
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µ n
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Note from properties of the single prism, one needs n ≥ 2 to reduce mass. The
points marked with a square indicate global minima. The global minimum for

ℓ0/w = 100 is µn = 0.0405 at n = 82.
Note that

n∗(ℓ0/w) = {4,8,84}, ℓ0/w = {5,10,100}

indicating that the optimal bar complexity n∗ is a reasonable estimate of the
global optimum (hence, bars dominate the mass).



Minimal Mass of Columns from Tensegrity Prisms

Substitute the optimal bar complexity, n∗, into the mass formula to get:

µn∗ =
1

ℓ0/w

5×151/4

6

√

p[1+sin(π/p)]+ ε
10

6
.

This remarkable formula shows that the optimal mass is linear in ε and that the
string mass is independent of p, the number of bars per prism . Also, for a given
p, the optimal mass gain is inversely proportional to the aspect ratio ℓ0/w .
Example: Show that for p = 3 and p = 6, that mass cannot be reduced unless
ℓ0/w > 4 and ℓ0/w > 5, respectively.



Mass of Minimal Regular Tensegrity plates

µn = µbn + µsn µbn =

√
3

n3/4π5/4

(

nπ +ξ−1(2+
√

3)z4
)5/4

,

µsn = ε

(

1+
2+

√
3

nπξ
z4

)

.

ξ (nr ) =
A

na
=

R2

nr2 =
[1+2‖t3‖(nr −1)]2

4[1+3(nr −1)nr ]
.

For example, ξ (nr ) is approximately equal to

{0.60, 0.68, 0.75, 0.80}

when nr →{2,3,6,∞}



3-Bar Plate Mass versus complexity
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ε = 0.05 and A/ℓ20 = {5,10,20}.



Non-minimal Regular Tensegrity Prisms

A regular non-minimal tensegrity prism. This structure has 12 strings, including
3 extra diagonal strings



Non-minimal Regular Tensegrity Prisms

Let γd be the force density in the diagonal strings then









γt

γb

γv

γd









=
λb

cos(α −π/p)









ρ−1 cos(π/p)
ρ cos(π/p)

2cos(α)cos(π/p)
−cos(α +π/p)









where now the twist angle is any angle between

π
2
− π

p
≤ α ≤ π

2
.

In this range, the γ’s are all non-negative for λb > 0. As in the minimal regular
prism, γb/γt = ρ2.
Note also that α = π/2−π/p is the equilibrium for the Minumal Regular
Prism. The above result yields γd = 0 when α = π/2−π/p.
It is important to note that all tensegrity columns and plates in the previous
discussions can be designed using Non-minimal regular Tensegrity Prisms. The
difference is advantage is high stiffness, with NO soft modes.



Minimal Mass Cylinder

• This section provides an explicit analytical solution to the minimal mass
design for a special class of long cylindrical structures.

• The mass is minimized subject to material yield constraints for an
infinitely long cylinder composed of axially loaded compressive members
and tensile members.

• The topology of the structure is a class 2 tensegrity structure, meaning
that two compressive members are in contact at each node.



Close-Up

Class 2 tensegrity cylinder



Statement of the problem

R

φ

H

z
bar

Compressive members

Tensile members

Diagonal string

Horizontal string

Vertical string

Overall View Typical Unit

Diagram of class 2 tensegrity cylinder



Geometry

Define:
pφ = 2π, where φ = angle between radial lines
z = height of each stage
H = qz = height of cylinder
R = radius of the cylinder
lb = length of each bar
ls = length of each of the diagonal strings
lh = length of the horizontal string in each unit
lv = length of the vertical string in each unit.
Then,

l2b = 4R2 sin2 φ +4z2

l2s = 2R2(1−cosφ)+ z2

l2h = 4R2 sin2 φ
l2v = 4z2,



Main Result: Equilibria with vertical external loads

All bars have equal force in the infinite cylinder,
Summing forces at only two nodes yields the fact:
The force densities in the horizontal string, γh, and in the diagonal strings γ1,
γ2, γ3, γ4 may be assigned any positive values, subject to the constraint,

γ1 = γ3, γ4 = γ2,

The force density λ in each bar is given by

λ = γh +
1

2(1+cosφ)
(γ1 + γ4).



Minimizing Structural Mass

A well-known fact:
Minimal mass, subject to material yield constraints in all bars and strings, is
achieved by minimizing the function

J =
m

∑
i=1

σi l
2
i ,

where σ is the force density in the ith member (bar or string), and li is the
length of the ith member.



Mass of the Cylinder

Using the above results,

J = Js +Jb ,

where Js and Jb are the normalized mass of strings and bars, respectively.
The total mass of strings and bars are given by:

Js = cs

[

1

2
pq(γ1 + γ4)l

2
s +

1

2
(q +1)pγhl

2
h +

1

2
pqγv l2v

]

Jb = cb

[

1

2
pqλ l2b

]

.



Optimal Complexity

The partial differential of J with respect to complexity q can be obtained as
follows:

∂J

∂q
=

∂Js

∂q
+

∂Jb

∂q

where,

∂Js

∂q
= cs

[

1

2
(γ1 + γ4)p(2R2(1−cosφ)−z2)+2R2γhp sin2 φ −2γvpz2

]

∂Jb

∂q
= cb

[

2pλ (R2 sin2 φ −z2)
]

From ∂J/∂q = 0, it follows that

q∗ =
√

2

(

H

2R

)

√

4(rc rγv
+ rγh

)+ rc +2(1+cosφ)−1

(rc +1)(2rγh
sin2 φ −cosφ +1)

where, q∗ is the optimal value of q, which minimizes the mass of structure.



Optimal System with Same Material for Strings and Bars

For same bar and string material, and:
rc = 1
only diagonal strings are present, then rγh

= rγv
= 0 and,

q∗ =

(

H

2R

)

√

3+cosφ
sin2 φ



Cylinder Mass versus Complexity
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Cylinder Mass versus Complexity
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Bar Mass versus String Mass
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3D T-Bar Systems
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Optimal Complexity
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Efficient Models of Class 1 Tensegrity dynamics

• A tensegrity system requires prestress for stabilization of the configuration
of rigid bodies and tensile members.

• Provide an efficient model for both static and dynamic behavior of such
systems, specialized for the case when the rigid bodies are axi-symmetric
rods.

• The key to efficient nonlinear dynamic models, and

• The key to effective feedback control of the nonlinear system, is to:

• Find and exploit the special structure of the model equations.



Vector and Matrix forms

M(q)q̈ +G(q)q̇ +K(q)q = Hu +Lω,

G(x)ẋ +K(x)x = Hu +L(ω),

Q̈M +QK(Q ,Q̇,u) = L(ω),

where u and ω are control and disturbance variables, respectively, and q ∈ IRn,
x ∈ IR2n, Q ∈ IR3×n/3.



Tensegrity Systems

Assume that the rigid bodies are rod-shaped and have negligible inertia about

their longitudinal axes.



Notation 1

• Let e i , i = 1,2,3 define a dextral set of unit vectors fixed in an inertial
frame

• Define the vectrix E by E =
[

e1 e2 e3

]

.

• Two reference frames, E and X . The transformation between these two
frames is described by the 3×3 direction cosine matrix XE so that X =
EXE .

• Let the 3×1 matrices rX and rE describe the components of the same
vector r in the two reference frames X and E ,

• The relationship between the components of the same vector r , described
in two different reference frames, then

X = EXE

r = XrX = ErE = EXE rX .

rE = XE rX .



Notation 2

For any vector vT =
[

v1 v2 v3
]

, define v̂ and ṽ by

v̂ =





v1 0 0
0 v2 0
0 0 v3



 , ṽ =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 .

For any two vectors v , and x , v̂ x = x̂v .
The cross product is bi × f j = (Ebi )× (Efj ) = Eb̃i fj ,
The dot product is given by,
bi · f j = (Ebi ) · (Efj ) = bT

i ET ·Efj = bT
i fj ,

where the dot product ET ·E = I



Bar Vectors

• System is composed of β bars and σ strings.

• Define the ith node ni ) of a structural system as a point on the rigid body
at which strings are attached. The coordinates of this point of attachment
is ni ∈ IR3.

• Define the ith string as a massless structural member connecting two
nodes. The vector connecting these two nodes is s i .

• Define the ith bar of a β -bar system as a rigid rod connecting two nodes
ni and ni+β .

• The vector along the bar connecting nodes ni and ni+β is

bi = ni+β −ni , i = 1,2, . . .β . The bar bi has length ‖bi‖ = Li =
√

bT
i bi .

• The vector r i locates the mass center of bar bi , and r i = Eri .

• The vector t i represents the force exerted on a node by string s i , where
the direction of vector t i is parallel to string vector s i . That is ti = γi si for
some positive scalar γi .

• The force density γi in string si is defined by γi =
‖ti‖
‖si‖ .



Bar force definition

The vector f i represents the net sum of vector forces external to bar bi

terminating at node ni . The set of all nodal forces external to the bar bi is
described by the figure.

i
b


i
w


E


i
n


i
r




Angular Momentum

c
r


dm


b


Then the angular momentum of the bar bi about the center of mass of bar bi ,
expressed in the E frame, is hi = Ehi , where,

hi =
mi

12
b̃i ḃi .



Dynamics of a rigid bar

Bar vector b connects nodes n1 and n2, at which are applied
Forces f 1 and f 2.
The translation of the mass center of bar b, located at position r obeys

mr̈ = f1 + f2

The rotation of bar bi about it mass center obeys

m

12
b̃b̈ =

1

2
b̃(f2− f1).

The proof follows from the above expression of angular momentum and
Newton’s second law,

ḣ =
1

2
b× (f 2− f 1), h =

m

12
b× ḃ.



Constrained Dynamics: Fixed Length Bars

For fixed bar length L , then bT b−L 2 = 0. The first two time derivatives of
the length constraint yield bT ḃ = 0 and bT b̈ =−ḃT ḃ. Then the total system is

m

12
b̃b̈ =

1

2
b̃(f2 − f1)

bT b̈ = −ḃT ḃ

bT ḃ = 0

bT b−L
2 = 0.

Computational errors: Correct the length and velocity of each bar after each
integration step, to keep the length constant and the velocity vector ḃ
perpendicular to the vector b.
At numerical iteration k, the computed values are b(k) and ḃ(k). Replace
these values by the values b(k +1) and ḃ(k +1), given by

b(k +1) = b(k)L / ‖ b(k) ‖

ḃ(k +1) =

(

I − b(k +1)bT (k +1)

L 2

)

ḃ(k).



Rigid Bar dynamics

Ignoring roundoff errors

[

b̃

bT

]

b̈ =

[

b̃(f2 − f1)
6
m

−ḃT ḃ

]

,

Solving for b̈ is a linear algebra problem. Uniqueness is guaranteed by the facts

[

b̃

bT

]T [
b̃

bT

]

= L
2I ,

,
b̃2 = bbT −bT bI .

The unique Moore-Penrose inverse of

[

b̃

bT

]

is

[

b̃

bT

]+

=
[

−b̃ b
]

L
−2

,



Rigid Bar Dynamics

Using the fact b̃b = 0, the unique solution for b̈ is

b̈ =
6

m
(f2− f1)−b

(

ḃT ḃ

L 2
+

6

mL 2
bT (f2− f1)

)

= 6/m

(

I − bbT

L 2

)

(f2 − f1)−b
‖ ḃ ‖2

L 2

The translational and rotational dynamics for a rod are given by

r̈ = (f1 + f2)/m,

b̈ +kb = 6/m

(

I − bbT

L 2

)

(f2 − f1), k =
ḃT ḃ

L 2
.



Dynamics of the Network of β bars, bi , i = 1,2,β

b̈i
m

12
+biθi =

1

2
(fβ+i − fi )

mi r̈i = (fi + fβ+i ),

where

θi =
mi

12L 2
i

‖ḃi‖2 +
bT
i (fβ+i − fi )

2L 2
i

Now characterize the tendon forces, fi and fβ+i



Matrix forms for the Network

Define matrices

F =
[

F1 F2
]

=
[

f1 f2 . . . fβ | fβ+1 . . . f2β
]

N =
[

N1 N2

]

=
[

n1 n2 . . . nβ | nβ+1 . . . n2β
]

T =
[

t1 t2 . . . tσ
]

S =
[

s1 s2 . . . sσ
]

B =
[

b1 b2 . . . bβ
]

R =
[

r1 r2 . . . rβ
]

γ̂ = diag
[

γ1 . . . γσ
]

,

Then, F ∈ IR3×2β , N ∈ IR3×2β , T ∈ IR3×σ , S ∈ IR3×σ , B ∈ IR3×β , γ ∈ IRσ , and

B = N2 −N1 = N

[

−I
I

]

= NU,

R = N1 +
1

2
B.

T = S γ̂.



Matrix Forms of Dynamics

For a β -bar system define the configuration matrix Q and,

Q =
[

B R
]

K0 =

[

I
0

]

θ̂
[

I 0
]

θi = bT
i (fβ+i − fi )/2L

2
i +mi‖ḃi‖2/12L

2
i

Φ =

[

− 1
2 I I

1
2 I I

]

M = diag
[

. . . mi . . .
]

M =

[

1
12M 0
0 M

]

.

Then the dynamics for any class 1 tensegrity system are given by

Q̈M +QK0 = FΦ,

where QΦT = N.



Bar Forces

For a given square matrix J, define the notation ⌊J⌋ = diag
[

. . . Jii . . .
]

.
Then, a matrix form for entries θi , i = 1,2, ... is

θ̂ =
1

2
L̂

−2⌊BT (F2−F1)+
1

6
ḂT ḂM⌋

=
1

2
L̂

−2⌊
[

I 0
]

Q
T (F2−F1)+

1

6

[

I 0
]

Q̇
T M⌋

L =
[

L1 L2 · · · Lβ
]T

.



Connectivity Matrices

Define the string connectivity matrix C

Cij =











1 if string vectorsi terminates on nodenj .

−1 if string vectorsi eminates from nodenj .

0 if string vectorsi does not connect with nodenj .

For 2β disturbance vectors applied at each of the β nodes,

W =
[

w1 w2 · · · w2β
]

Then
S = NCT

,
TC = S γ̂C = NCT γ̂C

F = W −TC = W −QΦT CT γ̂C ,



Final Form of Dynamics

For all Class 1 tensegrity systems with rigid bars,

Q̈M +QK = WΦ, Q =
[

B R
]

,

M =

[

1
12M 0
0 M

]

, M =







m1 0 0

0
. . . 0

0 0 mβ







K =

[

θ̂ 0
0 0

]

+ΦT CT γ̂CΦ, ΦT =

[

− 1
2 I 1

2 I
I I

]

θ̂ =
1

12
L̂

−2

⌊

6
[

I 0
]

Q
T (QΦT CT γ̂C −W )

[

I
−I

]

+
[

I 0
]

Q̇
T

Q̇

[

I
0

]

M

⌋

.



Alternate Expressions

The ith element of the diagonal matrix θ̂ may also be written

θi =
1

2
L

−2
i bT

i (QΦT CT Ĉ∆i
γ −W∆i

)+
mi

12L 2
i

||ḃi ||2,

W = [W1,W2], C = [C1,C2]

W∆i
= ithcol(W1 −W2) = −W (ithcol(U)) = wi −wβ+1

C∆i
= ithcol(C1 −C2) = −C(ithcol(U)) = Ci −Cβ+1.



Dynamics in Nodal Coordinates

Using N = QΦT it is straightforward to write

Theorem
Dynamics for all class 1 tensegrity in nodal coordinates N,

N̈MN +NKN = W ,

where

MN =
1

6

[

2M M
M 2M

]

, KN = U θ̂UT +CT γ̂C ,

where,

θi =
1

2L2
i

(NU)Ti (NCT Ĉ∆i
γ −WUi )+

mi

12L2
i

||(ṄU)i ||2,

where Ui = ithcol(U).



Statics

Replace Q(t) in the dynamic equations by its steady state value
Q = lim t → ∞[Q(t)].
Then all equilibria for Class 1 tensegrity systems satisfies

QK = WΦ, Q =
[

B R
]

,

K =

[

θ̂ 0
0 0

]

+ΦT CT γ̂CΦ, ΦT =

[

− 1
2 I 1

2 I
I I

]

θ̂ =
1

12
L̂

−2

⌊

6
[

I 0
]

Q
T (QΦT CT γ̂C −W )

[

I
−I

]⌋

.

These equations are LINEAR in the variable γ
Given a desired configuration Q and a set of static loads W all forces in the
strings that are compatible with that configuration and load, are immediately
known, by solving a linear algebra problem.



Vector Form of the Dynamics

Γb =









12m−1
1 QΨT Ψ̂1

...

12m−1
β QΨT Ψ̂β









, Γr =









m−1
1 QΨT Ψ̂β+1

...

m−1
β QΨT Ψ̂2β









Ψ =

[

I 0

− 1
2C∆ C+

]

, Λ =









(2L2
1)

−1bT
1 QΦT CT Ĉ∆1

...

(2L2
β )−1bT

β QΦT CT Ĉ∆β









τb = 12









m−1
1 ((w1+β −w1)/2−QΨT Ψ̂1Jδ )

...

m−1
β ((w2β −wβ )/2−QΨT Ψ̂β Jδ )









τr =









m−1
1 ((wβ+1 +w1)−QΨT Ψ̂β+1Jδ )

...

m−1
β ((wβ +w2β )−QΨT Ψ̂2β Jδ )











Vector Form of Dynamics

δ =









(12L 2
1 )−1m1‖ḃ1‖2 +(2L 2

1 )−1bT
1 (w1+β −w1)

...

(12L 2
β )−1mβ‖ḃβ‖2 +(2L 2

β )−1bT
β (w2β −wβ )









qT =
[

bT
1 · · · bT

β rT
1 · · · rT

β

]

, Q =
[

E1q · · · E2β q
]

bi = Qei , Ei =
[

0 · · · I3 · · · 0
]

, eT
i =

[

0 · · · 1 · · · 0
]

.

Theorem
All class 1 tensegrity dynamics satisfy

q̈ +ΓGγ = τ,

Γ =

[

Γb

Γr

]

, τ =

[

τb

τr

]

, G =

[

Λ
I

]

.



Vector Form

Proof.
the vector θ is given by

θ = Λγ +δ ,

and the matrix K , and its ith column are given by

K = ΨT ûΨ

Ki = ΨT Ψ̂i (Gγ +Jδ )

u =

[

θ
γ

]

=

[

Λ
Iσ

]

γ +

[

Iβ
0

]

δ = Gγ +Jδ



Statics

Now let t → ∞ in theorem above.
Define the left null-space of a matrix [·] by
(⊥[·])[·] = 0,
Define the right-nullspace of matrix [·] by
[·]([·]⊥) = 0
Define the Moore-Penrose inverse of the matrix [·] by [·]†
A specified set of constant loads W is said to be admissible for a specified Q if
there exists a solution γ to the equation ΓGγ = τ. That is, if

⊥[ΓG(Q)]τ(Q,W ) = 0.

For statics ΓGγ = τ, then the string force densities of all static equilibria of all
class 1 tensegrity structures are given by

γ = [ΓG ]†τ +[ΓG ]⊥z ,

where z is arbitrary, subject to the requirement that all elements of γ are
positive or zero.



Conclusions

• The nonlinear dynamics are given in the form of a second order differential
equation of a 3×2β configuration matrix, Q.

• The matrix form of dynamics has the simplest form, even though they are
non-minimal (5β degree-of-freedom system is modeled by 6β degrees of
freedom)

• The equations contain no trigonometric nonlinearities, and the mass
matrix is constant.

• The simplicity of these equations is partly due to the use of the matrix
form, partly due to the choice of variables, and partly due to the enlarged
space in which the dynamics are described.

• Numerical integration schemes for stabilizing the computational errors are
given.

• All static equilibria are characterized. For any given admissible
configuration the equilibria equations are linear in the string force densities.

• The freedom in the desired equilibria can be utilized to further reduce
control effort in the control problem.



Nonlinear Control of Non-minimal Tensegrity models



Motivation and Goals for Control

• Tensegrity systems can have many rigid bodies connected either by elastic
”springs”, or ”strings”.

• This lecture assumes springs are used

• Do this with a non-minimal realization of the dynamic model

• Applications: formation flying such as a fleet of rigid vehicles.

• The elastic ”springs” connecting these rigid bodies could then be the
result of closed loop control laws that mimic the spring and damper forces
of the ”interconnections” of the vehicles

• We provide state feedback control laws to modify a configuration
(formation) from some initial known configuration to a desired final
configuration, using the smallest control effort.

• Potential advantage: exploit the special structure of the equations to
obtain an efficient simulation, or control law



Control Strategy For Bilinear Systems

,
ẋ = f(x)+B(x)u, y = g(x)

• Define a vector of Lyapunov-type functions, y

• Find control laws that force this vector to behave as a linear stable ODE.

• The controllers required to do this are nonlinear.

• We do not seek to make the dynamics of the closed loop plant linear.

• We force nonlinear Lyapunov-type functions to behave linearly.

• The Lyapunov-type functions are not required to be quadratic, although
such examples are given here



Output Regulation Controllers (ORC) for Nonlinear Systems

• Let y represent a chosen vector of nonlinear functions that are important
to reduce toward zero (such as the error squared between current and
desired configurations, etc).

• For example, each element of the vector y could be chosen such as
yi = xTQix, where Qi is chosen to create an error function that should be
zeroed by the control system.

• If y represents the difference between the current and a desired ”output”,
then a desired state is achieved by forcing yi to toward zero. One way to
reduce y toward zero is to force y to satisfy a stable linear differential
equation,

• ẏ = −Ωy, where Ω is chosen positive definite.

• The method does not require quadratic choices for yi . (Indeed, some
nonlinear systems cannot be stabilized with quadratic Lyapunov functions).

• If it is not possible to satisfy ẏ = −Ωy exactly, then we will minimize the
Euclidean norm of the error ẏ+Ωy at each instant of time. This yields the
first result:



Derivation of the ORC

Find a control u which minimizes the Euclidean norm squared of the error
ẏ+Ωy, while
choosing Ω to minimize an integral of the error over a finite interval of time
(t1,t2).
Note that

ẏ =
∂g

∂x
ẋ =

∂g

∂x
(f(x)+B(x)u) = −Ωg(x).

Linear algebra yields the minimal Euclidean norm squared of the error in the
above equation (left-hand side minus the right-hand side) yields

u = −
(

∂g

∂x
B

)+

(Ωg+
∂g

∂x
f),

Compute the Euclidean norm squared of the equation error, J1,

J1 = (Ωg+
∂g

∂x
f)TP(Ωg+

∂g

∂x
f)

P := I− ∂g

∂x
B

(

∂g

∂x
B

)+

.



The ORC controller

Theorem
For the system described by

ẋ = f(x)+B(x)u

y = g(x)

the control law given by (the ORC controller)

u = −
(

∂g

∂x
B

)+

(Ωg+
∂g

∂x
f),

minimizes, at each instant of time, the Euclidean norm squared of the error
ẏ+Ωy.

For insight lets examine the use of this ORC controller in a linear system.



The ORC Controller Applied to a Linear System

Theorem
For any linear system such that y = g(x) = xT Qx, and f(x) = Ax,
if Q is chosen to satisfy

QA+ATQ−2QBBTQ+ΩQ = 0,

then the ORC controller minimizes J given by

J =
∫ ∞

0
(ΩxT Qx+

1

2
uTu)dt,

and the closed loop system has these properties

ẏ = −Ωy

Min(J) = x0
TQx0



The Linear ORC

Proof.
Computing the control in the linear case yields

u = −xT (ΩQ+QA+ATQ)x

2xT QBBTQx
BTQx,

where the fraction reduces to 1 when Q satisfies the Riccati above, which is
indeed the condition for minimizing J.



Properties of the Linear ORC controller

• The linear case the ORC controller is optimal by two different criteria.

• It is the least squares solution which minimizes, at any instant of time, the
Euclidean norm of the error ẏ+Ωy

• It is also an optimal LQR control for the functional J

• These results provide encouragement to investigate further properties of
the ORC controller in the nonlinear case.

• For the linear case there is no restriction on the choice of positive matrix
Ω > 0, since the equation ẏ = −Ωy is always solved

• In the nonlinear case the controller might not exist that satisfies ẏ = −Ωy.
In this case we make a special choice of Ω in an attempt to reduce error.



An Adaptive ORC

Now lets evaluate the error J2 =
∫

J1dt over an interval of time (t1,t2),

J2 is the inner product of the vector P(Ωg+ ∂g
∂x f) with itself.

Note the property of the projection matrix P2 = P
Recall the notation and definitions of inner and outer products, on a given
interval, (t1,t2),

< x,y > =
∫ t2

t1

xT (t)y(t)dt

> x,y < =
∫ t2

t1

x(t)yT (t)dt

< x,y > = tr(> x,y <).

From functional analysis, we have the standard known result:

Lemma
The constant A which minimizes the inner product < Ax−b,P(Ax−b) > is
A = (> b,x <)(> x,x <)−1.



an Adaptive ORC Controller

Applying this result to our problem of choosing Ω to minimize the inner

product < P(Ωg+ ∂g
∂x f),P(Ωg+ ∂g

∂x f) > yields

Ω(t1,t2) = −P

(

∫ t2

t1

∂g

∂x
fgT

)(

∫ t2

t1

ggT dt

)−1

+(I−P)Z,

where P = P2 = P+, and Z is an arbitrary matrix. At time t2 the control
switches to,

u(t1,t2) = −
(

∂g

∂x
B

)+(

Ω(t1,t2)g+
∂g

∂x
f

)

,

This control function switches to u(t2,t3), at time t3, etc. So the nonlinear
controller periodically updates the control with a new Ω, based upon a
calculation from performance achieved over the past interval
Similar in spirit to Model Predictive Control, except
update the performance requirement, Ω, instead of a model , A, of the plant,
The adaptive ORC procedure updates (updates the required stability properties
of the chosen performance function y



Summary of Adaptive ORC

Let tk and tk+1 represent the times at which two consecutive updates of Ω are
made (the interval tk+1− tk is not necessarily uniform). Then the control law
can be written in the form

u(tk+1) = −
(

∂g

∂x
B

)+(

Ω(tk ,tk+1)g+
∂g

∂x
f

)

,

where the control law u(tk+1) is applied on the interval tk+1− tk , and then the
controller is updated to u(tk+2), and so forth. The initial controller for the first
interval is

u(t0) = −
(

∂g

∂x
B

)+(

Ω0g+
∂g

∂x
f

)

,

where Ω0 is a selected positive definite matrix.



Exponential Stability of the ORC

Uniqueness of the ORC implies ẏ = −Ωy, which yields exponential stability of
the output, since y(t) ≤ e−Ωty0.
The standard approach to exponential stability is the use a single Lyapunov
function (y is a scalar in the case).However, the linear algebra problem allows a
control nullspace of dimension m−1, leaving m−1 free variables in the
selection of the m-dimensional control vector.
This leaves quite a bit of room to satisfy still more constraints, without
compromising the original one. Vi (x) → 0, i = 1, · · · ,k . This can reduce the
nullspace in the control problem to be no larger than dimension |m−k |.



Configuration Control of a Tensegrity Prism
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Dynamics, and State Errors

Dynamic model is
q̈ = B2(q)γ + τ(q, q̇,w)

vector q contains the bar vectors bi and their centers of mass ri
γ is the vector of control inputs,
The state vector will be given by the actual state minus the desired state:
xT = ((xi )

T , ...,(xj)
T ), for i = 1,2,3. and j = 1,2,3.

xT
i = ((bi −bid )

T ,(ḃi )
T )

xT
j = ((rj − rjd )T ,(ṙj)

T )



Reconfiguration of a Tensegrity Prism

Example A:
y = g(x) = xT Qx, Ω = α > 0
y = ∑3

i xT
i Qixi +∑3

j xT
j Qjxj ,

Q = BlockDiag [...Qi .....Qj ...]
for i , j = 1,2,3 and Ω = 0.3,
Tbi

= 2.5I, Xbi
= 0.7I, Zbi

= 3I, Trj = 1.5I, Xrj = I, Zrj = 3
2 I,

where

Qi =

(

Tbi
Xbi

XT
bi

Zbi

)

Qj =

(

Trj Xrj

XT
rj

Zrj

)



Reconfiguring the Tensegrity Prism
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Figure: Ex.A. Left, upper nodes trajectories (node 4 green, 5 red and 6 blue). On the
right, the value for the Lyapunov function.



Control Signals (string tensions)
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Figure: Ex.A. Control signals evolution. Tensions in cables are listed from top left to
down right corresponding to cables 1 to 12.



Vector ORC

Example B: (yi = gi (x) = xT Qix,Ω ≥ 0)
vector of functions y (y is 6x1)
Find the control to satisfy ẏ = −Ωy, for the choice Ωij = αδij , hence,

V̇i = −αVi .

∂g

∂x
=

















ψb1
0 0 0 0 0

0 ψb2
0 0 0 0

0 0 ψb3
0 0 0

0 0 0 ψr1 0 0
0 0 0 0 ψr2 0
0 0 0 0 0 ψr3

















where each of the blocks is 1x3 and ∂g
∂x is 6x18,

ψbi
= (bi −bid )

TYbi
+ ḃT

i Zbi

ψri = (ri − rid )
TYri + ṙTi Zri

Ω is constant, diagonal, 6x6, and the decay rate is α = 0.01.
components Qi :
Tbi

= 2.5I,Xbi
= 0.7I,Zbi

= 3I, Tri = 1.5I,Xri = I,Zri = I



Vector ORC Control Signals
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Figure: Ex.B. Control signals evolution. Tensions in cables are listed from top left to
down right corresponding to cables 1 to 12.



Singular Values of the
(

∂g
∂xB

)

matrix
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Decay of Lyapunov Functions
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Adaptive ORC Example

Example C:

yi = gi (x) = xT Qix,

Ω = −P

(

∫ t2

t1

∂g

∂x
fgT

)(

∫ t2

t1

ggT dt

)−1

+(I−P)Z,

As in the previous example we have 6 different gi . The matrix ∂g
∂x

is 6x18.
After an initial guess for Ω it is recomputed between each interval of time.



Adaptive ORC Example, Trajectories
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Adaptive ORC: Control Trajectories
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Adaptive ORC: Singular values of matrix
(

∂g
∂xB

)

0 500
0

0.5

1

1.5

2

2.5
x 10

−3

0 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

0 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

0 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

0 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

0 500
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Singular Values of the outer product of g during the simulation time



Conclusions

The ORC offers a multiple set of performance requirements, instead of just one
Vi .
The eigenvalues of Ω do not have to be real.
The ES system forces the Vi functions to monotonically reduce in time, and
this is much more severe than just asking just one Vi to go to zero,
This severe requirement on the performance can cause the control effort to be
unreasonably large.
The ability to choose the entire matrix Ω instead of just its diagonal elements
offers greater flexibility to guarantee a solution
The adaptive ORC offers a more clever choice of Ω.
It is ad hoc to find a good Ω.
Then ORC method chooses Ω to minimize this error over a finite time interval
(t1,t2).
In this sense, the method is similar in spirit to Model Predictive Control, except
that no linear model need be computed (the update of Ω plays that role).
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