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Specimen geometry: Double Edge Notch Tension

Certral hole od /X2 siof
O0in slot
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[Williams & Ewing (71)]
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A Babel of criteria

Several criteria and variations:

# principle of local symmetry (PLS) [Goldstein & Salganik (74)]
& maximum energy release rate [Cotterell (65)]
# maximum circumferential (hoop) stress [Erdogan & Sih (63)]
# strain energy density [Sih (73)]
# vectorial J-integral [Friedman & Liu (96)]
» Eshelby tensor [Kienzler & Herrman (02)]

Coincide in special cases and are just slightly different.
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Stress Intensity Factors

In a (small) neighborhood of the crack tip

(in the local system of polar coordinates)

o=Kip~V28;(0)+ KpV/28;(0) + & [Irwin (51)]

S1(0) = (2m)~'/2 cos(6/2) (1 — sin(0/2)sin(30/2)  sin(8/2) cos(30/2) )

sin(0/2) cos(360/2) 1+ sin(6/2)sin(360/2)
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Stress Intensity Factors

In a (small) neighborhood of the crack tip

(in the local system of polar coordinates)

o=Kip~V28;(0)+ KpV/28;(0) + & [Irwin (51)]

S1(0) = (2m)~'/2 cos(6/2) (1 — sin(0/2)sin(30/2)  sin(8/2) cos(30/2) )

sin(0/2) cos(360/2) 1+ sin(6/2)sin(360/2)

In particular, in the DENT geometry (large domain)

K ~ psin?(8)(ma)/? K ~ psin(B) cos(8)(ra)/? [Sih (62)]
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Principle of Local Symmetry

By K = psin(8)(ra)/2 and Ky = psin(8) cos(8)(ra)/2

» ."&
K]]/KI:COtﬁ (K],K]])Iﬁﬁl—)ﬁ \;Q

10 ]
Kpg=0 < 9=0 (nokink) _ ;ﬁ
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Principle of Local Symmetry

By K = psin(8)(ra)/2 and Ky = psin(8) cos(8)(ra)/2

F S .uﬁ
K /Ky = cot 3 (K1, Kip) — 81 \Aq
| A

Kpg=0 < 9=0 (nokink) _ .\;ﬁ

Extrapolate this law along the crack path T: )( o
~ B

KH(FS) =0 for s >0

[Goldstein & Salganik (74)]
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Principle of Local Symmetry

By K = psin(8)(ra)/2 and Ky = psin(8) cos(8)(ra)/2

0k .uﬁ
K /K = cotf (K1, Kpp) = =1 \Aq
| A

Kpg=0 < 9=0 (nokink) _ .\;ﬁ

Extrapolate this law along the crack path T: )( o
~ B

KH(FS) =0 for s >0

[Goldstein & Salganik (74)]
"PLS = deflection law + regularity of the crack path”

At initiation in general K (Ty) # 0 but lim, o+ K77(Is) =0
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Experimental validation
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Finding the kink angle 8,

If K;7(I's) = 0 for s > 0 then ¥y solve K7;(Ip,v) = 0.
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Finding the kink angle 8,

If K;7(I's) = 0 for s > 0 then ¥y solve K7;(Ip,v) = 0.

Using the vectors K* (I}, ) and K (I}) then

KTy, 9) = C(¥) K(Io)

C(9) ~ E(9) — i <3(308(19/2) +cos(39/2)  —3sin(9/2) — 38111(319/2))

sin(1¥/2) + sin(39/2) cos(¥/2) + 3 cos(39/2)

[Williams (57), Cotterell & Rice (80)]
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Finding the kink angle 8,

If K;7(I's) = 0 for s > 0 then ¥y solve K7;(Ip,v) = 0.

Using the vectors K* (I}, ) and K (I}) then

KTy, 9) = C(¥) K(Io)

~ o 1 [ 3cos(¥/2) +cos(39/2) —3sin(d/2) — 3sin(34/2)
C0)~ ClY) = 4 < sin(v/2) + sin(39/2) cos(¥/2) + 3 cos(39/2) >

[Williams (57), Cotterell & Rice (80)]

Hence 1, is approximated by the solution of

Co1 (0K (Ty) + Caa(9) K1 (L) = 0

[Under this approximation and Sih representation: PLS, hoop and G, 4, do coincide.]
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Finding the crack path

Consider the classical semi-infinite crack in C

Find a path (z, A(z)) such that Ky (I';) =0 for > 0.
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Finding the crack path

Consider the classical semi-infinite crack in C

Find a path (z, A(z)) such that Ky (I';) =0 for > 0.

by
f—= X4)
=:’-—'—55$$=E==.|/ -
I—:—-—-i\

Find an expansion for K;(T',,) ...

[(small) perturbation of the straight path by Cotterell & Rice (80)]
[conformal mappings by Amestoy & Leblond (92)]

From K (T',) =0 ... find [ A\(z) =~ ax + bz3/?

So )\ is of class C'1:1/2
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Finding the crack path: our mathematical setting

Consider a single edge geometry with b.c. u = g on 0y€2 for a Lipschitz 2

Find a path (z,y(x)) such that K (I',,) = 0 for z > 0.
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Finding the crack path: our mathematical setting

Consider a single edge geometry with b.c. u = g on 0y€2 for a Lipschitz 2
Find a path (z,y(x)) such that K (I',,) = 0 for z > 0.

Requirement: given I'

ur € argmin{ We(e)dr:ue H andu = g on (909}
O\T

ur = Kip?Ur(0) + Kpt? U (0) + @

(in the local system of polar coordinates)
A representation with o € H? is known for Q \ T polygonal [Grisvard (89)]

... for y of class cH! on the base of [Lazzaroni & Toader (10)]

loc
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Approximated Stress Intensity Factors

Use an integral approximation of K; of the form
K;(T;) = / (u—10) - k;i(0) dx
O\,

for kernels k; supported in B,.(z,y(x)) (for r < 1) of the form
[in the local system of polar coordinates]

ke (0) = p~H/2p2 (a1 c0s(0/2) + as cos(30/2) , as sin(6/2) + ay sin(36 /2))

for 4~ u(z,y(x)), €.9. u z][ udx forr’ <r
B

r!

~

K; are well defined at least for crack paths of class C%! (and v € H?)
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K} (I, ) of the form

K} (T,9) = lim K;(T},) = / (u—4) - k(6 — ) da
Q\I

z—0
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K} (I, ) of the form

K} (T,9) = lim K;(T},) = / (u—4) - k(6 — ) da
z—0 O\T
If w=K;p"/2U;(0)+ Kyp*? Uy (0)+u for u € H? then
s |K(I)— K()|=0(r?) [straight, curved cracks]
s |K*(I',9) — C(9)K(T)| = O(r/?) [kinked cracks]

where C(0)K ~ C(9)K = K*(T,9)
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K} (I, ) of the form

K} (T,9) = lim K;(T},) = / (u—4) - k(6 — ) da
z—0 O\T
If w=K;p"/2U;(0)+ Kyp*? Uy (0)+u for u € H? then
s |K(I)— K()|=0(r?) [straight, curved cracks]
s |K*(I',9) — C(9)K(T)| = O(r/?) [kinked cracks]
where C(9)K ~ C(9)K = K*(T',9)

In particular the kink angle v, solves

K% (Do, ) = / (1 — 1) - Ei(0 — ) d = 0
O\To
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A Functional Differential Equation for the crack path

The crack path is a graph in the set
Y={yeC”([0,X]) :y(0) =0and |ylo, < C}

[choose a system of coordinates with é; = (cos Jg, sin 6g)]
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A Functional Differential Equation for the crack path

The crack path is a graph in the set
Y ={yeC”([0,X]) :y(0)=0and |ylo, < C}
[choose a system of coordinates with é; = (cos Y9, sin )]

Given y € Y define an auxiliary function vV

VT, — tgds K% (Ty,9) =0
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A Functional Differential Equation for the crack path

The crack path is a graph in the set
Y ={yeC”([0,X]) :y(0)=0and |ylo, < C}
[choose a system of coordinates with é; = (cos Y9, sin )]

Given y € Y define an auxiliary function vV

VT, — tgds K% (Ty,9) =0

The crack path is found by solving

Y (x) =V (I}) fora.e. x > 0 |
[a first order FDE for the crack path]

V(L) =tgd, < Ki([p0,)=Kng(l)=0

@\
~—~
8
~—~—
I
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Ingredients of the proofs

1. existence by Schauder fixed point Theorem

2. uniqueness (still open)

3. regularity in C*1/4([0, X]) N C.2} (0, X) (in progress)

loc
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Ingredients of the proofs

1. existence by Schauder fixed point Theorem

2. uniqueness (still open)

3. regularity in C11/4([0, X]) N C1 (0, X) (in progress)

loc

Properties of K; (definition of V)

o Dbehaviour for I'j where ug has the SIF

# expansion of u, w.r.t. x [Leblond (99), N. (11)]

Uy = ug + 21/22, 2, — 0in H' and z, — 0onlyin Hlloc

# Saint-Venant principle for Lipschitz cracks (in progress)
| tetwl? dz = o)
B’l"
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"An exercise”

Consider an elastic bar (0, L) with a stiffer/softer (small) inclusion in (0, h)

Let u;, be the equilibrium configuration with b.c. 4(0) =0 and u(L) = a.

L.
Check that a 4 —2
£, L

® |jun — uo| = O(hY/?) in HY(0, L) ¢
® |E(un) — E(uo)| = O(h)

For u;, = ug + h'/2z, check that
® z, A 0in HY0, L)
® 2, —0in HY(0,L)
["The Force on an Elastic Singularity” by Eshelby (51)]

Salerno - 16 Giu 2011 —p. 13




# Consider a single edge setting for a Lipschitz 2 with proportional b.c.

u=-c(t)g on gy with ¢(0) = 0 and c increasing

» Consider plane strain linearized elasticity and brittle fracture (LEFM)
# State variables: fracture set I';, displacement u(t, x)

# Quasi-static propagation + PLS:
u(t, -) in equilibrium

I; satisfies Griffith’s (equilibrium) criterion + PLS

~

Note that K;(¢,T') = c(¢)K;(T) fori = I, II.
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Fracture propagation (regularized)

Find a curve of the form (z, y(x)) and a parametrization x(t) s.t.
# Principle of Local Symmetry

Ku(,)=0  foreveryz € (0,X)
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Fracture propagation (regularized)

Find a curve of the form (z, y(x)) and a parametrization x(t) s.t.
# Principle of Local Symmetry

Ku(,)=0  foreveryz € (0,X)

# Griffith’s Criterion (in Kuhn-Tucker fashion)

Ki(t,Tyy) < K§  forz(t) >0 [equilibrium]

(K1(t, T o)) — K§) @(t) =0 for every x(t) >0  [flow rule]
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Fracture propagation (regularized)

Find a curve of the form (z, y(x)) and a parametrization x(t) s.t.
# Principle of Local Symmetry

Ku(,)=0  foreveryz € (0,X)
# Griffith’s Criterion (in Kuhn-Tucker fashion)
Ki(t,Tyy) < K§  forz(t) >0 [equilibrium]
(K1(t,Toy)) — K§)@(t) =0  forevery z(t) >0  [flow rule]
By linearity K (¢, L)) = c(t)l?n(l}(t)) =0 forz(t) >0

Get K*(I'y,¥0) = 0 by letting ¢ \, tin::.
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Parametrization: a critical example

Given the path y € V', K;(I,) is continuous w.r.t. z but non-monotone

Horizontal crack (mode 1), proportional b.c. ¢(t) = ct
(K7 = 0 for the straight path)

Right: parametrization = and locus of stationary points {IN(I (t,Iy) = K§}
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Parametrization: a rate-independent pb.

Given the path y € ) there exists a parametrization x(t) S.t.

» the Kuhn-Tucker conditions holds: for ¢;,,;; = sup{t : z(¢t) = 0}

Ki(t,To) < K§¢ fort < tini Ki(t,Tyw) < K§  fort > tini

(K1(t,Topy) — K§)dax(t) =0  as ameasure in (tinir, T)

» discontinuities represents unstable regimes of the evolution.

Ki(t,T)> K¢  forte J(z)andl e (z(t),zt(t))
[N.-Ortner (08), N. (10a)]

equivalent evolution by viscosity [Toader & Zanini (09), Knees, Mielke & Zanini (08), N. (10b)]
substantially different from the evolution by global minimizers [Francfort & Marigo (98) etc.]
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