Propagazione di Fratture in Modo Misto secondo PLS

Matteo Negri Dipartimento di Matematica - Università di Pavia

Part I. mechanics: experimental and theoretical

Part II. mathematics: a (regularized) model

http://www-dimat.unipv.it/~negri/

Specimen geometry: Double Edge Notch Tension

[Williams & Ewing (71)]

Several criteria and variations:

principle of local symmetry (PLS) [Goldstein & Salganik (74)] maximum energy release rate [Cotterell (65)] maximum circumferential (hoop) stress [Erdogan & Sih (63)] strain energy density [Sih (73)] vectorial J-integral [Friedman & Liu (96)] Eshelby tensor [Kienzler & Herrman (02)]

Coincide in special cases and are just slightly different.

In a (small) neighborhood of the crack tip

(in the local system of polar coordinates)

$$\boldsymbol{\sigma} = K_I \rho^{-1/2} \boldsymbol{S}_I(\theta) + K_{II} \rho^{-1/2} \boldsymbol{S}_{II}(\theta) + \bar{\boldsymbol{\sigma}} \qquad \text{[Irwin (51)]}$$

$$\boldsymbol{S}_{I}(\theta) = (2\pi)^{-1/2} \cos(\theta/2) \begin{pmatrix} 1 - \sin(\theta/2) \sin(3\theta/2) & \sin(\theta/2) \cos(3\theta/2) \\ \sin(\theta/2) \cos(3\theta/2) & 1 + \sin(\theta/2) \sin(3\theta/2) \end{pmatrix}$$

In a (small) neighborhood of the crack tip

(in the local system of polar coordinates)

$$\boldsymbol{\sigma} = K_I \rho^{-1/2} \boldsymbol{S}_I(\theta) + K_{II} \rho^{-1/2} \boldsymbol{S}_{II}(\theta) + \bar{\boldsymbol{\sigma}} \qquad \text{[Irwin (51)]}$$

$$\boldsymbol{S}_{I}(\theta) = (2\pi)^{-1/2} \cos(\theta/2) \begin{pmatrix} 1 - \sin(\theta/2) \sin(3\theta/2) & \sin(\theta/2) \cos(3\theta/2) \\ \sin(\theta/2) \cos(3\theta/2) & 1 + \sin(\theta/2) \sin(3\theta/2) \end{pmatrix}$$

In particular, in the DENT geometry (large domain)

$$K_I \approx p \sin^2(\beta) (\pi a)^{1/2}$$
 $K_{II} \approx p \sin(\beta) \cos(\beta) (\pi a)^{1/2}$ [Sih (62)]

Principle of Local Symmetry

By
$$K_I = p \sin^2(\beta) (\pi a)^{1/2}$$
 and $K_{II} = p \sin(\beta) \cos(\beta) (\pi a)^{1/2}$
 $K_{II}/K_I = \cot \beta$ $(K_I, K_{II}) \mapsto \beta \mapsto \vartheta$
 $K_{II} = 0 \quad \Leftrightarrow \quad \vartheta = 0$ (no kink)

Principle of Local Symmetry

By
$$K_I = p \sin^2(\beta)(\pi a)^{1/2}$$
 and $K_{II} = p \sin(\beta) \cos(\beta)(\pi a)^{1/2}$
 $K_{II}/K_I = \cot \beta$ $(K_I, K_{II}) \mapsto \beta \mapsto \vartheta$
 $K_{II} = 0 \quad \Leftrightarrow \quad \vartheta = 0$ (no kink)

Extrapolate this law along the crack path Γ_s :

$$K_{II}(\Gamma_s) = 0$$
 for $s > 0$

[Goldstein & Salganik (74)]

Principle of Local Symmetry

By
$$K_I = p \sin^2(\beta)(\pi a)^{1/2}$$
 and $K_{II} = p \sin(\beta) \cos(\beta)(\pi a)^{1/2}$
 $K_{II}/K_I = \cot \beta$ $(K_I, K_{II}) \mapsto \beta \mapsto \vartheta$
 $K_{II} = 0 \quad \Leftrightarrow \quad \vartheta = 0$ (no kink)

Extrapolate this law along the crack path Γ_s :

$$K_{II}(\Gamma_s) = 0$$
 for $s > 0$

"PLS = deflection law + regularity of the crack path"

<u>At initiation</u> in general $K_{II}(\Gamma_0) \neq 0$ but $\lim_{s \to 0^+} K_{II}(\Gamma_s) = 0$

Experimental validation

[Abanto-Bueno & Lambros (06)]

Finding the kink angle θ_0

If $K_{II}(\Gamma_s) = 0$ for s > 0 then ϑ_0 solve $K^*_{II}(\Gamma_0, \vartheta_0) = 0$.

If $K_{II}(\Gamma_s) = 0$ for s > 0 then ϑ_0 solve $K_{II}^*(\Gamma_0, \vartheta_0) = 0$.

Using the vectors $K^*(\Gamma_0, \vartheta)$ and $K(\Gamma_0)$ then

 $K^*(\Gamma_0,\vartheta) = C(\vartheta) K(\Gamma_0)$

$$C(\vartheta) \approx \widetilde{C}(\vartheta) = \frac{1}{4} \begin{pmatrix} 3\cos(\vartheta/2) + \cos(3\vartheta/2) & -3\sin(\vartheta/2) - 3\sin(3\vartheta/2) \\ \sin(\vartheta/2) + \sin(3\vartheta/2) & \cos(\vartheta/2) + 3\cos(3\vartheta/2) \end{pmatrix}$$

[Williams (57), Cotterell & Rice (80)]

If $K_{II}(\Gamma_s) = 0$ for s > 0 then ϑ_0 solve $K_{II}^*(\Gamma_0, \vartheta_0) = 0$.

Using the vectors $K^*(\Gamma_0, \vartheta)$ and $K(\Gamma_0)$ then

 $K^*(\Gamma_0,\vartheta) = C(\vartheta) K(\Gamma_0)$

$$C(\vartheta) \approx \widetilde{C}(\vartheta) = \frac{1}{4} \begin{pmatrix} 3\cos(\vartheta/2) + \cos(3\vartheta/2) & -3\sin(\vartheta/2) - 3\sin(3\vartheta/2) \\ \sin(\vartheta/2) + \sin(3\vartheta/2) & \cos(\vartheta/2) + 3\cos(3\vartheta/2) \end{pmatrix}$$

[Williams (57), Cotterell & Rice (80)]

Hence ϑ_0 is approximated by the solution of

$$\widetilde{C}_{21}(\vartheta)K_I(\Gamma_0) + \widetilde{C}_{22}(\vartheta)K_{II}(\Gamma_0) = 0$$

[Under this approximation and Sih representation: PLS, hoop and G_{max} do coincide.]

Finding the crack path

Consider the classical semi-infinite crack in $\ensuremath{\mathbb{C}}$

Find a path $(x, \lambda(x))$ such that $K_{II}(\Gamma_x) = 0$ for x > 0.

Finding the crack path

Consider the classical semi-infinite crack in $\ensuremath{\mathbb{C}}$

Find a path $(x, \lambda(x))$ such that $K_{II}(\Gamma_x) = 0$ for x > 0.

[(small) perturbation of the straight path by Cotterell & Rice (80)] [conformal mappings by Amestoy & Leblond (92)]

From
$$K_{II}(\Gamma_x) = 0$$
 ... find $\lambda(x) \approx ax + bx^{3/2}$

Find an expansion for $K_{II}(\Gamma_x)$...

So λ is of class $C^{1,1/2}$

Finding the crack path: our mathematical setting

Consider a single edge geometry with b.c. $u = \hat{g}$ on $\partial_0 \Omega$ for a Lipschitz Ω

Find a path (x, y(x)) such that $K_{II}(\Gamma_x) = 0$ for x > 0.

Consider a single edge geometry with b.c. $u = \hat{g}$ on $\partial_0 \Omega$ for a Lipschitz Ω

Find a path (x, y(x)) such that $K_{II}(\Gamma_x) = 0$ for x > 0.

<u>Requirement</u>: given Γ

$$u_{\Gamma} \in \operatorname{argmin}\left\{\int_{\Omega\setminus\Gamma} W^{e}(\boldsymbol{\epsilon})\,dx: u\in H^{1} \text{ and } u=\hat{g} \text{ on } \partial_{0}\Omega\right\}$$

$$u_{\Gamma} = K_{I} \rho^{1/2} U_{I}(\theta) + K_{II} \rho^{1/2} U_{II}(\theta) + \bar{u}$$

(in the local system of polar coordinates)

A representation with $\bar{u} \in H^2$ is known for $\Omega \setminus \Gamma$ polygonal [Grisvard (89)]

... for y of class $C_{loc}^{1,1}$ on the base of [Lazzaroni & Toader (10)]

Approximated Stress Intensity Factors

Use an integral approximation of K_i of the form

$$\widetilde{K}_i(\Gamma_x) = \int_{\Omega \setminus \Gamma_x} (u - \mathring{u}) \cdot k_i(\theta) \, dx$$

for kernels k_i supported in $B_r(x, y(x))$ (for $r \ll 1$) of the form [in the local system of polar coordinates]

$$k_1(\theta) = \rho^{-1/2} r^{-2} \left(a_1 \cos(\theta/2) + a_3 \cos(3\theta/2) \,, \, a_2 \sin(\theta/2) + a_4 \sin(3\theta/2) \right)$$

 \widetilde{K}_i are well defined at least for crack paths of class $C^{0,1}$ (and $u \in H^1$)

Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of $K_i^*(\Gamma, \vartheta)$ of the form

$$\widetilde{K}_i^*(\Gamma,\vartheta) = \lim_{z \to 0} \widetilde{K}_i(\Gamma_z) = \int_{\Omega \setminus \Gamma} (u - \mathring{u}) \cdot k_i(\theta - \vartheta) \, dx$$

Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of $K_i^*(\Gamma, \vartheta)$ of the form

$$\widetilde{K}_i^*(\Gamma,\vartheta) = \lim_{z \to 0} \widetilde{K}_i(\Gamma_z) = \int_{\Omega \setminus \Gamma} (u - \mathring{u}) \cdot k_i(\theta - \vartheta) \, dx$$

If $u = K_I \rho^{1/2} U_I(\theta) + K_{II} \rho^{1/2} U_{II}(\theta) + \bar{u}$ for $\bar{u} \in H^2$ then

•
$$|\widetilde{K}(\Gamma) - K(\Gamma)| = O(r^{1/2})$$
 [straight, curved cracks]

where $\widetilde{C}(\vartheta)K \approx C(\vartheta)K = K^*(\Gamma, \vartheta)$

Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of $K_i^*(\Gamma, \vartheta)$ of the form

$$\widetilde{K}_i^*(\Gamma,\vartheta) = \lim_{z \to 0} \widetilde{K}_i(\Gamma_z) = \int_{\Omega \setminus \Gamma} (u - \mathring{u}) \cdot k_i(\theta - \vartheta) \, dx$$

If $u = K_I \rho^{1/2} U_I(\theta) + K_{II} \rho^{1/2} U_{II}(\theta) + \bar{u}$ for $\bar{u} \in H^2$ then

$$|\widetilde{K}(\Gamma) - K(\Gamma)| = O(r^{1/2})$$
 [straight, curved cracks]

•
$$|\widetilde{K}^*(\Gamma, \vartheta) - \widetilde{C}(\vartheta)K(\Gamma)| = O(r^{1/2})$$
 [kinked cracks]

where $\widetilde{C}(\vartheta)K \approx C(\vartheta)K = K^*(\Gamma, \vartheta)$

In particular the kink angle ϑ_0 solves

$$\widetilde{K}_{II}^*(\Gamma_0,\vartheta_0) = \int_{\Omega\setminus\Gamma_0} (u - \mathring{u}) \cdot k_i(\theta - \vartheta_0) \, dx = 0$$

A Functional Differential Equation for the crack path

The crack path is a graph in the set

$$\mathcal{Y} = \{ y \in C^{0,1}([0,X]) : y(0) = 0 \text{ and } |y|_{0,1} \le C \}$$

[choose a system of coordinates with $\hat{e}_1 = (\cos \vartheta_0, \sin \theta_0)$]

A Functional Differential Equation for the crack path

The crack path is a graph in the set

$$\mathcal{Y} = \{ y \in C^{0,1}([0,X]) : y(0) = 0 \text{ and } |y|_{0,1} \le C \}$$

[choose a system of coordinates with $\hat{e}_1 = (\cos \vartheta_0, \sin \theta_0)$]

Given $y \in \mathcal{Y}$ define an auxiliary function V

$$V: \Gamma_x \mapsto \operatorname{tg} \vartheta_x \qquad \qquad K^*_{II}(\Gamma_x, \vartheta_x) = 0$$

A Functional Differential Equation for the crack path

The crack path is a graph in the set

$$\mathcal{Y} = \{ y \in C^{0,1}([0,X]) : y(0) = 0 \text{ and } |y|_{0,1} \le C \}$$

[choose a system of coordinates with $\hat{e}_1 = (\cos \vartheta_0, \sin \theta_0)$]

Given $y \in \mathcal{Y}$ define an auxiliary function V

$$V: \Gamma_x \mapsto \operatorname{tg} \vartheta_x \qquad \qquad K^*_{II}(\Gamma_x, \vartheta_x) = 0$$

The crack path is found by solving

$$\begin{cases} y'(x) = V(\Gamma_x) & \text{ for a.e. } x > 0 \\ y(0) = 0 \end{cases}$$

[a first order FDE for the crack path]

$$y'(x) = V(\Gamma_x) = \operatorname{tg} \vartheta_x \quad \Leftrightarrow \quad \widetilde{K}^*_{II}(\Gamma_x, \vartheta_x) = \widetilde{K}_{II}(\Gamma_x) = 0$$

Ingredients of the proofs

- 1. existence by Schauder fixed point Theorem
- 2. uniqueness (still open)
- 3. regularity in $C^{1,1/4}([0,X]) \cap C^{1,1}_{loc}(0,X)$ (in progress)

Ingredients of the proofs

- 1. existence by Schauder fixed point Theorem
- 2. uniqueness (still open)
- 3. regularity in $C^{1,1/4}([0,X]) \cap C^{1,1}_{loc}(0,X)$ (in progress)

Properties of \widetilde{K}_i (definition of V)

- behaviour for Γ_0 where u_0 has the SIF
- expansion of u_x w.r.t. x

[Leblond (99), N. (11)]

$$u_x = u_0 + x^{1/2} z_x$$
 $z_x \rightarrow 0$ in H^1 and $z_x \rightarrow 0$ only in H^1_{loc}

Saint-Venant principle for Lipschitz cracks (in progress)

$$\int_{B_r} |\boldsymbol{\epsilon}(u)|^2 \, dx = 0(r)$$

Consider an elastic bar (0, L) with a stiffer/softer (small) inclusion in (0, h)Let u_h be the equilibrium configuration with b.c. u(0) = 0 and u(L) = a.

Check that

- $||u_h u_0|| = O(h^{1/2})$ in $H^1(0, L)$
- $|E(u_h) E(u_0)| = O(h)$

For $u_h = u_0 + h^{1/2} z_h$ check that

- $z_h \not\rightarrow 0$ in $H^1(0,L)$
- $z_h \rightarrow 0$ in $H^1(0, L)$

["The Force on an Elastic Singularity" by Eshelby (51)]

• Consider a single edge setting for a Lipschitz Ω with proportional b.c.

 $u = c(t)\hat{g}$ on $\partial_0\Omega$ with c(0) = 0 and c increasing

- Consider plane strain linearized elasticity and brittle fracture (LEFM)
- State variables: fracture set Γ_t , displacement u(t, x)
- Quasi-static propagation + PLS:

 $u(t, \cdot)$ in equilibrium

 Γ_t satisfies Griffith's (equilibrium) criterion + PLS

Note that $\widetilde{K}_i(t,\Gamma) = c(t)\widetilde{K}_i(\Gamma)$ for i = I, II.

Fracture propagation (regularized)

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

$$\widetilde{K}_{II}(\Gamma_x) = 0$$
 for every $x \in (0, X)$

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

$$\widetilde{K}_{II}(\Gamma_x) = 0$$
 for every $x \in (0, X)$

Griffith's Criterion (in Kuhn-Tucker fashion)

 $\widetilde{K}_I(t,\Gamma_{x(t)}) \le K_I^c$ for x(t) > 0 [equilibrium]

 $\left(\widetilde{K}_{I}(t,\Gamma_{x(t)})-K_{I}^{c}\right)\dot{x}(t)=0$ for every x(t)>0 [flow rule]

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

$$\widetilde{K}_{II}(\Gamma_x) = 0$$
 for every $x \in (0, X)$

Griffith's Criterion (in Kuhn-Tucker fashion)

 $\widetilde{K}_I(t,\Gamma_{x(t)}) \le K_I^c$ for x(t) > 0 [equilibrium]

 $\left(\widetilde{K}_{I}(t,\Gamma_{x(t)})-K_{I}^{c}\right)\dot{x}(t)=0$ for every x(t)>0 [flow rule]

By linearity $\widetilde{K}_{II}(t, \Gamma_{x(t)}) = c(t)\widetilde{K}_{II}(\Gamma_{x(t)}) = 0$ for x(t) > 0

Get $\widetilde{K}_i^*(\Gamma_0, \vartheta_0) = 0$ by letting $t \searrow t_{init}$.

Parametrization: a critical example

Given the path $y \in \mathcal{Y}$, $\widetilde{K}_I(\Gamma_x)$ is continuous w.r.t. x but <u>non-monotone</u>

Horizontal crack (mode I), proportional b.c. c(t) = ct

 $(K_{II} = 0 \text{ for the straight path})$

Right: parametrization x and locus of stationary points $\{\widetilde{K}_I(t, \Gamma_x) = K_I^c\}$

Parametrization: a rate-independent pb.

Given the path $y \in \mathcal{Y}$ there exists a parametrization x(t) s.t.

- the Kuhn-Tucker conditions holds: for $t_{init} = \sup\{t : x(t) = 0\}$
 - $\widetilde{K}_{I}^{*}(t,\Gamma_{0}) \leq K_{I}^{c}$ for $t \leq t_{init}$ $\widetilde{K}_{I}(t,\Gamma_{x(t)}) \leq K_{I}^{c}$ for $t > t_{init}$

$$\left(\widetilde{K}_{I}(t,\Gamma_{x(t)})-K_{I}^{c}\right)dx(t)=0$$
 as a measure in (t_{init},T)

discontinuities represents unstable regimes of the evolution.

$$\widetilde{K}_I(t,\Gamma_l) \ge K_I^c$$
 for $t \in J(x)$ and $l \in (x(t), x^+(t))$

[N.-Ortner (08), N. (10a)]

equivalent evolution by viscosity [Toader & Zanini (09), Knees, Mielke & Zanini (08), N. (10b)] substantially different from the evolution by global minimizers [Francfort & Marigo (98) etc.]