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Specimen geometry: Double Edge Notch Tension

[Williams & Ewing (71)]

Salerno - 16 Giu 2011 – p. 1



A Babel of criteria

Several criteria and variations:

principle of local symmetry (PLS) [Goldstein & Salganik (74)]

maximum energy release rate [Cotterell (65)]

maximum circumferential (hoop) stress [Erdogan & Sih (63)]

strain energy density [Sih (73)]

vectorial J-integral [Friedman & Liu (96)]

Eshelby tensor [Kienzler & Herrman (02)]

Coincide in special cases and are just slightly different.
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Stress Intensity Factors

In a (small) neighborhood of the crack tip
(in the local system of polar coordinates)

σ = KIρ
−1/2

SI(θ) +KIIρ
−1/2

SII(θ) + σ̄ [Irwin (51)]

SI(θ) = (2π)−1/2 cos(θ/2)

(
1− sin(θ/2) sin(3θ/2) sin(θ/2) cos(3θ/2)

sin(θ/2) cos(3θ/2) 1 + sin(θ/2) sin(3θ/2)

)

Salerno - 16 Giu 2011 – p. 3



Stress Intensity Factors

In a (small) neighborhood of the crack tip
(in the local system of polar coordinates)

σ = KIρ
−1/2

SI(θ) +KIIρ
−1/2

SII(θ) + σ̄ [Irwin (51)]

SI(θ) = (2π)−1/2 cos(θ/2)

(
1− sin(θ/2) sin(3θ/2) sin(θ/2) cos(3θ/2)

sin(θ/2) cos(3θ/2) 1 + sin(θ/2) sin(3θ/2)

)

In particular, in the DENT geometry (large domain)

KI ≈ p sin2(β)(πa)1/2 KII ≈ p sin(β) cos(β)(πa)1/2 [Sih (62)]
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Principle of Local Symmetry

By KI = p sin2(β)(πa)1/2 and KII = p sin(β) cos(β)(πa)1/2

KII/KI = cotβ (KI , KII) 7→ β 7→ ϑ

KII = 0 ⇔ ϑ = 0 (no kink)
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Principle of Local Symmetry

By KI = p sin2(β)(πa)1/2 and KII = p sin(β) cos(β)(πa)1/2

KII/KI = cotβ (KI , KII) 7→ β 7→ ϑ

KII = 0 ⇔ ϑ = 0 (no kink)

Extrapolate this law along the crack path Γs:

KII(Γs) = 0 for s > 0

[Goldstein & Salganik (74)]
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Principle of Local Symmetry

By KI = p sin2(β)(πa)1/2 and KII = p sin(β) cos(β)(πa)1/2

KII/KI = cotβ (KI , KII) 7→ β 7→ ϑ

KII = 0 ⇔ ϑ = 0 (no kink)

Extrapolate this law along the crack path Γs:

KII(Γs) = 0 for s > 0

[Goldstein & Salganik (74)]

”PLS = deflection law + regularity of the crack path”

At initiation in general KII(Γ0) 6= 0 but lims→0+ KII(Γs) = 0
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Experimental validation

[Abanto-Bueno & Lambros (06)]
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Finding the kink angle θ0

If KII(Γs) = 0 for s > 0 then ϑ0 solve K∗
II(Γ0, ϑ0) = 0.
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Finding the kink angle θ0

If KII(Γs) = 0 for s > 0 then ϑ0 solve K∗
II(Γ0, ϑ0) = 0.

Using the vectors K∗(Γ0, ϑ) and K(Γ0) then

K∗(Γ0, ϑ) = C(ϑ)K(Γ0)

C(ϑ) ≈ C̃(ϑ) =
1

4

(
3 cos(ϑ/2) + cos(3ϑ/2) −3 sin(ϑ/2)− 3 sin(3ϑ/2)

sin(ϑ/2) + sin(3ϑ/2) cos(ϑ/2) + 3 cos(3ϑ/2)

)

[Williams (57), Cotterell & Rice (80)]

Salerno - 16 Giu 2011 – p. 6



Finding the kink angle θ0

If KII(Γs) = 0 for s > 0 then ϑ0 solve K∗
II(Γ0, ϑ0) = 0.

Using the vectors K∗(Γ0, ϑ) and K(Γ0) then

K∗(Γ0, ϑ) = C(ϑ)K(Γ0)

C(ϑ) ≈ C̃(ϑ) =
1

4

(
3 cos(ϑ/2) + cos(3ϑ/2) −3 sin(ϑ/2)− 3 sin(3ϑ/2)

sin(ϑ/2) + sin(3ϑ/2) cos(ϑ/2) + 3 cos(3ϑ/2)

)

[Williams (57), Cotterell & Rice (80)]

Hence ϑ0 is approximated by the solution of

C̃21(ϑ)KI(Γ0) + C̃22(ϑ)KII(Γ0) = 0

[Under this approximation and Sih representation: PLS, hoop and Gmax do coincide.]
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Finding the crack path

Consider the classical semi-infinite crack in C

Find a path (x, λ(x)) such that KII(Γx) = 0 for x > 0.
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Finding the crack path

Consider the classical semi-infinite crack in C

Find a path (x, λ(x)) such that KII(Γx) = 0 for x > 0.

Find an expansion for KII(Γx) ...

[(small) perturbation of the straight path by Cotterell & Rice (80)]

[conformal mappings by Amestoy & Leblond (92)]

From KII(Γx) = 0 ... find λ(x) ≈ ax+ bx3/2

So λ is of class C1,1/2
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Finding the crack path: our mathematical setting

Consider a single edge geometry with b.c. u = ĝ on ∂0Ω for a Lipschitz Ω

Find a path (x, y(x)) such that KII(Γx) = 0 for x > 0.
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Finding the crack path: our mathematical setting

Consider a single edge geometry with b.c. u = ĝ on ∂0Ω for a Lipschitz Ω

Find a path (x, y(x)) such that KII(Γx) = 0 for x > 0.

Requirement: given Γ

uΓ ∈ argmin
{∫

Ω\Γ

W e(ǫ) dx : u ∈ H1 and u = ĝ on ∂0Ω
}

uΓ = KIρ
1/2 UI(θ) +KIIρ

1/2 UII(θ) + ū

(in the local system of polar coordinates)

A representation with ū ∈ H2 is known for Ω \ Γ polygonal [Grisvard (89)]

... for y of class C1,1
loc on the base of [Lazzaroni & Toader (10)]
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Approximated Stress Intensity Factors

Use an integral approximation of Ki of the form

K̃i(Γx) =

∫

Ω\Γx

(u− ů) · ki(θ) dx

for kernels ki supported in Br(x, y(x)) (for r ≪ 1) of the form
[in the local system of polar coordinates]

k1(θ) = ρ−1/2r−2
(
a1 cos(θ/2) + a3 cos(3θ/2) , a2 sin(θ/2) + a4 sin(3θ/2)

)

for ů ≈ u(x, y(x)), e.g. ů = −

∫

B
r
′

u dx for r′ ≪ r

K̃i are well defined at least for crack paths of class C0,1 (and u ∈ H1)
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K∗
i (Γ, ϑ) of the form

K̃∗
i (Γ, ϑ) = lim

z→0
K̃i

(
Γz
)
=

∫

Ω\Γ

(u− ů) · ki(θ − ϑ) dx
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K∗
i (Γ, ϑ) of the form

K̃∗
i (Γ, ϑ) = lim

z→0
K̃i

(
Γz
)
=

∫

Ω\Γ

(u− ů) · ki(θ − ϑ) dx

If u = KIρ
1/2 UI(θ) +KIIρ

1/2 UII(θ) + ū for ū ∈ H2 then

|K̃(Γ)−K(Γ)| = O(r1/2) [straight, curved cracks]

|K̃∗(Γ, ϑ)− C̃(ϑ)K(Γ)| = O(r1/2) [kinked cracks]

where C̃(ϑ)K ≈ C(ϑ)K = K∗(Γ, ϑ)
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Approximated Stress Intensity Factors (bis)

Get easily an integral approximation of K∗
i (Γ, ϑ) of the form

K̃∗
i (Γ, ϑ) = lim

z→0
K̃i

(
Γz
)
=

∫

Ω\Γ

(u− ů) · ki(θ − ϑ) dx

If u = KIρ
1/2 UI(θ) +KIIρ

1/2 UII(θ) + ū for ū ∈ H2 then

|K̃(Γ)−K(Γ)| = O(r1/2) [straight, curved cracks]

|K̃∗(Γ, ϑ)− C̃(ϑ)K(Γ)| = O(r1/2) [kinked cracks]

where C̃(ϑ)K ≈ C(ϑ)K = K∗(Γ, ϑ)

In particular the kink angle ϑ0 solves

K̃∗
II(Γ0, ϑ0) =

∫

Ω\Γ0

(u− ů) · ki(θ − ϑ0) dx = 0
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A Functional Differential Equation for the crack path

The crack path is a graph in the set

Y = {y ∈ C0,1([0, X ]) : y(0) = 0 and |y|0,1 ≤ C}

[choose a system of coordinates with ê1 = (cosϑ0, sin θ0)]
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A Functional Differential Equation for the crack path

The crack path is a graph in the set

Y = {y ∈ C0,1([0, X ]) : y(0) = 0 and |y|0,1 ≤ C}

[choose a system of coordinates with ê1 = (cosϑ0, sin θ0)]

Given y ∈ Y define an auxiliary function V

V : Γx 7→ tg ϑx K∗
II(Γx, ϑx) = 0

Salerno - 16 Giu 2011 – p. 11



A Functional Differential Equation for the crack path

The crack path is a graph in the set

Y = {y ∈ C0,1([0, X ]) : y(0) = 0 and |y|0,1 ≤ C}

[choose a system of coordinates with ê1 = (cosϑ0, sin θ0)]

Given y ∈ Y define an auxiliary function V

V : Γx 7→ tg ϑx K∗
II(Γx, ϑx) = 0

The crack path is found by solving

{
y′(x) = V (Γx) for a.e. x > 0

y(0) = 0
[a first order FDE for the crack path]

y′(x) = V (Γx) = tg ϑx ⇔ K̃∗
II(Γx, ϑx) = K̃II(Γx) = 0
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Ingredients of the proofs

1. existence by Schauder fixed point Theorem

2. uniqueness (still open)

3. regularity in C1,1/4([0, X ]) ∩ C1,1
loc (0, X) (in progress)
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Ingredients of the proofs

1. existence by Schauder fixed point Theorem

2. uniqueness (still open)

3. regularity in C1,1/4([0, X ]) ∩ C1,1
loc (0, X) (in progress)

Properties of K̃i (definition of V )

behaviour for Γ0 where u0 has the SIF

expansion of ux w.r.t. x [Leblond (99), N. (11)]

ux = u0 + x1/2zx zx ⇀ 0 in H1 and zx → 0 only in H1
loc

Saint-Venant principle for Lipschitz cracks (in progress)

∫

Br

|ǫ(u)|2 dx = 0(r)
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”An exercise”

Consider an elastic bar (0, L) with a stiffer/softer (small) inclusion in (0, h)

Let uh be the equilibrium configuration with b.c. u(0) = 0 and u(L) = a.

Check that

‖uh − u0‖ = O(h1/2) in H1(0, L)

|E(uh)− E(u0)| = O(h)

For uh = u0 + h1/2zh check that

zh 6→ 0 in H1(0, L)

zh ⇀ 0 in H1(0, L)

[”The Force on an Elastic Singularity” by Eshelby (51)]
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Evolution

Consider a single edge setting for a Lipschitz Ω with proportional b.c.

u = c(t)ĝ on ∂0Ω with c(0) = 0 and c increasing

Consider plane strain linearized elasticity and brittle fracture (LEFM)

State variables: fracture set Γt, displacement u(t, x)

Quasi-static propagation + PLS:

u(t, ·) in equilibrium

Γt satisfies Griffith’s (equilibrium) criterion + PLS

Note that K̃i(t,Γ) = c(t)K̃i(Γ) for i = I, II .
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Fracture propagation (regularized)

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

K̃II(Γx) = 0 for every x ∈ (0, X)
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Fracture propagation (regularized)

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

K̃II(Γx) = 0 for every x ∈ (0, X)

Griffith’s Criterion (in Kuhn-Tucker fashion)

K̃I(t,Γx(t)) ≤ Kc
I for x(t) > 0 [equilibrium]

(
K̃I(t,Γx(t))−Kc

I

)
ẋ(t) = 0 for every x(t) > 0 [flow rule]
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Fracture propagation (regularized)

Find a curve of the form (x, y(x)) and a parametrization x(t) s.t.

Principle of Local Symmetry

K̃II(Γx) = 0 for every x ∈ (0, X)

Griffith’s Criterion (in Kuhn-Tucker fashion)

K̃I(t,Γx(t)) ≤ Kc
I for x(t) > 0 [equilibrium]

(
K̃I(t,Γx(t))−Kc

I

)
ẋ(t) = 0 for every x(t) > 0 [flow rule]

By linearity K̃II(t,Γx(t)) = c(t)K̃II(Γx(t)) = 0 for x(t) > 0

Get K̃∗
i (Γ0, ϑ0) = 0 by letting t ց tinit.
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Parametrization: a critical example

Given the path y ∈ Y , K̃I(Γx) is continuous w.r.t. x but non-monotone

Horizontal crack (mode I), proportional b.c. c(t) = ct
(KII = 0 for the straight path)

Xx0 x

K̃I

X

x0

tinit t

x

x

Right: parametrization x and locus of stationary points {K̃I (t,Γx) = Kc

I
}
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Parametrization: a rate-independent pb.

Given the path y ∈ Y there exists a parametrization x(t) s.t.

the Kuhn-Tucker conditions holds: for tinit = sup{t : x(t) = 0}

K̃∗
I (t,Γ0) ≤ Kc

I for t ≤ tinit K̃I(t,Γx(t)) ≤ Kc
I for t > tinit

(
K̃I(t,Γx(t))−Kc

I

)
dx(t) = 0 as a measure in (tinit, T )

discontinuities represents unstable regimes of the evolution.

K̃I(t,Γl) ≥ Kc
I for t ∈ J(x) and l ∈ (x(t), x+(t))

[N.-Ortner (08), N. (10a)]

equivalent evolution by viscosity [Toader & Zanini (09), Knees, Mielke & Zanini (08), N. (10b)]

substantially different from the evolution by global minimizers [Francfort & Marigo (98) etc.]
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