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Part |I: Multiscale Constitutive
Models of Brittle and Ductile
Materials

Elsayed, Mota, Fraternali,., Ortiz, J BIOMECH, 2008; COMPUT METHOD APPL M , 2008; COMP
MECH. 2009; Schmidt, Fraternali, Ortiz, MULTISCALE MODEL SIM, 2009; Fraternali, Negri, Ortiz, .
INT J FRACTURE, 2010; Blesgen, Fraternali, Raney, Daraio, MULTISCALE MODEL SIM, 2013;
Fraternali, Carpentieri, Amendola,. J MECH PHYS SOLIDS, 2014.



Motivation

Development of a variational framework
including viscoelastic, elastic-plastic and
brittle/cohesive models in finite strain
kinematics for use in stress analysis, and
damage prediction /simulation.

Covered effects:
finite deformation kinematics
shear damage via deviatoric plasticity
volumetric damage by porous plasticity
viscous and strain-rate effects
brittle and cohesive fracture

Response at the meso-scale informed by
quasi-continuum simulations
Constitutive relations discretized in time
by recourse to variational updates

Fracture and shear band damage via =

mesh-independent localization elements %
and variational material erosion




Finite Strain Kinematics

Multiple multiplicative decomposition of the deformation
gradient into elastic-plastic and viscoelastic components
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Free energy
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First Piola-Kirchhoff stress tensor and thermodynamic
forces
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Volumetric plastic damage

Volumetric damage is related to the plastic expansion of spherical

voids in a plastically incompressible matrix (N: number of voids per
unit volume; a: void radius)

Volumetric expansion:
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Evolution laws of internal variables: kinetic potentials
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Incremental constitutive updates with variational structure
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Variational theory of fracture

Fracture as a free discontinuity problem

min {E(t) (¢, K) = W(X,Vep(X)) dX
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Eigenfracture model

Use of mesh-independent, variational fracture models («Eigenfracture», cf.
Schmidt, B, Fraternali, F., Ortiz, M. Eigenfracture: An Eigendeformation
Approach to Variational Fracture. MULTISCALE MODELING & SIMULATION, 7
(3), 1237-1266, 2009) to predict time-evolution of fracture damage in brittle
and cohesive solids, with special attention to masonry structures.

Eigenfracture energy functional: fQ |{f}/ = O}h a(h |

1

e-neighborhood of the
cracked region (y=0).

Notice that |(y=0)| DOES
NOT CONVERGE to the
measure of limiting crack
set |J,|, while

1/2 ¢ |(y20)y, g(h)l
CONVERGES to |J,]|.

Correction of mesh dependency



Quasi-static fracture simulation

Mixed modes I-11I:

material erosion along the crack path
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Experimental crack pattern Eigenfracture prediction




Prediction of collapse mechanisms of unreinforced
and reinforced masonry structures

Unreinforced Masonry reinforced FRP/FRG/SRG-

masonry with steel ties and reinforced masonry
flitched beams

A, =3.9827 A, =6.2945 A, =9.2505



Part I1: Experimental Investigations on
Recycled Plastic Fiber Reinforced
Concretes and Mortars

Fraternali, Ciancia, Chechile, Rizzano, Feo, Incarnato, COMPOS STRUCT, 2011, Fraternali, Farina,
Polzone, Pagliuca, Feo, COMPOS PART B-ENG, 2013; Fraternali, Spadea, Berardi, CONSTR BUILD
MATER, 2014; Spadea, Farina, Berardi, Dentale, Fraternali, ING SISM, 2014.



Motivation

Building trades are great contributors to
environmental degradation.

Reduce the environmental impact of the
construction process.

Innovative materials.

Concrete reinforcement with aggregates
and/or fibers obtained from waste plastics




Concrete/mortar reinforcement with
recycled plastic fibers

Low-cost technique for

the enhancement of:

®

O Structural ductility
Fracture toughness

Compressive/Tensile strength

® Thermo-acoustic insulation
properties



Materials

m Recycling post-consumer PET bottles

Plastic fibers were produced by mean a of R-PET flake extrusion lines
available in the plants of the Techno Plastic (TP) S.r.l. of Castelfranco Emilia
(Modena, Italy) and FHP S.a.s. — Plastic Division of Roncello (Milan, Italy),
two world leader companies in the sector of plastic monofilament

extrusion. The production process comprises the following phases:
crystallization, drying, pneumatic transportation, dosing, extrusion, filtering,
spinning, stretching, stabilization, winding, polywrapping, and fiber cutting.




Materials

m Recycled PET fibers and concrete mix-design
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Materials

m Fiber mixing




Experimental results - 1

m Thermal conductivity

k(W/mK) 95% CI (W/mK) | FRR (%)

UNRC 0.967 0.284
RPETFRC/a 0.793 0.251 -18.0
PPFRC 0.756 0.139 -21.8

m Compressive strength

Plain RPFRC/a RPFRC/b RPFRC/c PPFRC



Experimental Results - 2

m First crack strength and ductility indices

bridging effect



Experimental Results - 3

m Force-CTOD plots
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Seawater curing of RPETFRC

m Force-CTOD plots
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R-PET reinforcement of cementitious mortars

m Manual cutting of R-PET strips m Force-deflection plots
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R-Nylon reinforcement of cementitious mortars

m Recycling fish poaching nets m Force-deflection plots
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CONCLUSIONS

Marked improvements of all the examined therrmo-mechanical properties of RPETFRC
in the case of a pozzolana cement based concrete with 0.53 water/cement ratio.

Fiber

reinforcement

with PET/a

\_

strength, +35%
e First crack
strength, +41%
 Ductility index
DO, +16%
 Ductility index
D1, +656%

J

Other observed results:
» reduction of compressive and first-crack strengths with the water/cement ratio
 high strength fibers (PET/a) are the most beneficial in the case of low water/cement
ratio
« crimped fibers (PET/a) are the most beneficial in the case of low water/cement ratio

» seawater curing does not significantly affect first-crack strength , but markedly reduce
the energy absorption capacity

.

Fiber reinforcement
with PET/c

strength, +20%
 First crack
strength, +8%
 Ductility index
DO, +16%
 Ductility index
D1, +545%

J

\_

Fiber reinforcement
with PP

strength, +44%
 First crack
strength, +10%
 Ductility index
DO, +30%
 Ductility index
D1, +700%

J




FUTURE WORK:
Multiscale mechanical modeling of heterogeneous materials

Multiscale modeling of composite materials (such as, e.g., concretes, fibre-reinforced
and particulate composites, etc.) based on the Gamma-converge of energy functionals
depending on multiple scale factors; bulk energies of the different phases; and interface
energies due to micro-cracking (via eigenfracture).

Study of the composite mechanic response; creep phenomena; synergic effects in hybrid
fiber composites; blended binders cementitious materials for conservation practices, etc..





