CNTs as components in bulk materials: synthesis and properties

Jordan R. Raney Engineering and Applied Science California Institute of Technology

Oct. 25, 2011

HUNDON ISSUE

Overall outline

Martedi 25 Ottobre Lecture 1) Synthesis and properties of CNTs Lecture 2) Applications

Mercoledi 26 Ottobre 2011

Lecture 3) CNT arrays Lecture 4) Modifying CNT arrays and creation of multilayer materials

<u>Venerdi 4 Novembre 2011</u> Lecture 5) Multiscale modeling I Lecture 6) Multiscale modeling II

Outline for part 1: synthesis and properties of CNTs

CNT properties and their physical basis

Synthesis methods

Measurement of CNT mechanical properties

Fullerenes

"Buckyball" – C₆₀ Discovered 1985

Carbon nanotube "re"discovered 1991

Other structures possible C₅₄₀

- -Structure is entirely made out of carbon
- -Mostly graphitic structure
- -Hollow

Images from Wikipedia

Why CNTs? Phenomenological motivation

- Highest strength-to-weight ratio of any known material
- 1 TPa Young's modulus
- 60 GPa tensile strength
- Stable in temperatures up to more than 3000 K in vacuum
- 1000 times greater electrical conductivity than Cu
- Can be either conducting or semiconducting depending on chirality

5x stiffer and > 100x stronger than steel, but 6x lighter

If you could obtain properties like these at the macroscopic scale you would fundamentally alter the way in which buildings, automobiles, aircraft, etc. are built.

Problem: CNTs are very, very small (1-100 nm diameter).

How do you get benefits in macroscopic materials from the extraordinary properties of individual CNTs?

The physical/chemical basis for CNT properties I: sp² bonds

The stable, strong structure of aromatic (conjugated) hydrocarbons

The delocalized pi system plays an important role in van der Waals interactions and non-covalent functionalization

The physical/chemical basis for CNT properties II: chirality

If (m-n) = multiple of 3 then the CNT is metallic, otherwise semiconducting

C.M. Wang et al., Appl. Mech. Rev. 2010;63:030804.

 $C_{x}H_{v}$

Synthesis of graphitic carbon

Steps for formation of graphitic carbon

- 1. Catalytic decomposition of hydrocarbon precursor
- 2. Diffusion of carbon into the metal catalyst
- 3. Excretion of graphitic carbon

+ Heat (~ 1000-1300 K)

Formation of graphitic C

Thin film of appropriate transition metal (Fe, Ni, Co)

Criteria for selecting an appropriate metal:

- 1. Catalytic activity for decomposition of the carbon source
- 2. Ability to form metastable carbides
- 3. Structure that allows rapid diffusion of C

Importance of particle shape/size

Particle shape determines the form of excreted graphitic carbon

CNT diameter correlates with catalyst particle size

Common methods of synthesis

Synthesis of CNTs via thermal chemical vapor deposition

Pre-deposited or "fixed" catalyst

- -First deposit thin film of catalyst (often ~2 nm Fe with ~10 nm Al_2O_3)
- -Requires careful tuning of flow gas to keep growth going

Vapor phase or "floating" catalyst

- -Inject catalyst during synthesis, along with the carbon source
- -Easier to get long CNT growth, but gives more catalyst contaminant

Challenges during the synthesis of CNTs: formation of silicides

Silicon wafers are inexpensive and can utilize the same processing infrastructure as the electronics industry

Problem: Si reacts with catalyst particles to form silicides, halting CNT growth

Solution: First oxidize the surface of the wafer to form SiO₂, which prevents this. This allows silicide formation to be controlled in designated regions for desirable patterns:

Challenges during the synthesis of CNTs: formation of amorphous carbon on catalyst particles

Increasing distance from the furnace entrance (increasing T)

Pyrolytic and catalytic processes exist in competition with one another High T can favor pyrolytic processes, which can block the catalyst from C absorption

Partial solution: include hydrogen or a mild oxidizing agent in the feed gas

Defects

Pentagon-heptagon (5/7) defects

Nitrogen doped CNT

J.C. Charlier, Acc. Chem. Res. 2002;35:1063.

Irradiated CNT (C atoms removed randomly)

-Defects can result from statistical fluctuations during growth or from other effects such as irradiation, acid exposure, etc.

 Negative effects: disrupts the conjugated structure responsible for excellent mech/elec/thermal properties
 Positive effects: creates locations for potential surface modification, also for doping to change the electronic properties

Mechanical properties of CNTs: Indirect measurements

Transmission electron microscope images at different temperatures

Indirect calculation of Young's modulus (assumptions: classical clamped cantilever)

$$W_n=\frac{1}{2}c_nu_n^2$$

$$c_n = \frac{\pi \beta_n^4 Y (a^4 - b^4)}{16L^3}$$

 $\cos\beta\cosh\beta+1=0$

$$\omega_n = 2\pi f_n = \frac{\beta_n^2}{2L^2} \sqrt{\frac{Y(a^2 + b^2)}{\rho}}$$
$$\sigma^2 = \frac{16L^3kT}{\pi Y(a^4 - b^4)} \sum_n \beta_n^{-4} \approx 0.4243 \frac{L^3kT}{Y(a^4 - b^4)}$$

Mechanical properties of CNTs: Indirect measurements

Estimate from many different CNTs: Y = 1.8 TPa

Mechanical properties of CNTs: Direct measurements

CNT attached to two different atomic force microscope tips using the electron beam

M.-F. Yu et al., Science 2000;287:637.

Mechanical properties of CNTs: Direct measurements

-Stiffness varied between 270 and 950 GPa for different CNTs -Failure occurred in outermost layer of the multiwalled CNTs -The strength of this layer ranged from 11 to 63 GPa

Mechanical behavior: Flexibility and elastic bending

Manipulation of individual CNTs with an atomic force microscope

$$\lambda = \frac{2\pi}{(12(1-\nu^2))^{1/4}} (r_0 t)^{1/2} \approx 3.5(r_0 t)^{1/2}$$

CNTs embedded in epoxy, which underwent polymerization shrinkage

Mechanical behavior: Flexibility and elastic bending

Formation of ripples lowers the effective bending stiffness

Mechanical behavior: instabilities beyond linear response

Molecular dynamics simulation of uniaxially compressed CNT

Molecular dynamics simulation of CNT under torsion

Mechanical behavior: instabilities beyond linear response

Other important properties of CNTs

Actuation

Field emission electron source

Toxicity?

R.H. Baughman et al., Science 1999;284:1340.

C.A. Poland et al., Nature Nanotechnol. 2008;3:423.

CNTs as components in bulk materials: applications

Jordan R. Raney Engineering and Applied Science California Institute of Technology

Oct. 25, 2011

CNTs as useful materals?

Approaches:

- Use an individual CNT for a specialty nanotechnology application
 - E.g., the tip of an atomic force microscope
- Use CNTs to improve the properties of another material
 E.g., fibrous reinforcement in polymer
- Combine CNTs into stand-alone (e.g., structural) materials
 E.g., CNT yarns/fibers

Applications for individual CNTs: AFM tips

CNTs as tips in atomic force microscopy (AFM)

- Good for imaging high aspect ratio features
- Good elastic recovery from bending
- Resilient against wear

Resistance against wear during friction is vital for accurate deconvolution calculation!

Applications for individual CNTs: mass detection

Applications for individual CNTs: mass detection

$$f_0 = \frac{1}{2\pi} \left(\frac{k}{m_{\text{eff}}} \right)^{1/2}$$

$$\delta m = \frac{2m_{\rm eff}}{f_0} \delta f_0$$

Low mass and high rigidity of the CNT allows mass resolution down to ~ 10⁻²¹ g

CNTs as useful materals?

Approaches:

- Use an individual CNT for a specialty nanotechnology application
 - E.g., the tip of an atomic force microscope
- Use CNTs to improve the properties of another material
 E.g., fibrous reinforcement in polymer
- Combine CNTs into stand-alone (e.g., structural) materials
 E.g., CNT yarns/fibers

Examples where increased surface area is vital

Scaling behavior

V ~ r^3 and S ~ r^2 .

For many power applications, heat generation ~ V and heat dissipation ~ S.

For many biological systems, metabolic waste generation ~ V and metabolic waste/nutrient interface ~ S.

S/V ~ r^{-1} . Need large surface area to meet biological/technological needs.

Improving geometrical properties of a material by utilizing CNTs as elements with high surface-to-volume ratio

- Mukhopadhyay et al. increased the surface area of a graphitic foam by 2-3 orders of magnitude by synthesizing CNTs on its surface
- Note: only the geometry of the CNTs is exploited

Improving geometrical properties of a material by utilizing CNTs as elements with high surface-to-volume ratio

Improving geometrical properties of a material by utilizing CNTs as elements with high surface-to-volume ratio

Can use synthesis parameters to change the morphology of the CNTs, and affect properties:

Figure 5. CNT grown with (a) high ferrocene content and (b) low hydrogen content.

Improving properties of other materials with a small amount of CNTs

Roadblocks to getting benefits from CNTs in other matrices

- Interfacial adhesion^a
 - Suboptimal stress transfer
 - Functionalize walls of CNTs with chemical groups (e.g., carboxyl) that interact better with the polymer^b
- Dispersion
- Uniform manufacture
- Cost
- Toxicity
 - Analogies with asbestos^c

- a. Wagner, H.D. and R.A. Vaia. Materials Today 2004;7:38-42.
- b. Kim, J.Y., et al. Polymer 2008;49:3335-3345.
- c. Poland, C.A., et al. Nat Nano 2008;3:423-428.
- d. Shih, Y.F., et al. Polymer 2008;49:4602-4611.

The dispersion problem

High aspect ratio and strong van der Waals interaction among CNTs means **clumping**.^a

Approach

- Shortening the CNTs with acids, ultrasonication, or fluorination^b
 - Creates holes in walls, degrades properties
 - Can create widely varying tube lengths may require sorting^c
 - Clever improvement: form buckypaper, cut with microtome^d
 - Shorter CNTs can improve some properties

TEM image of 5% multiwall-CNT/HDPE composite^e

- a. Tang, W., et al. Carbon 2003;41:2779-2785.
- b. Gu, Z., et al. Nano Letters 2002;2:1009-1013.
- . Farkas, E., et al. Chemical Physics Letters 2002;363:111-116.
- d. Wang, S., et al. Carbon 2009;47:53-57.
- e. Shih, Y.F., et al. Polymer 2008;49:4602-4611.

Another approach: covalent modification^{a,b}

- Functionalization can be an effective method of dispersion
- Improves interfacial adhesion
- Techniques are well-cataloged (e.g., see below)
- Can severely degrade CNTs, and therefore composite properties, especially with single-wall CNTs

Grafting of polystyrene chains by anionic polymerization^c

- a. Liang, F., et al. Nano Letters, 2004. 4(7): p. 1257-1260.
- b. X. Lou, et al. Advanced Materials, 2004. **16**(23-24): p. 2123-2127.
- c. Tasis, D., et al. Chemical Reviews, 2006. 106(3): p. 1105-1136.

Covalent modification

Tasis, D., et al. *Chemical Reviews*, 2006. 106(3): p. 1105-1136.

An excellent review of the various chemical techniques to covalently modify CNTs with just about any functional group

Contents

1. Introduction		1105
2. Co	valent Approaches	1105
2.1.	Sidewall Halogenation of CNT	1105
2.2.	Hydrogenation	1107
2.3.	Cycloadditions	1107
2.4.	Radical Additions	1109
2.5.	Electrophilic Additions	1111
2.6.	Addition of Inorganic Compounds	1111
2.7.	Ozonolysis	1111
2.8.	Mechanochemical Functionalizations	1111
2.9.	Plasma Activation	1112
2.10.	Nucleophilic Additions	1112
2.11.	Grafting of Polymers	1112
2.11.1. "Grafting to" Method		1112
2.1	1.2. "Grafting from" Method	1112
3. Defect Site Chemistry		1113
3.1.	Amidation/Esterification Reactions	1113
3.2.	Attachment of Biomolecules	1115
3.3.	Grafting of Polymers to Oxidized Nanotubes	1116

4. Noncovalent Interactions	
4.1. Polymer Composites	
4.1.1. Epoxy Composites	1117
4.1.2. Acrylates	1118
4.1.3. Hydrocarbon Polymers	1119
4.1.4. Conjugated Polymers	1119
4.1.5. Other Nanotube–Polymer Composites	1120
4.2. Interactions with Biomolecules and Cells	1122
5. Endohedral Filling	
5.1. Encapsulation of Fullerene Derivatives and Inorganic Species	
5.2. Encapsulation of Biomolecules	
5.3. Encapsulation of Liquids	1127
6. Concluding Remarks	
7. Acknowledgments	
8. References	

Covalent modification

Tasis, D., et al. Chemical Reviews, 2006. 106(3): p. 1105-1136.

Figure 18. Controlled deposition of oxidized nanotubes onto gold surfaces by using aminothiols as chemical tethers.

Another approach: non-covalent techniques

- Effective dispersion with only minor loss of desired properties
- Utilize π-π interactions
- These can be exploited by conjugated block copolymers to "functionalize" the exteriors of CNTs and give excellent dispersion^a
- Because of its conjugated nature, P3HT interacts well with the CNT surface and it can carry important functionality with it in the form of another block^b

poly(3-hexylthiophene), or P3HT

Example of π - π interaction: a "buckyball catcher".^c

- a. Lee, J.U., et al. Carbon 2007;45:1051-1057.
- b. Zou, J.H., et al. Advanced Functional Materials 2009;19:479-483.
- c. Sygula, A., et al. Journal of the American Chemical Society 2007;129:3842-3843.

Non-covalent techniques

Zou, J.H., et al. Advanced Functional Materials, 2009. 19(3): p. 479-483.

P3HT

Solubility in anything B-like?

CNT reinforcement of cement

General scheme: disperse CNTs in water prior to beginning cement mix

Problems: (1) CNTs are highly hydrophobic; (2) CNTs have high aspect ratios

The result is a tendency for the CNTs to form clumps via van der Waals interactions.

POCKETS OF CLUMPED CNTS DECREASE THE PERFORMANCE OF THE CEMENT

Partial solution: include gum arabic or another agent in the water to improve dispersion

CNT reinforcement of cement

Crack bridging of CNTs in cement is associated with increased toughness and stiffness

CNT-based sensors for structural health monitoring of concrete

Concrete exhibits a porous structure that could in theory allow the implantation of sensors

Ultrasonic transducers fabricated from CNT membranes:

- (1) CNT dispersion
- (2) alignment between electrodes in AC field
- (3) spin coat PMMA, ebeam lithography, deposit Pt clamps
- (4) HF or RIE to remove SiO_2 layer, giving free membrane

CNT-based sensors for structural health monitoring of concrete

Fuzzy fibers": CNTs as components in hierarchical materials

Fuzzy fibers": CNTs as components in hierarchical materials

Increased interlaminar shear stiffness (+69 %) Increased toughness Increased electrical conductivity (possibility for structure health monitoring)

Active materials

CNTs have been dispersed in polymeric matrices not only to improve mechanical/electrical/thermal properties, but also to create an active material such as artificial muscle.

CNTs as useful materals?

Approaches:

- Use an individual CNT for a specialty nanotechnology application
 - E.g., the tip of an atomic force microscope
- Use CNTs to improve the properties of another material
 E.g., fibrous reinforcement in polymer
- Combine CNTs into stand-alone (e.g., structural) materials
 E.g., CNT yarns/fibers

Cotton, wool, ... CNTs?

- Yarns of strength up to 460 MPa from MWCNTs (lower than it could be because CNT strength is not the limiting factor)
- No loss in strength/flexibility over wide ranges of T (~ 100 – 700 K)
- Resistant to abrasion and sharp bending
- Excellent toughness (20 J/g versus 33 J/g for
 Kevlar, though using SWCNTs and polymer can beat this by an order of magnitude)

CNT Yarns

Strength decrease due to twisting

 $\sigma_{\rm y}/\sigma_{\rm f} \approx (\cos^2 \alpha) [1 - (k \ {\rm cosec} \ \alpha)]^{\prime}$

 $k = (dQ/\mu)^{1/2}/3L$

$$\label{eq:alpha} \begin{split} \alpha &= \mbox{helix angle} \\ d &= \mbox{fiber diameter} \\ L &= \mbox{fiber length} \\ Q &= \mbox{migration length} \\ \sigma_y &= \mbox{yarn tensile strength} \\ \sigma_f &= \mbox{fiber tensile strength} \end{split}$$

Transfer from tensile to transverse force, holding yarn together

CNT Yarns

Fig. 2. SEM images of (A) singles, (B) two-ply, and (C) four-ply MWNT yarns, as well as (D) knitted and (E) knotted MWNT yarns.

Space elevators

Space Elevator

- Maximum stress will be at geosynchronous orbit

- Need high strength-to-weight ratio (only graphitic materials are known to meet the requirements)

CNTs as components in bulk materials: arrays/forests of CNTs

Jordan R. Raney Engineering and Applied Science California Institute of Technology

Oct. 26, 2011

Aligned CNTs as energy dissipative materials

Quasistatic mechanical response

Experimental setup for *in situ* optical and electrical measurements

Optics up to 100X

Strain localization

- 1 μm displacement resolution
- Up to 3000 N
- Tension or compression

4 point electric probe station

Electromechanical properties

Capable of testing samples in vacuum as well as in liquid

Quasistatic energy dissipation: comparison with commercial foams

CNT-based architectures absorb approximately 200 times the energy of commercial foams of the same density

Quasistatic energy absorption: comparison with biomaterials

- CNT-based architectures absorb similar amounts of energy as bone and cartilage during compressive loading
- CNT-based architectures have much lower density

Quasistatic mechanical response: localization

Strain localization is a result of a gradient in structural properties, including CNT diameter, density, and tortuosity

Characterization of buckling

Variation of density and its effect on mechanics

CNTs as components in bulk materials: modification of CNT arrays and creation of multilayer materials

Jordan R. Raney Engineering and Applied Science California Institute of Technology

Oct. 26, 2011

Control of density and mechanical properties

Density can be varied with:

- 1) Substrate position during growth
- 2) Control of reactor conditions

Modification of CNTs using fluid-based techniques

Deposition of SnO₂ particles in graphitic materials

Deposition of MnO₂ particles in graphitic materials

At CNT surface⁺: $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$

MnO₂ synthesis at a decent rate can only take place at the CNT surfaces whereas SnO₂ synthesis takes place wherever the SnCl₂ precursor is found (i.e., everywhere in the CNT array interstices)

SEM images of CNTs with deposited particles

J.R. Raney et al., Adv. Func. Mater. 2011; In review.

Construction of multilayer structures

а

Anchoring CNT arrays in polymer Polymer As-grow **CNTs** Si-substrate Rotate 180° **Connect multiple VACNT** arrays with interlayers Optionally, insert buckypaper to provide Anchoring electrical conductivity across layers layer (i.e. PDMS) The PDMS layer improves structural stability

A. Misra et al., ACS Nano 2011; In press.