
Biomech Model Mechanobiol
DOI 10.1007/s10237-012-0376-9

ORIGINAL PAPER

A multiscale approach to the elastic moduli of biomembrane
networks

F. Fraternali · G. Marcelli

Received: 8 September 2011 / Accepted: 18 January 2012
© Springer-Verlag 2012

Abstract We develop equilibrium fluctuation formulae for
the isothermal elastic moduli of discrete biomembrane mod-
els at different scales. We account for the coupling of
large stretching and bending strains of triangulated net-
work models endowed with harmonic and dihedral angle
potentials, on the basis of the discrete-continuum approach
presented in Schmidt and Fraternali (J Mech Phys Solids
60:172–180, 2012). We test the proposed equilibrium fluc-
tuation formulae with reference to a coarse-grained molecu-
lar dynamics model of the red blood cell (RBC) membrane
(Marcelli et al. in Biophys J 89:2473–2480, 2005; Hale et al.
in Soft Matter 5:3603–3606, 2009), employing a local maxi-
mum-entropy regularization of the fluctuating configurations
(Fraternali et al. in J Comput Phys 231:528–540, 2012). We
obtain information about membrane stiffening/softening due
to stretching, curvature, and microscopic undulations of the
RBC model. We detect local dependence of the elastic moduli
over the RBC membrane, establishing comparisons between
the present theory and different approaches available in the
literature.
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1 Introduction

The estimation of the limiting elastic properties of discrete
network models of plates and shells is a key feature of atom-
istic approaches to the mechanics of 2D continua, bio- and
nano-structures (refer e.g., to Nelson et al. (2004), Müller
et al. (2006), Schmidt (2006), Schmidt (2008), Tu and Ou-
Yang (2008), Hartmann (2010) and references therein). In
the case of triangular nets, well-established results have been
found for the stretching moduli (area compression modulus
and in-plane shear modulus in the isotropic case), considering
both infinitesimal and large membrane deformations (Seung
and Nelson 1988; Discher et al. 1997; Zhou and Joós 1997).
More puzzling is the determination of the bending moduli of
triangulated surface networks, especially when cosine-type
dihedral angle potentials are employed, since shape-depen-
dent estimates have been proposed in the literature for such
networks (Nelson et al. 2004; Gompper and Kroll 1996).
Universal formulae for the limiting stretching and bending
energies of membrane networks have been recently formu-
lated in Schmidt and Fraternali (2012), accounting for the
coupling of stretching and bending strains in the finite elas-
ticity regime.

The effects of thermal fluctuations (or undulations) on the
elastic rigidities of flexible membranes have been extensively
investigated in the literature through different approaches
(refer e.g., to Zhou and Joós (1997), Gompper and Kroll
(1996), Lee and Discher (2001), Helfrich and Servuss (1984),
Helfrich (1985, 1998), Pinnow and Helfrich (2000) and refer-
ences therein). Zhou and Joós (1997) applied an equilibrium
fluctuation (EF) approach to quantify Lamé constants, used
as stability criteria for membrane fracture. The EF approach
is particularly convenient in practical applications, since it
calculates the elastic constants from the microscopic fluc-
tuations of the system during a single run of a Molecular
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Dynamics (MD) simulation (Zhou and Joós 1999) and often
leads to fast convergence of the estimates (Yoshimoto et
al. 2005). It is based on taking the second derivatives of
an appropriate free energy (the Helmholtz free energy in
the case of a canonical ensemble) with respect to macro-
scopic strain measures, in correspondence with the fluctuat-
ing configurations of the system. EF formulae for the elastic
constants distinguish different contributions to the overall
moduli [Born, fluctuation, stress and kinetic terms, accord-
ing to the notation used in Zhou and Joós (2002)]. It can be
shown that the fluctuation terms of the Lamé constants of
flat membranes are always negative (Zhou and Joós 1997,
1999), which implies softening of the elastic response due to
microscopic fluctuations. We refer the reader to Squire et al.
(1969), Ray and Rahman (1984), Lutsko (1989), Zhou and
Joós (1996, 1997, 1999, 2002), Hess et al. (1997), Schöf-
fel and Möser (2001), Yoshimoto et al. (2005) and refer-
ences therein for more details about the EF approach. An
alternative approach has been proposed in Lee and Discher
(2001) for the shear and bulk moduli of 2D fluctuating net-
works, making use of the equipartition theorem of statistical
mechanics. For what concerns the bending modulus, several
approaches based on the equipartition theorem and renormal-
ization methods have been proposed in the literature (Peliti
and Leibler 1985; Kleinert 1986; Gompper and Kroll 1996;
Helfrich and Servuss 1984; Helfrich 1985, 1998; Pinnow and
Helfrich 2000). Different approaches have led to contradic-
tory results in terms of the nature of fluctuation effects on the
bending response. Some pioneeristic works predicted mem-
brane softening due to thermal undulations (Helfrich 1985;
Peliti and Leibler 1985; Kleinert 1986). Such results were
later on confirmed by Monte Carlo simulations by Gomp-
per and Kroll (1996). Subsequently, Helfrich and coworkers
instead observed membrane stiffening by thermal undula-
tions (Helfrich 1998; Pinnow and Helfrich 2000), through
a suitable correction of the approach proposed in Helfrich
(1985). Recent results by Kohyama (2009) again predict that
thermal fluctuations soften the bending response of coarse-
grained models of flexible membranes.

In this work, we develop an equilibrium fluctuation
approach to derive the elastic moduli of membrane networks
undergoing large stretching and bending deformations. We
generalize the discrete to continuum approach presented in
Schmidt and Fraternali (2012) to perform differentiation of
the Helmholtz free energy with respect to continuum strain
measures of the fluctuating surface. The latter are estimated
through the local maximum-entropy (LME) regularization
proposed in Fraternali et al. (2012). We develop equilib-
rium fluctuation formulae for the entire set of isothermal
(stretching-bending) elastic moduli. The proposed formu-
lae are tested with reference to a discrete model of the red
blood cell (RBC) membrane (Marcelli et al. 2005; Hale et al.
2009), providing spatial distributions and global statistics of

the shear and bending moduli of such a model. We establish
comparisons between the predictions of the present approach
and those given in Lee and Discher (2001), Peliti and Leibler
(1985), Kleinert (1986), Gompper and Kroll (1996), Hel-
frich and Servuss (1984), Helfrich (1985, 1998), Helfrich
and Kozlov (1993), Pinnow and Helfrich (2000). It is worth
noting that the bending–stretching coupling effects covered
by the present analysis are not accounted for in standard
approaches to the combined stretching–bending response of
membrane networks [refer e.g., to Lipowski and Girardet
(1990)]. We investigate on the isothermal elastic moduli of
fluctuating membranes through an original equilibrium fluc-
tuation approach, which in particular accounts for variable
curvature and stretching strains over the simulation patch.
The numerical results presented in this work highlight RBC
membrane stiffening due to local area contraction and curva-
ture of the network, and softening due to area expansion and
thermal fluctuations. Such effects vary from point to point,
introducing a topological variability of the referential moduli
at the mesocopic scale, which can be usefully exploited to
develop continuous modeling informed by MD simulations
(information-passing multiscale approach).

The paper is organized as follows. We start by deriving the
elastic moduli of static membrane networks in Sect. 2. Next,
in Sect. 3, we formulate equilibrium fluctuation formulae for
the isothermal moduli of such systems. In Sect. 4, we pres-
ent a numerical study on the stretching and bending moduli of
the RBC membrane. We end by summarizing the main con-
clusions of the present study and future research directions in
Sect. 5.

2 Elastic moduli of static networks

Let us consider a scalar r0 > 0, and a 2D triangular lattice L
with lattice vectors of components

a1 =
( −r0/2√

3r0/2

)
, a2 =

( −r0/2

−√
3r0/2

)
, a3 =

(
r0

0

)
,

with respect to a Cartesian frame {e1, e2} having e1 aligned
with a3. A finite piece of such a lattice, showing N nodes or
particles, is given by LN = L ∩ U , where U is a bounded
open subset of R

2. We assume that LN represents the refer-
ence configuration of a membrane network X N lying in the
3D Cartesian space. We also assume that the deformed con-
figuration of X N is defined by the restriction of a continuous
deformation mapping f : U → R

3 to LN . The potential
energy of X N is supposed to have the following expression

Er ( f ) = E stretch
r ( f ) + Ebend

r ( f ) (1)

where
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E stretch
r ( f ) = k

2

∑
u,v∈Lr ∩U
|u−v|=r

(| f (u) − f (v)| − r0)
2 (2)

Ebend
r ( f ) = D

2

∑
�,�′∈Cr
neighbors

|n� − n�′ |2 (3)

are energies corresponding to nearest-neigbor linear bonds
and dihedral angle potentials, respectively. In (2), (3), k is a
linear spring stiffness parameter; D is an angular spring stiff-
ness parameter; Cr is the set of equilateral triangles � ⊂ U
with sidelength r0 and vertices in Lr ; and n� is the unit nor-
mal to f (n�).

Let I(u) = (gi j ) and II(u) = (hi j ) denote the first and
second fundamental forms of the 3D surface S mapped by
f (u), which are given by [refer, e.g., to Kühnel (2002)]

gαβ = gα · gβ, hαβ = n · gα,β (4)

where

gα =
3∑

i=1

fi,α êi , n = g1 × g2

|g1 × g2| (5)

It has been shown in Schmidt and Fraternali (2012) that
the continuum limit r0 → 0 (N → ∞) of the discrete energy
(1) is the following

E( f ) := lim
r0→0

Er ( f ) =
∫

U
(W bend(I(u), II(u))

+ W stretch(I(u))) du (6)

where

W bend(I(u), II(u))

=
√

3D

12 det I

(
g11(h

2
11 + 2h2

12 − 2h11h22 + 3h2
22

)

−8g12h11h12 + 2g22(h
2
11 + 3h2

12)) (7)

W stretch(I(u)) = k√
3

3∑
i=1

(λi (I(u)) − 1)2 (8)

with

λ1 = 1

2

√
g11 − 2

√
3g12 + 3g22

λ2 = 1

2

√
g11 + 2

√
3g12 + 3g22 (9)

λ3 = √
g11

We now introduce the total limiting energy density

W limit(I(u), II(u)) = W stretch(I(u))

+ W bend(I(u), II(u)) (10)

and the numerical vectors g = (g11, g22, 2g12) and h =
(h11, h22, 2h12), which collect the independent components

of the symmetric tensors I and II, respectively. By differ-
entiating W limit with respect to g and h, we get the follow-
ing expressions the referential stretching stresses N = (Ni );
bending stresses M = (Mi ); stretching moduli A = (Ai j );
bending moduli D = (Di j ); and bending–stretching moduli
B = (Bi j )(i, j = 1, 2.3) of X N

N = 2
∂W limit

∂g
, M = ∂W limit

∂h
(11)

A = 4
∂2W limit

∂g2 , B = 2
∂2W limit

∂g∂h
, D = ∂2W limit

∂h2 (12)

For convenience, we group the above quantities into the fol-
lowing arrays

S =
[

N
M

]
, Q =

[
e
h

]
, C =

[
A B
BT D

]
(13)

which define the overall (stretching-bending) stress vector,
strain vector, and elasticity matrix of the network, with e =
1
2 (g11 −1, g22 −1, 2g12). We refer the reader to Schmidt and
Fraternali (2012) for the detailed expressions of the quanti-
ties appearing on the r.h.s of (13)1, (13)3, which depend on
both the stretching strains (gi j ) and the bending strains (hi j )

of S (Naghdi 1972). The innovative character of the pres-
ent approach, as compared to standard models of flexible
membranes, follows from the expression (7) of the limiting
bending energy. Such an energy indeed accounts for a ‘mul-
tiplicative’ composition of stretching and bending strains,
while standard energy models instead feature terms that alter-
natively include either stretching or bending strains [refer,
e.g., to Lipowski and Girardet (1990)]. For later use, we intro-
duce the following quantities

μ1 = C33 =
√

3k(
g11 + 2

√
3g12 + 3g22

)3/2

+
√

3k(
g11 − 2

√
3g12 + 3g22

)3/2

+ D

2
√

3(det I)3
(−16g12(det I)h11h12

−
(

g11g22 + 3g2
12

)

×
(

8g12h11h12 − 2g22

(
h2

11 + 3h2
12

)

−g11

(
h2

11 − 2h11h22 + 2h2
12 + 3h2

22

)))
(14)

κ1
H = C44 + 2C45 + C55 + C66

4
=

√
3D (g11+2g22)

6 det I
(15)

which define static shear and bending stiffness measures
accounting for large stretching and bending deformations
of the reference lattice, respectively (Schmidt and Fraternali
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2012). It is not difficult to realize that the above quantities
assume the following simplified expressions

μ1 ≈ μ0 =
√

3k

4
, κ1

H ≈ κ0
H =

√
3D

2
(16)

in the infinitesimal elasticity regime [I approximatively coin-
cident with the identity matrix; D|II|2 � k, cf. also Schmidt
and Fraternali (2012)].

3 Isothermal elastic moduli of fluctuating networks

Let us consider a portion (or ‘patch’) X N ′ of X N , which is
composed of N ′ ≤ N particles. From now on we assume
that X N fluctuates at constant absolute temperature T in the
3D Cartesian space (Fig. 1). We initially consider the elastic
moduli of X N ′ in the stress-free reference configuration and
neglect kinetic terms (refer, e.g., to Zhou and Joós (1996,
2002), Schöffel and Möser (2001) for the different terms of
EF formulas). We thus introduce the Helmholtz free energy

F ′ = −kB T log Z ′ (17)

where Z ′ is the partition function given by

Z ′ =
∫

e−Er /kB T dr (18)

In (18), kB is the Boltzmann constant, and r denotes the
position vector. A discrete to continumm approach to the
elastic response of X N ′ is obtained by introducing the fol-
lowing continuum regularization of Er

Er ≈
N ′∑

a=1

W a Aa
0 (19)

into (18). Such a regularization is defined over a ‘dual’ tes-
sellation (or mesh) {σ 1, . . . , σ N ′ } of the reference lattice
(Munkres 1984), which we assume composed of polygons
joining the barycenters of the reference triangles (barycentric
dual mesh, cf. Fig. 1). We use the symbol Aa

0 to denote the sur-
face area ofσ a , and W a to denote the quantity W limit(Ia, IIa),
where Ia and IIa are suitable estimates of the first and sec-
ond fundamental forms of the current configuration of σ a

(obtained, e.g., through the Local Maximum-Entropy regu-
larization scheme presented in Fraternali et al. (2012), which
is briefly sketched in the “Appendix” to the present paper).

We estimate the referential elasticity tensor Ĉ′ = (Ĉ ′
i j ) of

X N ′ through the following equilibrium fluctuation formulae:

Ĉ ′
i j = 1

A0

N ′∑
a=1

∂2 F ′

∂ Qa
i ∂ Qa

j
(i, j = 1, . . . , 6) (20)

where A0 denotes the total surface area of X N ′ in the
reference configuration, and Qa

i j denotes the strain vector
associated with Ia and IIa through (13). It is worth noting that

Fig. 1 Reference (flat) and current configurations of a portion X N ′ of
a fluctuating network X N

Eq. (20) accounts for variable strains measures Qa
i from cell

to cell of X N ′ (e.g., variable curvatures associated with out-
of-plane displacements, cf. Fig. 1) and homogeneous strains
over each single cell. We also wish to remark that the present
fixed-reference (or material) approach to the elastic mod-
uli of X N ′ (cf. Ogden (1984), Sect. 6.1.3; Holzapfel (2000),
Sect. 6.6) accounts for arbitrarily large deformations from
the reference configuration. A straightforward calculation
gives

∂2 F ′

∂ Qa
i ∂ Qa

j
=

〈
∂2 Er

∂ Qa
i ∂ Qa

j

〉
− 1

kB T

(〈
∂ Er

∂ Qa
i

∂ Er

∂ Qa
j

〉

−
〈
∂ Er

∂ Qa
i

〉 〈
∂ Er

∂ Qa
j

〉)
(21)

where 〈(·)〉 denotes the configurational average of the quan-
tity (·). On substituting (21) into (20) and accounting for (19),
we finally obtain

Ĉ ′
i j = C B

i j + C F
i j (22)

where

C B
i j = 1

A0

N ′∑
a=1

〈
Ca

i j

〉
Aa

0 (23)
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C F
i j = − 1

kB T A0

N ′∑
a=1

(〈
SBa

i SBa
j

〉
−

〈
SBa

i

〉 〈
SBa

j

〉) (
Aa

0

)2

(24)

with

SBa
i = ∂W a

∂ Qa
i
, Ca

i j = ∂2W a

∂ Qa
i ∂ Qa

j
(25)

The quantities C B
i j and C F

i j define the Born and fluctuation

terms of Ĉ ′
i j , respectively (Zhou and Joós 1996, 2002). The

Born terms are computed from the thermal averages of the
second derivatives of the limiting strain energy densities of
the dual cells and approximate the zero-temperature elastic
coefficients of the system (Lutsko 1989), while the fluctua-
tion terms account for the microscopic fluctuations of each
σ a ∈ X N around the mean shape. Formulae (22)–(25) apply
to an arbitrary membrane network model, provided that W a is
properly defined. In the special case of the model introduced
in the previous section, it results Aa

0 = A0/N ′ at every σ a ,
and therefore it results

C B
i j = 1

N ′
N ′∑

a=1

〈
Ca

i j

〉
, C F

i j = − A0

(N ′)2 kB T

N ′∑
a=1

(〈
SBa

i SBa
j

〉

−
〈
SBa

i

〉 〈
SBa

j

〉)
(26)

SB
i = 1

N

N ′∑
a=1

〈
SBa

i

〉
(27)

We now compute the total elastic moduli Ĉi j of X N ′ ,
which are derived from the addition of loading and kinetic
terms to the free energy of the system, on adopting the
notation of Zhou and Joós (1996, 1997, 2002) [notice that
sometimes a different nomenclature is encountered in the
literature, which incorporates the stress terms of the elas-
tic coefficients into the Born terms, refer e.g., to Hess et al.
(1997)]. Supposing that X N ′ is subject to dominant stretching
stresses (as compared to bending stresses), we determine its
total moduli by adding the stress and kinetic terms deduced
from Zhou and Joós (1996) for a 2D flat membrane to the ref-
erential elasticity tensor Ĉ ′

i j defined by Eq. (22). We finally
write

Ĉi j = C B
i j + C F

i j + C K
i j + C S

i j (28)

where (cf. equations (61), (64) and (65) of Zhou and Joós
(1996))

CK =

⎡
⎢⎢⎢⎢⎢⎢⎣

N ′kB T

A0

⎛
⎝2 0 0

0 2 0
0 0 1

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

CS =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ Ŝ1 − 1

2 (Ŝ1 + Ŝ2)
1
2 Ŝ3

− 1
2 (Ŝ1 + Ŝ2) Ŝ2

1
2 Ŝ3

1
2 Ŝ3

1
2 Ŝ3

1
2 (Ŝ1 + Ŝ2)

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 0
0 0 0

⎞
⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

In (30), it results Ŝ1 = SB
1 − N ′kB T/A0, Ŝ2 = SB

2 − N ′kB T/

A0, Ŝ3 = SB
3 , with

SB
i = 1

A0

N ′∑
a=1

〈
SBa

i

〉
Aa

0 (31)

The isothermal values of the area compression modulus
κ̂A, in-plane shear modulus Ĝ12, and bending modulus κ̂H

of X N ′ are given by (Schmidt and Fraternali 2012)

κ̂A = 1

Ĉ−1
11 + 2Ĉ−1

12 + Ĉ−1
22

, Ĝ12 = 1

Ĉ−1
33

,

κ̂H = Ĉ44 + 2Ĉ45 + Ĉ55 + 4Ĉ66

4
(32)

It is not difficult to show that the diagonal elements of
the fluctuation elasticity matrix C F

i j are non-positive, which
implies membrane softening by thermal fluctuations within
the present theory. This is in agreement with the equilibrium
fluctuation approach by Zhou and Joós (1996, 1997). It is
also possible to show that the fluctuation term of the bending
modulus

κ F
H = C F

44 + 2C F
45 + C F

55 + 4C F
66

4
(33)

is non-positive. The corresponding Born term is given by

κ B
H = C B

44 + 2C B
45 + C B

55 + 4C B
66

4
(34)

and it is easy to recognize that such a quantity coincides with
the configurational average 〈κ1

H 〉 of the static bending mod-
ulus (15). We note that it is not possible to similarly define
Born and fluctuation terms of κ̂A and Ĝ12, since such quan-
tities are obtained by manipulating the inverse of the global
elasticity matrix (cf. Eq. (32)1,2), which mixes up all the dif-
ferent contributions to Ĉi j .

4 Numerical results and discussion

We test the equilibrium fluctuation formulae developed in
the previous section with reference to the coarse-grained MD
model of the red blood cell membrane presented in Marcelli
et al. (2005) and Hale et al. (2009). Such a model describes
the RBC wall as a triangulated membrane network X N com-
posed of N particles and of M = 2N − 4 triangles. The
side length r0 of the primal triangles is set equal to the aver-
age length of the spectrin filaments (∼100 nm) forming the
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cytoskeleton of a real RBC cell in normal conditions (Hale
et al. 2009). The model is equipped with bond and dihedral
angle potentials described by Eqs. (2) and (3), respectively.
It includes an area constraints requiring that the global sur-
face area (Atot) of the membrane remains constantly equal
to that characterizing the reference configuration (Marcelli
et al. 2005), and a volume constraint requiring that the vol-
ume enclosed by the membrane (Vtot) is constantly equal
to 0.65 times the volume of a sphere with the same surface
area (Hale et al. 2009). Isothermal fluctuations of the RBC
membrane are simulated through the MD software DLPOLY
version 2.20 developed in Daresbury Laboratory, Cheshire,
UK (Smith and Forester 1999), employing the Nosé–Hoover
thermostat to keep the temperature constant; 3 × 106 steps
with time-step �t = 2.07 × 10−5 t0, where t0 = √

m/k;
N = 5762 particles; particle mass m = 5.82625 × 10−20

kg; k = 8.3 μN/m; D = 130 × 10−20 J; absolute tempera-
ture T = 309 K; Atot = 4.986 × 107 nm2; Vtot = 3.311 ×
1010 nm3. The initial configuration is chosen to be the icosa-
hedron such that each particle shows equal distance r0 from
all the nearest neighbors. The cell model is treated as an
isolated systems, in contact with an artificial thermal bath,
so no boundary conditions are applied. The instantaneous
cell volume is computed as the sum of the volumes of pyr-
amids sharing a point placed in the interior of the cell as
vertex and featuring the current configurations of the mesh
triangles as bases. It has been observed in Hale et al. (2009)
that the adopted material constants k and D, in association
with the volume and area constraints, drive the cell model
to acquire on average a discoid shape, reproducing experi-
mentally observed mean square fluctuations of the equatorial
contours of real RBC cells.

In correspondence with each individual particle xa of X N ,
we consider a patch Xa

N ′ ⊂ X N formed by the mth order
nearest neighbors of xa (cf. Fig. 1, where m = 5), in order
to obtain mesoscopic estimates of the elastic moduli of the
RBC membrane, for different choices of m. Such estimates
are obtained through the equilibrium fluctuation formulae
(22)–(24), employing LME approximations of the first and
second fundamental forms of the deformed cells σ a (Frater-
nali et al. 2012), at each step of the MD simulation (cf. the
“Appendix”).

We focus our attention on the isothermal values (32)2,3 of
the in-plane shear modulus Ĝ12 and bending modulus κ̂H of
the RBC model, observing that its ‘macroscopic’ area com-
pression modulus is infinitely large, due to the global area
constraint. We also investigate on the Born, fluctuation, stress
and kinetic terms of the ‘isotropic’ shear modulus μ̂ ≡ Ĉ33,
and the Born and fluctuation terms of bending modulus κ̂H

(the latter exhibits zero stress and kinetic terms, cf. Sect. 3).
It is not difficult to show that μ1 ≡ C33 approximate the

in-plane shear modulus G12 ≡ 1/C−1
33 of a static network in

the infinitesimal elasticity regime, where the limiting elastic

response of the current network model is actually isotropic
(Schmidt and Fraternali 2012). The shear moduli μ and G12

may instead significantly differ from each other in the large
strain regime, where the use of G12 allows one to account
for the material anisotropy arising in the continuum limit
(Schmidt and Fraternali 2012). We include μ̂ in our analy-
sis in order to investigate on the different contributions to
the shear rigidity of the network, which are not additively
separable in Ĝ12 (cf. Sect. 3), and also to establish compar-
isons with the equipartition analysis presented in Lee and
Discher (2001). In the following, we will refer to Ĝ12 as the
‘anisotropic’ shear modulus of the network.

We look at the ratios between the examined moduli and the
‘stress-free’ shear and bending moduli of the reference lattice
in the infinitesimal elasticity regime, which are given by μ0

and κ0
H , respectively (Sect. 2). We say the the membrane

is undergoing softening of the shearing (bending) response
when the Ĝ12/μ

0 (κ̂H /κ0
H ) ratio is less than unity, and shear-

ing (bending) stiffening when the same ratio is instead greater
than one.

It is useful to observe that the Born terms μB ≡ 〈μ1〉 and
κ B

H ≡ 〈κ1
H 〉 of μ̂ and κ̂H estimate the isotropic shear modu-

lus and the bending modulus at zero temperature in the finite
elasticity regime, respectively (Lutsko 1989).

4.1 Average strain and fluctuation measures

The following analysis deals with average strain and fluctua-
tion measures of the RBC model. Regarding average strains,
we analyze the area stretching ratio

√〈g〉 = √〈det I〉; the
shear strain 〈g12〉; the mean curvature 〈H/2〉; and the Gauss-
ian curvature 〈K 〉 of the mean shape. The examined fluctua-
tion measures instead consist of the quantities 〈u2‖〉 and 〈u2⊥〉,
where

u‖ =
√(

(xa − 〈xa〉) · ka
1

)2 + (
(xa − 〈xa〉) · ka

2

)2
, (35)

u⊥ = (xn − 〈xn〉) · ka
3 (36)

Here, ka
1 and ka

2 denote the unit tangents to the lines of cur-
vature of the mean shape, which are computed through the
LME approach presented in “Appendix” [cf. also Fraternali
et al. (2012)].

Table 1 shows the global statistics of the effective strain
and fluctuation measures over the RBC membrane, includ-
ing the mean, standard deviation (SD), minimum and max-
imum values, and average values over the dimple and rim
regions of the membrane. A 3D graphical representation of
such quantities is provided by the density plots of Figs. 2
and 3. We note that the area stretching ratio

√〈g〉 almost
symmetrically oscillates around one over the membrane,
with −27%,+20% local oscillations. Local area expansions
(
√〈g〉 > 1) are observed at the cell rim, while local area con-

tractions (
√〈g〉 < 1) are observed at the dimple (cf. Fig. 2),
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Fig. 2 3D density plots of configurational averages of selected strain measures for isothermal fluctuations (T = 309 K) of a CGMD model of the
RBC membrane (Marcelli et al. 2005; Hale et al. 2009)

Table 1 Global estimates of
effective strain measures,
pressure values and fluctuation
displacements for isothermal
fluctuations (T = 309 K) of a
CGMD model of the RBC
membrane (Marcelli et al. 2005;
Hale et al. 2009)

Property Mean (SD) Min÷max Dimple÷ rim

√〈g〉 0.98 (0.17) 0.73 ÷ 1.20 0.78 ÷ 1.20

〈g12〉 0.00 (0.04) −0.12 ÷ 0.12 ≈0.00 ÷ ±0.12

〈H/2〉 × 105(Å−1
) −4.56 (4.58) −10.85 ÷ 3.83 3.83 ÷ −10.74

〈K 〉 × 109(Å−2
) 2.27 (2.73) −0.47 ÷ 7.57 1.47 ÷ 7.42

pB/μ0 0.16 (0.25) −0.12 ÷ 0.60 0.52 ÷ −0.12

p̂/μ0 0.30 (0.24) 0.03 ÷ 0.69 0.67 ÷ 0.03√
〈u2‖〉/r0 0.63 (0.20) 0.30 ÷ 0.88 0.34 ÷ 0.30√
〈u2⊥〉/r0 0.17 (0.01) 0.15 ÷ 0.20 0.15 ÷ 0.19

as a consequence of the combined action of area and volume
constraints. Concerning the shear strain 〈g12〉, we observe
from Table 1 and Fig. 2 that such a quantity oscillates around
zero over the membrane, with oscillations in the range ±12%.
The mean curvature 〈H/2〉 alternates positive (around the
cell dimple) and negative (rim) values, which correspond to
concave and convex regions, respectively. Differently, the
Gaussian curvature is positive both at the dimple and the
rim, with largest values at the rim, and exhibits negative

values over the saddle-shaped dimple–rim transition region
[cf. also Fraternali et al. (2012)]. The mean shape of the
examined model is dyscotic, as we already observed (Hale
et al. 2009). The described ‘mean’ deformation regime leads
to positive values of the in-plane Born pressure pB =
−(SB

1 + SB
2 )/2 at the dimple and negative values of the

same quantity at the rim. Regarding the total in-plane pres-
sure p̂ = −(Ŝ1 + Ŝ2)/2 (including kinetic terms, cf. the
previous section), we observe positive values at the dimple,
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Fig. 3 3D dimensionless density plots of the configurational averages
of fluctuation displacements u2‖ and u2⊥ from the mean config-

uration; isothermal shear modulus Ĝ12; and isothermal bending

modulus κ̂H (T = 309 K) for a CGMD model of the RBC
membrane (Marcelli et al. 2005; Hale et al. 2009)

and values close to zero at the rim (cf. Table 1, where we
report statistics for N ′ = 1). For what regards the fluctua-
tion measures, we observe that the in-plane mean-squared
displacement 〈u2‖〉 shows the largest values over the dimple–
rim transition region, while the out-of-plane mean-squared
displacement 〈u2⊥〉 peaks at the rim (Fig. 3). We also notice
that 〈u2‖〉 exhibits much larger standard deviation than 〈u2⊥〉
(Table 1).

4.2 Elastic moduli

Let us now now examine the spatial distributions and statis-
tics of the shear and bending moduli of the RBC model on
hand (Fig. 3; Tables 2 and 3). We consider ‘mesoscopic’ esti-
mates corresponding to N ′ = 19(m′ = 2), N ′ = 61 (m′ =
4), and N ′ = 91(m′ = 5); and ‘macroscopic’ estimates cor-
responding to N ′ = N = 5762 (global effective moduli).

We observe that the mesoscopic estimates of all the exam-
ined moduli are stable with the patch size (cf. Tables 2
and 3). Nevertheless, such quantities appreciably oscillate
over the membrane, showing noticeable local deviations from
the corresponding macroscopic values. Particularly wide

oscillations are exhibited by the mesoscopic distributions of
the Born term μB (−17% ÷ +34% over the macroscopic
value) and the isothermal bending modulus κ̂H (≈ ±20%
deviations from the macroscopic value, which is in turn 20%
smaller than κ0

H ). The anisotropic shear modulus Ĝ12 instead
features small oscillations at the mesoscopic scale.

It is useful to look at the deviations between the com-
puted ‘static’ (μB, κ B

H ) and ‘dynamic’ (μ̂, Ĝ12, κ̂H ) mod-
uli, and the characteristic values μ0 and κ0

H . From an
analysis of the results in Tables 2 and 3, one realizes that
the Born term of the isotropic shear modulus (μB) is mark-
edly higher than μ0 all over the membrane. Such stiffen-
ing effects are associated with marked area contraction at
the dimple (+66%) and membrane curvature at the rim
(+15%). In order to assess the accuracy of the above pre-
dictions, we make use of an analytical approximation μ1 to
μB , which is obtained on considering Eq. (14), and assuming
g11 ≈ g22 ≈ √〈g〉; g12≈0 (isotropic membrane stretching);
h11, h22 ≈ 1/2(〈H〉 ± √〈H〉2 − 4〈K 〉); h12 ≈ 0 (lines of
curvature coincident with the local axes x1, x2). The relative
approximated version of Eq. (14) gives μ1 ≈ μB ≈ 1.64μ0

at the dimple (against the computed value μB = 1.66μ0),
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Table 2 Estimates of selected elastic moduli at different scales for isothermal fluctuations (T = 309 K) of a CGMD model of the RBC membrane
(Marcelli et al. 2005; Hale et al. 2009)

N ′ = 19 N ′ = 61 N ′ = 91 N ′ = N = 5762

μB/μ0 1.15 ÷ 1.66 1.15 ÷ 1.66 1.15 ÷ 1.66 1.32

Dimple ÷ rim 1.66 ÷ 1.15 1.66 ÷ 1.16 1.66 ÷ 1.16

μ̂/μ0 1.01 ÷ 1.15 1.01 ÷ 1.15 1.02 ÷ 1.15 1.08

dimple ÷ rim 1.08 ÷ 1.13 1.08 ÷ 1.14 1.08 ÷ 1.14

Ĝ12/μ
0 0.97 ÷ 1.04 0.97 ÷ 1.04 0.98 ÷ 1.04 1.06

dimple ÷ rim 1.04 ÷ 1.00 1.04 ÷ 1.00 1.04 ÷ 1.01

κ B
H /κ0

H 0.83 ÷ 1.29 0.84 ÷ 1.27 0.84 ÷ 1.26 1.02

dimple ÷ rim 1.22 ÷ 0.83 1.23 ÷ 0.84 1.23 ÷ 0.84

κ̂H /κ0
H 0.58 ÷ 1.04 0.59 ÷ 1.03 0.59 ÷ 1.02 0.80

dimple ÷ rim 0.93 ÷ 0.58 0.94 ÷ 0.59 0.94 ÷ 0.59

The first row of each data section provides minimum and maximum mesoscopic moduli for different choices of N ′, and effective macroscopic
moduli for N ′ = N = 5762. The second row provides average mesoscopic moduli over dimple and rim regions. Reference values for unstressed
networks at zero temperature: μ0 = 3.594 × 10−6 N/m, κ0

H = 112.6 × 10−20 J (k = 8.3 × 10−6 N/m, D = 130.0 × 10−20 J)

Table 3 Born, fluctuation and
stress terms of μ̂/μ0 at the
dimple and the rim, for different
values of N ′

N ′ Dimple Rim

Born Fluct. Stress Kin. Born Fluct. Stress Kin.

19 1.66 −0.06 −0.66 0.14 1.15 −0.13 −0.03 0.14

61 1.66 −0.05 −0.67 0.14 1.16 −0.13 −0.03 0.14

91 1.66 −0.05 −0.67 0.14 1.16 −0.13 −0.03 0.14

5,762 1.32 −0.08 −0.30 0.14 1.32 −0.08 −0.30 0.14

and μ1 ≈ μB ≈ 1.14μ0 at the rim (which approximative-
ly coincides with the corresponding computed value of μB ,
cf. Table 2). An increase in the shear stiffness of the RBC
membrane due to large deformation effects is confirmed by
experimental measurements through micropipette aspiration
and optical tweezers (cf. Hale et al. (2009) and references
therein).

The overall isothermal value of the isotropic shear mod-
ulus (μ̂) features 1% ÷ 15% local increases over μ0, due
to the superimposition of stiffening effects due to Born and
kinetic terms, and softening effects due to fluctuation and
stress terms (Table 3). It is worth noting that the stress term
of μ̂ shows opposite sign with respect to the in-plane pressure
(cf. Eq. (30) of this paper, and equation (8) of Zhou and Joós
(1997)). As we already noticed, the anisotropic shear mod-
ulus Ĝ12 instead features small oscillations (−2% ÷ +4%)
from μ0 over the membrane. In particular, the lowest values
of Ĝ12 are achieved over the dimple–rim transition region,
where the in-plane mean-squared displacement 〈u2‖〉 reaches
its maximum (Fig. 3).

Regarding the Born term of the bending modulus (κ B
H ),

we observe that this quantity is higher than the correspond-
ing characteristic value κ0

H at the dimple (+22%), due to local
area contraction, and lower than κ0

H at the rim (−17%), due to

local area expansion (cf. Table 2). We assess the accuracy of
such predictions on employing an analytical approximation
κ1 to κ B

H , which follows from substituting g11 ≈ g22 ≈ √〈g〉
and g12 ≈ 0 into the r.h.s of Eq. (15). The resulting approx-
imated version of Eq. (15) gives κ1

H ≈ κ B
H ≈ 1.25κ0

H at
the dimple (against the computed value κ B

H = 1.23κ0
H ), and

κ1 ≈ κ B
H ≈ 0.80κ0

H at the rim (computed value: κ B
H =

0.84κ0
H , cf. Table 2).

Finally, for what concerns the overall isothermal bending
modulus (κ̂H ), we observe a ≈20% softening with respect to
the Born term. In particular, it results κ̂H = 0.93 ÷ 0.94 κ0

H
at the dimple, and κ̂H = 0.58 ÷ 0.59 κ0

H at the rim. We also
note that the lowest mesoscopic values of κ̂H are attained at
the rim, in correspondence with the peaks of the out-of-plane
mean-squared displacement 〈u2⊥〉 (Fig. 3).

The membrane stiffening associated with area contrac-
tion is explained by Eq. (7), which features det I at the
denominator of the limiting bending energy density W bend,
and linear terms in the first fundamental forms gi j at the
numerator of the same quantity. It is seen that W bend blows
up in the limit det I → 0, reproducing compression lock-
ing due to progressive material densification. Such a behav-
ior is experimentally observed in soft materials and cellular
solids [cf., e.g., Gibson and Ashby (1982)] and is not
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captured by planar network models (Discher et al. 1997).
Conversely, area expansion (det I > 1) results in membrane
softening. Regarding the explanation of the stiffening effects
due to membrane curvature, we refer the reader to the discus-
sion presented in Schmidt and Fraternali (2012). The soften-
ing nature of the thermal fluctuations has been illustrated in
Sect. 3.

We now compare the present predictions of the shear
and bending moduli with analogous results based on the
equipartition theorem of statistical mechanics (Lee and Dis-
cher 2001; Peliti and Leibler 1985; Kleinert 1986; Gomp-
per and Kroll 1996; Helfrich and Servuss 1984; Helfrich
1985, 1998; Helfrich and Kozlov 1993; Pinnow and Helfrich
2000).

The equipartition approach proposed in Lee and Discher
(2001) determines the shear modulus of an isotropic mem-
brane, which fluctuates with prevalent in-plane shear modes
(over dilatational modes), through the equation

μ̂LD ≈ kB T
log(	/a)

2π
〈
u2‖

〉 (37)

where 	 and a represent the maximum and minimum wave-
lengths characterizing the fluctuations from the mean shape.
Eq. (37) accounts for fluctuation effects on the shear rigid-
ity in the infinitesimal elasticity regime. On assuming 	 =√

Atot and a = r0 (Marcelli et al. 2005) and setting 〈u2‖〉
to the value that we recorded over the rim region, where
the total in-plane pressure is almost zero (cf. Table 1), we
obtain μ̂LD = 0.89μ0. Let us compare such a prediction
with the sum of Born and fluctuation terms of μ̂ computed
at the rim through the present theory (sum equal to 1.03μ0,
cf. Table 3). The 15% gap between the above estimates of
the isotropic shear modulus is explained by shear stiffen-
ing due to large deformations, which is accounted for by
the present approach (observe that the value of μB at the
dimple in Table 3 is approximatively 15% higher than μ0)
and is instead neglected in the analysis by Lee and Discher
(2001).

For what concerns the bending modulus κ̂H of a fluctuating
membrane under zero lateral tension, the approaches pro-
posed in Peliti and Leibler (1985), Kleinert (1986), Gomp-
per and Kroll (1996), Helfrich (1985, 1998), Pinnow and
Helfrich (2000) leads to predict the following renormalized
value

κ̂H = κ0
H − αkB T

4π
log(	/a) (38)

where α is an amplitude factor, which is equal to 3 accord-
ing to Peliti and Leibler (1985), Kleinert (1986), Gompper
and Kroll (1996); to 1 according to Helfrich (1985); and
to −1 according to Helfrich (1998), Pinnow and Helfrich
(2000). In the present case, assuming again 	 = √

Atot and
a = r0, we observe that the difference between κ̂H and κ0

H

is less than 1%, independently of the value of α (note that
kB T /(4πκ0

H ) ≈ 3 × 10−4 for the model under examina-
tion).

The coupled effects of lateral tension and membrane cur-
vature have been examined in Helfrich and Kozlov (1993),
where the following formula is proposed for the ‘effective
bending rigidity’

κH = κ0
H

(
1 − 3 κ0

H J 2

2 κ0
A

)
(39)

Here, κ0
A denotes the area compression modulus in the refer-

ence (unstretched) configuration, while J denotes the lead-
ing curvature of the membrane. On assuming κ0

A = √
3k/2

(Schmidt and Fraternali 2012) and setting J to the min-
imum curvature that we recorded at the rim (J = H/2
− √

H2 − 4K/2), we obtain κH ≈ 0.65κ0
H from Eq. (39),

which is in good agreement with the value predicted by the
present theory (κ̂H ≈ 0.60κ0

H , cf. Table 2).

5 Concluding remarks

We have presented equilibrium fluctuation formulae for the
isothermal elastic moduli of membrane networks of arbi-
trary shape fluctuating in the 3D Cartesian space. The pro-
posed formulae have been numerically tested with reference
to a coarse-grained MD model of the red blood cell mem-
brane (Marcelli et al. 2005; Hale et al. 2009), carrying out
an investigation on mesoscopic and macroscopic estimates of
the shear and bending moduli of such a model. The numerical
analysis has made use of a local maximum-entropy regular-
ization of the geometry of the network [cf. the Appendix
and Fraternali et al. (2012)]. A detailed comparison has been
established between the present theory and the renormaliza-
tion approaches presented in (Lee and Discher 2001; Helfrich
and Kozlov 1993),

The numerical results obtained for the RBC model have
shown regional dependence of the mesoscopic elastic prop-
erties on deformation and fluctuation measures. We have
detected shear stiffening due to local area contraction and
membrane curvature; bending stiffening due to area con-
traction; shear softening due to thermal fluctuations; and
bending softening due to area expansion and thermal fluc-
tuations. Overall, the main conclusions emerging from the
numerical study presented in Sect. 4 are the following: (i)
the large deformation effects on the RBC membrane rigid-
ity predicted by the present model are not accounted for in
standard approaches to the elastic moduli of flexible mem-
branes (cf. Sects. 2, 4.2); (ii) such effects can be analytically
estimated by making use of the Eqs. (14), (15) and suitable
average strain measures; (iii) the lowest values of the iso-
thermal shear and bending moduli of the RBC membrane are
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attained where the in-plane and out-of-plane mean-squared
fluctuation displacements reach their peak values, respec-
tively; (iv) positive in-plane pressures ‘weaken’ the isotropic
shear modulus [cf. also Zhou and Joós (1997), Discher et al.
(1997)].

The outcomes of the present study can be usefully
employed to develop an information-passing multiscale mod-
eling of membrane networks, carrying out finite element
simulations at the continuum scale that make use of elas-
tic properties derived from MD simulations. Although the
numerical analysis presented in Sect. 4 specifically refers to
a triangulated membrane network, we wish to remark that the
approach to the elastic moduli of fluctuating networks for-
mulated in Sect. 3 can be conveniently applied to arbitrary
networks, provided that the continuum limit of the corre-
sponding discrete potential energy is available.

In closing, we suggest directions for future extensions of
the present research. A relevant generalization regards the
computation of isothermal elastic moduli in spatial descrip-
tion (or elastic stiffness coefficients), which can be effectively
related to experimental measurements [refer, e.g., to Zhou
and Joós (2002)]. We indeed plan to apply the present the-
ory to conduct computational simulations of laboratory tests
on the RBC mechanics, such as tests based on micropipette
aspiration techniques, optical tweezes, fast-phase contrast
video microscopy, and/or atomic force microscopy [cf. also
Schmidt and Fraternali (2012)]. Another extension might
regard the inclusion of initial bending stresses and complex
interaction potentials in the proposed equilbrium fluctuation
formulae, like, for example, the wormlike chain potential
often employed in coarse-grained models of the RBC mem-
brane (Fedosov et al. 2009; Pivkin and Karniadakis 2008;
Dao et al. 2006). The use of such potentials could allow us
to capture phenomena like strain stiffening of filamentous
networks, which have been experimentally observed in bio-
logical tissues and cell membranes (refer e.g., to Onck et al.
(2005) and references therein). Additional future work also
includes the study of phase transitions of membrane networks
(Discher et al. 1997), accounting for bending–stretching cou-
pling in the large deformation regime; detailed scale separa-
tion studies on the bending modulus of the RBC membrane
(Hale et al. 2009), on considering different mesh refinements
and model properties; and an extensive validation of the pro-
posed equilibrium fluctuation formulae, to be carried out
though a comparative analysis with other available numeri-
cal and experimental results, for different types of biomem-
branes.
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Appendix: Basics of the LME regularization scheme

Given an arbitrary u ∈ U , the LME approximation of the
deformation mapping introduced in Sect. 2 is the following

fi (u) ≈
Ñ∑

b=1

fib p∗
b(x(u)), (40)

where x = {x1, x2} is the vector of the deformed coordinates
in the tangent plane to the current configuration of S (cf.
Fraternali et al. (2012), Sect. 3.3); Ñ ≤ N is a scalar denot-
ing the number of particles that form the LME regularization
set Xa

Ñ
; fib are the current deformed positions of the model

particles; and p∗
b are the LME shape functions. The latter

correspond with the solution of the optimization problem

min
{p1,...,pÑ }∈RÑ

⎛
⎝β

Ñ∑
a=1

pb |x − xb|2 +
Ñ∑

b=1

pb log pb

⎞
⎠

(41)

subject to:

pb ≥ 0, b = 1, . . . , Ñ ;
Ñ∑

b=1

pb = 1;
Ñ∑

b=1

pbxb=x (42)

By tuning the value of β in the interval (0,+∞), the LME
scheme suitably balances the maximization of the informa-
tion entropy corresponding to the given nodal data with the
minimization of the total width of the shape functions [local-
gobal approximation scheme, cf. Arrojo and Ortiz (2006),
Cyron et al. (2009), Fraternali et al. (2012)]. On employing
the approximation (40) into (4)–(5), we estimate the instan-
taneous first and fundamental forms of the fluctuating mem-
brane, accounting for arbitrarily large strains. On the basis of
the convergence analysis presented in Fraternali et al. (2012),
we choose Ñ so as to include the 10th nearest neighbors of xa

in the LME regularization set and make use of the following
value of β

β = 125(
diam(Xa

Ñ
)
)2 (43)

It has been shown that the above choices of Ñ and β ensure
a smooth representation of the RBC membrane, which is
particularly able to filter the inherent small scale roughness
of the coarse-grained MD model on hand (Fraternali et al.
2012).
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