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A geometrically nonlinear finite element model of a composite curved beam is presented, accounting for
moderately large rotations of the cross-sections, moderately large shear strains, small axial strains, and
different elastic response of the material in tension and compression (bimodular behavior). A path
following procedure in displacement control is employed to compute the stability points and the post-
buckling response of the given model. Several comparisons are established with different numerical
approaches available in the literature, showing the accuracy of the proposed finite element scheme in
the unimodular case. Some original results on the in-plane and out-of-plane buckling of bimodular arches
highlight that the post-buckling response of such structures is strongly influenced by the ratios between
tensile and compressive moduli.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades, fiber reinforced composites have re-
ceived considerable attention in the field of civil engineering. Due
to their light weight, high tensile strength and corrosion resistance,
fiber reinforced polymers (FRPs) have been extensively employed
in combination with other traditional construction materials,
mostly for structural retrofitting and concrete reinforcement
[1–3]. Full FRP profiles have been employed as nonstructural
elements (pipes, waterspouts, gutters, etc.), and for the construc-
tion of bridge structures [4–6]. Other composite materials that
are receiving increasing attention in the area of civil engineering
are fiber-reinforced concretes and mortars. In this case, the addi-
tion of reinforcing fibers to the mix design may lead to significant
increases of basic properties of the final composite material, such
as, e.g., thermal resistance, tensile strength and material toughness
(refer to [7–9] and therein references). Regarding the shape of
composite profiles, it is worth noting that curved beams bear a
special relevance in the construction industry [10–16], since such
elements can be used to form special light-weight roof structures
and arch bridges [17,18].

Due to their characteristic slenderness, composite beams usually
need to be designed to prevent buckling more than material failure.
The available literature on the elastic stability of such elements is
mainly focused on thin-walled members, and the combined effects
of local and global buckling phenomena [19–22]. Their mechanical
behavior has been modeled through different approaches over the
ll rights reserved.
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last years, both in statics and dynamics, with special focus on stress
analysis, shear and warping deformation, and geometrical nonlin-
earities [23–27]. The buckling behavior of composite elements with
different elastic response in tension and compression (hereafter re-
ferred to as ‘‘bimodular’’ behavior [28,29]) has instead received lim-
ited attention in the literature to-date. Nevertheless, depending on
the relative stiffness and strength of matrix and fibers, the moisture
content, and other factors, the elastic moduli of several real (artifi-
cial or natural) composites may be either greater in tension than
in compression, or vice versa (refer to [28–31] and therein refer-
ences). The study of such a phenomenon in fiber-reinforced con-
cretes and mortars awaits special attention, in combination with
the analysis of different material strengths in tension and compres-
sion, to be carried out via crack-bridging methods and variational
fracture models [32–34].

The present work investigates on the stability of laminated
curved beams made up of composite materials showing different
elastic moduli in tension and compression. Use is made of a sin-
gle-layer version of the geometrically nonlinear theory presented
in [35], which accounts for moderately large rotations of the
cross-sections, moderately large shear strains, and small axial
strains along the beam axis (cf. Section 2). The finite element
approximation of such a theory (provided in Section 3) is based on
Lagrangian isoparametric elements, a path-following procedure in-
spired by Batoz and Dhatt [35,36] and a bordering algorithm for the
computation of stability points [37,38]. The fiber-governed consti-
tutive model by Bert [29] is employed to capture the bimodular re-
sponse of the material. The numerical results presented in Section 4
show the accuracy of the proposed finite element scheme, by estab-
lishing comparisons with available theoretical and numerical
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Fig. 1. Finite element approximation of the beam axis.
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results for both unimodular [39,40] and bimodular case [41]. Some
original results on the buckling behavior of bimodular composite ar-
ches are also given, highlighting some of the main features of the
bimodular response of such structures in the post-buckling range.
The conclusions of the present study are drawn in Section 5.

2. Kinematical model

Let us examine the deformation of a laminated beam from a
stress-free reference configuration B0 (Fig. 1). Throughout the pa-
per, we let C denote the plane curve corresponding to the axis of
B0 and S 2 [0,L] the associated curvilinear abscissa. In addition,
we let A1 denote the unit binormal vector; A2 the unit normal vec-
tor; and A3 and the unit tangent vector to C (Frenet frame).

The kinematic model adopted in the present work corresponds
to a single-layer version of that presented in [35], which is based
on the following basic assumptions:

– the beam axis is a plane curve;
– the beam is loaded by forces acting either in the axis-plane or

out of the axis-plane;
– the beam axis may have arbitrarily large curvature;
– the generic cross-section remains unstrained in its own plane,

but can feature out-of-plane warping.

Accordingly, we describe a generic deformation of the beam
through the following displacement field [35]

uðX1;X2; SÞ ¼ vðSÞ þ ½RðSÞ � I�½X1A1ðSÞ þ X2A2ðSÞ� þwr1 r2 ðSÞX
r1
1 Xr2

2 A3ðSÞ ð1Þ

where

– v(S) is the displacement field of the beam axis C;
– R(S) is the field of the rotation tensors of the cross-sections;
– I is the identity tensor;
– X1 and X2 are the coordinates of an arbitrary point of the current

cross-section R(S) with respect to A1 and A2, respectively;
– wr1r2 ðSÞ is the warping coefficient defined as the partial deriva-

tive of order jrj = r1 + r2 of u3 (X1, X2, S) evaluated at (X1 = 0,
X2 = 0, S), that is
wr1r2 ðSÞ ¼
@ jrju3

@Xr1
1 @Xr2

2

�����
ðX1¼0;X2¼0;SÞ

ð2Þ

Said a and b two integers greater than or equal to 2, we let the indi-
ces r1 and r2 in Eqs. (1) and (2) range over {0, 1, . . ., a} and {0, 1, . . .,
b}, respectively, in such a way that it results 2 6 jrj 6 c, where
c = sup {a, b}. Throughout the paper, we refer to the following axial
component of the displacement field (1)
w ¼
X

r1 ¼ 0 . . . ; a r2 ¼ 0; . . . ; b
2 6 jrj 6 c

wr1r2 Xr1
1 Xr2

2 ð3Þ

as the warping function of the beam cross-sections. We also make
use of the following power series expansion of R(S)

RðSÞ ¼ IþUðSÞ þ 1
2!

U2ðSÞ þ 1
3!

U3ðSÞ þ � � � ð4Þ

U(S) denoting a skew tensor [35]. The displacement field (1) is com-
pletely characterized by the generalized displacements given by

û ¼ fv1; v2;v3;u1;u2;u3;w20;w11;w02; . . . ;wa0; . . . ;w0bg ð5Þ

where v1, v2, v3 denote the Cartesian components of v; u1, u2, u3

denote the Cartesian components of the axial vector u of U; and
w20, w11, w02, . . ., wa0, . . ., w0b denote the coefficients appearing in
the warping function (3) (we have here dropped the dependence
on S of the generalized displacements, for the sake of simplicity).
We let mw denote the number of warping coefficients (correspond-
ing to the particular choice made for a and b), and m = 6 + mw the
total number of the generalized displacements characterizing the
present model.

On the basis of the above assumptions, a moderate rotation the-
ory of laminated curved beams has been fully developed in [35], to
which we refer the reader for the details. We will illustrate some of
the main features of such a theory in the following sections.

3. Finite element model

Let Ch denote a finite-element discretization of the beam axis
into a collection of four-nodes Lagrangian elements C1; . . . ;Cne

(Fig. 1)

Ch ¼
[ne

e¼1

Ce ð6Þ

On adopting isoparametric elements, we use the same shape func-
tions to approximate both the geometry and the displacement field
over the generic finite element Ce, that is

Zh
2e
¼
Xn

I¼1

NIZ2I ; Zh
3e
¼
Xn

I¼1

NIZ3I ; ûh
e ¼

Xn

I¼1

NIûI ð7Þ

where NI is the shape function corresponding to node I, which con-
sists of a complete polynomial of order n � 1; Z2I , and Z3I are the
Cartesian coordinates of I in the global reference frame {O, Z1, Z2,
Z3} (Fig. 1); ûI is the generalized displacement vector relative to
node I.

The transformation which maps the straight master element
into a curved (cubic) element, is graphically represented in Fig. 2.



Fig. 2. Transformation of the master element into the current element of the beam axis.
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The Jacobian of the transformation from the normalized coordi-
nate n (Fig. 2) to the curvilinear abscissa X3 = S (Fig. 1) is given by
[42]

J ¼ dX3

dn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dZh

2e

dn

 !2

þ
dZh

3e

dn

 !2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

I¼1

NI;nZ2I

 !2

þ
Xn

I¼1

NI;nZ3I

 !2
vuut ð8Þ

where NI,n is the derivative of NI with respect to n,, and Z2I and Z3I

are the in-plane Cartesian coordinates of node I (Fig. 2). Conse-
quently, the derivative of NI with respect to X3, which we denote
by the apex 0, may be written as follows:

N0I ¼
dNI

dX3
¼ J�1N1;n ð9Þ

Let now M = 4m denote the total number of generalized displace-
ments that characterize the kinematics of the generic finite element
Ce. It is convenient to rewrite (7)3 into the following matrix form:

ûh
e ¼ NUe ð10Þ

where Ue is the M-dimensional vector collecting all the generalized
displacements of Ce Ue ¼ ûT

1; û
T
2; . . . ; ûT

n

� �T
� �

, while N is the following
matrix:

N½n�M� ¼ ½N1;N2; . . . ;Nn� ð11Þ

with

NI ½m�M� ¼ diagðNINI . . . NIÞ ð12Þ

Starting with the approximation (10) of the element (generalized)
displacement vector ûh

e , we are led to the following approximation
of the r-dimensional vector of the generalized strains of Ce

(r = 9 + 2mw, cf. [35]):

bEh
eðUeÞ ¼ bEð1Þhe Ueð Þ þ

1
2
bEð2Þhe ðUe;UeÞ ð13Þ

wherebEð1Þhe ðUeÞ ¼ B0Ue; bEð2Þhe ðUe; dUeÞ ¼ BLðUeÞdUe ð14Þ
AðUeÞ½9�9� ¼

0 /3
/3
R

/3
2 0

�/3 0 0 0 /3
2

v 01 v 02 þ
v3
R

� 	 v 02
R þ

v3

R2

� �
0 0

�/03 þ
/2
R

� 	
0 0 0 v 0I

R �
/2
R þ

�
0 �/03 þ

/2
R

� 	
� /03

R þ
/2

R2

� �
� /02

2 þ
/2
2R

� �
v 02
R þ

v3

R2 þ
�

0 0 0 � /02
2 �

/3
2R

� �
/0I
2

0 0 0 0 � /03
R þ

�
0 0 0 0 � /03

R þ
�

0 0 0 0 0

26666666666666666666666664
Here, B0 and BL(Ue) are the following r �M matrices:

B ¼ ½B01 ;B02 ; . . . B0n �; BLðUeÞ ¼ AðUeÞG ð15Þ

with the r �m submatrices B0I defined through:

B0I ¼

BEv
0I

BE/
0I

0

0 BH/
0I

0
0 0 0
0 0 Bww

0I

0 0 Bw0w0

0I

266666664

377777775 ð16Þ

where

BEV
0I
¼ BH/

oI
¼

N01 0 0
0 N01 NI=R
0 �NI=R N01

264
375; BE/

0I
¼

0 �N01 0
NI 0 0
0 0 0

264
375

Bww
0I ½mw�mw �

¼ diagðNINI . . . NIÞ;

Bw0w0

0I mw�mw½ � ¼ diag N0IN
0
I . . . N0I

� 	
ð17Þ

The A and G matrices appearing in Eq. (15)2 are instead given by:

A Ueð Þ½r�m� ¼
AðUeÞ

0


 �
; G½9�M� ¼ ½G1;G2; . . . ;Gn� ð18Þ

where

GI ½9�m� ¼ ½GI;0�; GI ½9�6� ¼

N0I 0 0 0 0 0
0 N0I 0 0 0 0
0 0 NI 0 0 0
0 0 0 NI 0 0
0 0 0 0 NI 0
0 0 0 0 0 NI

0 0 0 N0I 0 0
0 0 0 0 N0I 0
0 0 0 0 0 N0I

266666666666666664

377777777777777775
ð19Þ
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3.1. Branch switching procedure

The potential energy of the present beam model is given by:

Pðû; kÞ ¼ 1
2

�
Z L

0

bEð1ÞðûÞ þ 1
2
bEð2Þðû; ûÞ
 �T bD bEð1ÞðûÞ þ 1

2
bEðû; ûÞ
 �

dS

� k
Z L

0
ûT q̂ð1Þ þ 1

2
q̂ð2ÞðûÞ


 �
dS

þ�kûð0ÞT bQ ð1Þ
0 þ

1
2
bQ ð2Þ

0 ðûð0ÞÞ

 �

� kûðLÞT bQ ð1Þ
l þ

1
2
bQ ð2Þ

l ðûðLÞÞ

 �

ð21Þ

where bD denotes the r � r generalized elasticity matrix; k denotes
a multiplier of the external loads; q̂ and q̂ð2ÞðûÞ denote the first-or-
der and second-order generalized forces per unit length, respec-
tively; and bQ ð1Þ

0 , bQ ð1Þ
l and bQ ð2Þ

0 ðûð0ÞÞ, bQ ð2Þ
l ðûðLÞÞ denote the first-

order and second-order generalized forces acting on the bases of
the beam, respectively (check Ref. [35] for further details). We here
generalize the expression of bD given in [35], in order to account for
bimodular response of the composite material that forms the beam.
This is obtained by introducing the following expressions of the lo-
cal elastic moduli, which appear in the expression of bD provided in
Appendix A

Q ij ¼ ½1� HðE3030 Þ�Q�ij þ HðE3030 ÞQþij ð22Þ

Here, E3030 is the component of the Green-Saint Venant strain tensor
in the direction of the fibers forming the composite material (30

axis); Qþij are the elastic moduli of the material when such fibers
are elongated ðE3030 > 0Þ; Q�ij are the elastic moduli when the same
fibers are instead shortened ðE3030 < 0ÞÞ; and HðE3030 Þ is the Heaviside
function

HðE3030 Þ ¼
0; if E3030 < 0
1; if E3030 P 0

�
ð23Þ

Let us now denote the finite element approximation of the potential
energy (21) by Ph(U,k), where U indicates the overall (global) gen-
eralized displacement vector. We write the equilibrium equations
of the present finite element model into the following variational
form:

dPh ¼ dUTRðU; kÞ ð24Þ

where dPh is the first variation of Ph with increment dU; and R(U,k)
(residual vector) is the derivative of Ph with respect to U. Eqs. (10),
(13) and (14) of the previous section allow us to rewrite (24) as
follows:

dUT RðU; kÞ ¼ dUTfKðUÞU� k½Q ð1Þ þ Q ð2ÞðUÞ�g ¼ 0 ð25Þ

where K(U) is the N � N global stiffness matrix, N denoting the total
number of degrees of freedom of the overall finite element model,
while Q(1)(U), Q(2)(U) are the global force vectors, which derive from
the assembly of the element vectors

Q ð1Þe ¼
Z 1

�1
NT q̂ð1Þe Jdn; Q ð2Þe ðUeÞ ¼

Z 1

�1
NT q̂ð2Þe ðUeÞJdn ð26Þ

and the nodal force vectors bQ ð1Þ
e ðû1Þ; bQ ð2Þ

e ðû1Þ ðI ¼ 1;2; . . . ;nnÞ. The
global stiffness matrix K(U) is obtained by assembling the following
element matrices Ke(e = 1, 2, . . ., ne)

KeðUeÞ ¼
Z 1

�1
BT

0 þ BT
L ðUeÞ

h ibSðUeÞJdn ð27Þ
with bS denoting the generalized stress vector defined through

bSðUeÞ ¼ bD B0 þ
1
2

BLðUeÞ

 �

Ue ð28Þ

Due to the arbitrariness of dU, Eq. (25) is equivalent to the following
nonlinear system of N equations

RðU; kÞ ¼ KðUÞU� k½Q ð1Þ þ Q ð2ÞðUÞ� ð29Þ

that can be solved through the path-following procedure provided
in [35], in order to follow an arbitrary equilibrium path of the finite
element model at hand. We say that a couple U, k is a stability point
of a given equilibrium path if there exist some nonzero V (buckling
mode) that solves the following variational equation [43]

D2
UPh

eðU; kÞVdU ¼ dUT KTðU; kÞV ¼ 0 ð30Þ

for each variation dU of the global displacement vector U. Eq. (30) is
equivalent to the following system of N algebraic equations

KTðU; kÞV ¼ 0 ð31Þ

where KT is the tangent stiffness matrix provided in Appendix B. In
order to exclude the trivial case V = 0, we append the following con-
straint equation

eT
pV � V0 ¼ 0 ð32Þ

to (31), with Vo being a given value of the pth component of V. After
reducing KT to an upper triangular matrix (by Gauss elimination),
we identify the index p in (32) with the entry of the lowest diagonal
term of the reduced stiffness matrix. Concerning V0, we set

V0 ¼
eT

pV0

kV0k
ð33Þ

with V0 being the initial approximation to V.
We classify stability points into limit (or turning) and bifurca-

tion points according to the following criterion [37,38]

Bifurcation Point : VTðQ ð1Þ þ Q ð2ÞðUÞÞ ¼ 0 ð34Þ
Limit Point : VTðQ ð1Þ þ Q ð2ÞðUÞÞ– 0 ð35Þ

An efficient procedure for the computation of stability points of fi-
nite element models has been proposed by Simo and Wriggers in
[38]. It consists of solving the extended system:

R��ðU;V; k;lÞ ¼

RðU; kÞ
KTðU; kÞV
eT

pV � V0

eT
pU� l

8>>>><>>>>:

9>>>>=>>>>; ¼ 0 ð36Þ

which derives from the addition of Eqs. (31) and (32) to (29).
Since the tangent stiffness matrix becomes ill-conditioned as

the solution of (36) approaches a stability point, it is convenient
to transform the extended system (36) into the following equiva-
lent form [38]

R��ðU;V; k;lÞ ¼

RðU; kÞ þ gðeT
pU� lÞep

KTðU; kÞV þ gðeT
pV � V0Þep

eT
pV � V0

eT
pU� l

8>>>><>>>>:

9>>>>=>>>>; ¼ 0 ð37Þ

with g being an arbitrary positive number. The Newton–Raphson
linearization of (37) leads to obtain the incremental equations
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KTg 0 �Q �gep

DUðKT VÞ KTg DkðKT VÞ 0

0 eT
p 0 0

eT
p 0 0 �1

266664
377775

DU
DV
Dk

Dl

8>>><>>>:
9>>>=>>>;¼

RðU;kÞ þg eT
pU�l

� �
ep

KT ðU;kÞV� ðgV0Þep

eT
p V�V0

eT
p U�l

8>>>>><>>>>>:

9>>>>>=>>>>>;
ð38Þ

where

Q ¼ Q ð1Þ þ Q ð2ÞðUÞ ð39Þ
KTgðU; kÞ ¼ KTðU; kÞ þ gepeT

p ðp not summedÞ ð40Þ

The nonsymmetric system (38) can be approached through the fol-
lowing bordering algorithm [29], where TOL denotes a prescribed
(dimensionless) tolerance.

1. Assume a predictor eU; eV; ~k; ~l and evaluate
eR ¼ RðeU; ~kÞ; eKTg ¼ KTg ðeU; ~kÞ; eQ ð2Þ ¼ Q ð2ÞðeUÞ ð41Þ
2. Compute the partial solutions from (38)1
DU1 ¼ eK�1
Tg
ðQ ð1Þ þ eQ ð2ÞÞ

DU2 ¼ �eK�1
Tg
eR

DU3 ¼ �eK�1
Tg

ep

ð42Þ
3. Compute the partial solutions from (38)2
q1 ¼ eK�1
Tg

h1

q2 ¼ eK�1
Tg

h2

q3 ¼ eK�1
Tg

h3

q4 ¼ eK�1
Tg

h4

ð43Þ
where
h1 ¼ DUðKT VÞDU1

h2 ¼ DUðKT VÞDU2

h3 ¼ DUðKT VÞDU3

h4 ¼ DkðKT VÞ

ð44Þ
4. Compute Dk and Dl.The increments Dk and Dl can be computed
from Eq. (38)3�4, which can be written as
eT
pðq1 þ q4Þ geT

pq3

eT
pDU1 ðgeT

pDU3 � 1Þ

" #
Dk

Dl

� 

¼

g1

g2

� 

ð45Þ
where
g1 ¼ V0 � eT
p ½q2 þ gV0DU3 þ gðl� eT

p
eUÞq3�

g2 ¼ l� eT
p ½eU þ DU2 þ gðl� eT

p
eUÞDU3�

ð46Þ
5. Compute DU and DV from the equations
DU¼ DkDU1 þDU2 þg lDl� eT
p
eU� �

DU3

DV ¼�eV þDkðq1 þq4Þ þq2 þg lþDl� eT
p
eU� �

q3 þV0DV3

h i ð47Þ
and update: U ¼ eU þ DU; V ¼ eV þ DV; k ¼ ~kþ Dk; l ¼ ~lþ l.
6. If
kR��l ðU;V; k;lÞk
kkðQ ð1Þ þ Q ð2ÞðUÞÞk

6 TOL ð48Þ
Then stop. Else Go To 2 and set eU ¼ U; eV ¼ V; k ¼ k; ~l ¼ l.

The expressions of the vectors hj (j = 1, . . ., 4) appearing in Eq.
(44) are provided in Appendix B.

In correspondence with each point of a given equilibrium path,
we check the sign of the determinant of the tangent stiffness
matrix, which is a relatively simple operation, since the path-fol-
lowing procedure here used to solve the equilibrium problem
(29) requires the factorization of KT [35]. If the sign of det (KT)
changes between two successive equilibrium states, say the ith
and the i + 1th ones, we enter the above bordering algorithm on
assuming eU ¼ Uiþ1; ~k ¼ kiþ1, ~l ¼ eT

pUi�1; eV ¼ V0 ¼ K�1
0 ep as first

predictor. Once a stability point Uc, kc has been computed, we de-
tect if it as a limit or a bifurcation point, according to (34) and (35).
In the case of a limit point, we switch back to the path-following
procedure to complete the primary equilibrium path. In the case
of a bifurcation point, we instead switch the path-following proce-
dure to the secondary (or bifurcated) path, by adding a vector pro-
portional to the eigenvector V to the stability point Uc [35]. We
arrest the calculations when the cross-section rotations and/or
the shear strains of the examined model are more than moderately
large, or the axial strains are no longer infinitesimally small.

4. Numerical results

We present in this section some numerical results dealing with
the stability points and the post-buckling behavior of illustrative
examples of straight and curved beams. We start presenting some
results concerned with unimodular beams (same behavior in ten-
sion and compression), which aim to show the accuracy of the
present model, by way of comparison to classical beam theories.
Next, we present some original results concerned with the stability
of bimodular composite beams.

In all the examined examples, we assume that beam cross-sec-
tion is rectangular with dimension H1 and H2 along the directions
X1 and X2, respectively. We denote the cross-section area by
A = H1H2; the moments of inertia by I1 and I2; the polar moment
of inertia by IG and the De Saint Venant torsional rigidity by Jt

I1 ¼
1

12
H1H3

2; I2 ¼
1

12
H3

1H2; IG ¼ I1 þ I2; Jt ¼
1
3

H3
1H2 ð49Þ

Concerning the warping function w, we examine the following cases

– No Warping (NW): w = 0.
– W1 Warping Function: w = w11X1X2.
– W3 Warping Function: w ¼ w20X2

1 þw11X1X2 þw02X2
2 þw30X3

1þ
w21X2

1X2 þw12X1X3
2 þw03X3

2.

We make use of a four point Gauss quadrature formula to com-
pute the tangent stiffness matrix, and its derivatives. In the case of
a bimodular material, we also use a Gauss quadrature formula to
numerically integrate the generalized elasticity matrix of each
lamina of the beam (cf. Section 3.1).

4.1. Buckling of unimodular beams

The first results that we present are concerned with the lateral
buckling of straight and curved beams featuring isotropic unimod-
ular material (Poisson’s ratio equal to 0.3).

We start analyzing the lateral buckling of a moderately deep,
simply supported beam transversally loaded at the mid-span (H1/
H2 = 0.1, L/H2 = 10). Three different load conditions are considered:
load at the centroid; load at the extrados (X1 = 0, X2 = �H2/2): and
load at the intrados (X1 = 0, X2 = +H2/2). It is easy to show the last
two cases give rise to deformation-dependent loading
(Q(2)(U) – 0).

Table 1 shows a comparison between the bifurcation points
computed through the present theory (PT) and those correspond-
ing to classical Prandtl’s theory (CT, see, e.g., [39]). The PT-results
were computed through a bilinear warping function (W1), assum-
ing either geometrically nonlinear pre-buckling behavior (NLPB),



Table 1
Lateral buckling of a deep simply supported beam loaded by a transverse force Q at the mid-span (H1/H2 = 0.1, L/H2 = 10, 20 finite elements).

CT-LPB PT-LPB CT-NLPB PT-NLPB

Load at the centroid
vM/L � 100 0.4380 0.4483 0.4401 0.4520
kBif 16.940 16.902 17.020 17.040

Load at the extrados
vM/L � 100 0.4053 0.4152 0.4071 0.4183
kBif 15.752 15.654 15.745 15.772

Load at the intrados
vM/L � 100 0.4656 0.4832 0.4743 0.4874
kBif 18.127 18.215 18.346 18.376

CT: Classical Theory LPB: Linear Pre-Buckling
PT: Present Theory NLPB: Nonlinear Pre-Buckling
vM: mid span in-plane displacement kBif ¼ QBif =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI2GJt

p
=L2

� �

Table 2
Lateral buckling of a hinged semicircular arch and a clamped semicircular arch
subject to uniformly distributed dead load q along the centerline (H1/H2 = 0.1, L/
H2 = 10, 20 finite elements).

kBif ¼ qBif =
ffiffiffiffiffiffiffi
EI2
p

=R3
� �

Classical theory Present theory

Hinged arch 1.9358 1.9361
Clamped arch 13.514 13.774

Fig. 3. Load-central deflection curve of a clamped shallow arch carrying a central
point force.

Fig. 4. Load-axial thrust curve of a clamped shallow arch carrying a central point
force.
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or linear pre-buckling behavior (LPB). The first case is analyzed
through the present finite element model, while the second one
corresponds to a simplified version of such a model, obtained by
discarding the part KL of the tangent stiffness matrix (cf. Appendix
B). In the NLPB case, we suitably generalize the original Prandtl’s
theory, by using the present model, neglecting shear deformation,
warping-and quadratic-terms of the axial strain field [35], and
assuming torsional stiffness equal to GIG. The results in Table 1
highlight the PT very well agrees with the CT in all the examined
cases.

We now pass to study the lateral buckling of moderately deep
semicircular arches that are either hinged or clamped at the ends.
The loading condition consists of a uniform radial dead load along
the centerline. Table 2 shows that the results of the present theory
(W1 warping model) are in good agreement with those obtained in
[39] (through the classical beam theory) in each of the above cases.

Next, we study the snap-through buckling of a shallow circular
arch clamped at the ends and carrying a central point load, which
has been studied by Dawe in Ref. [40] through Marguerre’s shallow
arch theory. The analyzed arch has a base length of 863.6 mm, a
central rise of 27.69 mm and a cross-section with width of
25.4 mm (H1) and thickness of 4.76 mm (H2). The material is iso-
tropic with Young’s modulus E = 72,395 N/mm2. We show the load
vs. central deflection and load vs. axial thrust curves obtained
through the present model and Dawe’s theory in Figs. 3 and 4. It
is seen that such theories are in rather good agreement each other.

4.2. Buckling of bimodular beams

The present section deals with the buckling and post-buckling
behavior of straight beams and laminated arches made up of
bimodular materials.

First, we consider the buckling problem of an axially loaded
simply supported beam made up of an isotropic bimodular mate-
rial (H1/H2 = 1, L/H2 = 10), using a Gauss quadrature formula with
12 points over the beam thickness to compute the (generalized)
elasticity matrix. Fig. 5 shows the load vs. center deflection curves
that we obtain through the present model for several values of the
ratio between the Young modulus characterizing the material re-
sponse in compression E�, and the analogous modulus in tension
E+ (m = E�/E+ bimodularity ratio). The present results are compared
with those obtained in Bruno et al. [41] through an ‘‘imperfect’’
beam model showing an initial deflection equal to 1% of the beam
length.



Fig. 5. Load-central deflection curves of axially loaded bimodular beams.

Fig. 6. Loading scheme of a 0�/90�/90�/0� laminated arch featuring bimodular
behavior.

Fig. 7. Load vs. quarter point radial displacement for in-plane buckling of a
laminated bimodular arch carrying a uniform radial load q (0/90/90/0 lamination
scheme).
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It can be observed that the load–deflection curves in Fig. 5 are
not sensitive the bimodularity ratio m before buckling, and in the
very initial part of the secondary equilibrium path (close to the
buckling point), since in such regions the beam is under uniform
or slightly nonuniform compression. As soon as the material ‘‘feels’’
tensile strains and stresses (post-buckling range), the response of
the beam instead appears markedly influence by the actual value
of m. In particular, the curves corresponding to m – 1 (effective
bimodular behavior) exhibit stable behavior for m > 1 (material
stiffer in tension than compression), and unstable behavior for
m < 1 (material stiffer in compression).

The last two examples we study are concerned with in-plane
and lateral buckling of laminated semicircular arches, which are
hinged at the ends and carry a radial dead load uniformly distrib-
uted along the centerline (Fig. 6, R/H2 = 10).

The examined arches have a 0�/90�/90�/0� lamination scheme
(Fig. 6) and are formed by the same composite material in each
layer, whose elastic properties are given in Table 3. A Gauss quad-
rature formula with 4 � 4 points over the cross-section of each
layer is employed to compute the elasticity matrix.

We first examine an arch with transverse aspect ratio H1/H2 = 2,
and deal with its in-plane buckling, which represents the first
bifurcation point of the fundamental equilibrium path in the pres-
ent case. Fig. 7 shows the load vs quarter point radial displacement
curves obtained for three different bimodularity ratios (m = 0.5,
1.0, 2.0), and two alternative warping models (NW and W3). An
appreciable influence of warping effects on the buckling load can
be observed (7% difference between the buckling loads predicted
by the NW and W3 models). This is explained by the considerably
large shear deformability of the examined composite, material
which exhibits rather small ratios between the shear moduli and
the Young modulus in the direction of the fibers (cf. Table 3). As
in the previous example, the post-buckling behavior is stable for
m < 1 (greater stiffness in tension than compression) and unstable
for m > 1 (greater stiffness in compression).

Next, we consider an arch with a moderately deep cross-section
(H1/H2 = 0.1), and analyze its lateral buckling (first bifurcation
point of the fundamental equilibrium path for such an arch), on
Table 3
Elastic moduli of the bimodular material forming the layers of the arch in Fig. 6.

Young’s moduli: Eþ30 ¼ E�30 =m; E10 ¼ E20 ¼ E�30 =25
Shear moduli: G3010 ¼ G2030 ¼ E�30 =50; G1020 ¼ E30 =125
Poisson’s ratios: t1020 ¼ t1030 ¼ t2030 ¼ 0:25

30 fiber direction, m bimodularity ratio
considering the warping models W1 and W3 (trivially, it makes
no sense to consider the NW model in the present case), and the
same bimodularity ratios of the previous example. Fig. 8 shows
the load-quarter point lateral displacement curves corresponding
to the arch under examination. One can observe that the analyzed
Fig. 8. Load vs. quarter point lateral displacement curves for lateral buckling of a
laminated bimodular arch carrying a uniform radial load q (0/90/90/0 lamination
scheme).
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warping models lead to almost coincident results, which implies
that the W1 model is able to accurately describe the problem at
hand. The post-buckling response is stable for m 6 1. For m = 2
the response is instead initially unstable and then progressively
turns to stable.

5. Conclusions

We have developed a finite element model that is able to ana-
lyze the geometrically nonlinear response, as well as the buckling
and post-buckling behaviors of composite curved beams featuring
different elastic response in tension and compression. The pro-
posed model is based upon a single-layer formulation of the
mechanical theory given in [35], which accounts for warping defor-
mation, moderately large cross-section rotations, moderately-large
shear strains, and infinitesimal axial strains in correspondence
with the beam axis. Since no assumptions have been made on
the magnitude of the beam axis curvature, the given model indif-
ferently applies to straight, shallow and strong curvature beams.

The numerical results provided in Section 4.1 have shown that
the present numerical model accurately reduces to classical beam
theories in the case of buckling problems of both straight and
curved unimodular beams.

We have also presented some numerical results on the buckling
and post-buckling responses of straight and curved beams featur-
ing bimodular behavior (Section 4.2). In the straight beam case,
the present model has been validated against the model proposed
by Bruno et al. in [41], observing an excellent matching between
the two analyzed approaches. The results for the curved case have
been concerned with the in-plane and out-of-plane buckling of
laminated composite arches featuring different ratios between
the longitudinal Young modulus (Young modulus in the fiber-
direction) in tension and compression. In all the examined prob-
lems we have observed that the bimodularity ratio of the material
strongly affects the post-buckling behavior of the beam, leading to
stable response when the material is stiffer in tension than com-
pression, and unstable (or slightly unstable) response in the oppo-
site case. We have also observed that warping effects play a
significant role on the buckling loads of composite beams (for both
in-plane and out-of-plane buckling), due to the high shear-defor-
mability of such structures.

The present work paves the way to extensive numerical studies
on the bimodular response of straight and curved composite beams
subject to different loading and boundary conditions. Another rel-
evant generalization of the current research concerns the exten-
sion of the proposed beam model beyond the elastic regime, in
order to capture asymmetries in the material response due to dif-
ferent strengths in tension and compression, Additionally, we ad-
dress a mesh-free formulation of the present model, based on
local–global approximating functions selected by maximum entro-
py [44–46], and/or nonconforming finite element schemes [47], to
future work.
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Appendix A

The generalized elasticity matrix of the present model is a
square symmetric matrix of size r � r, which can be written in
the following partitioned form
bD ¼
DNE DNH DNC DNw DNw0

� DMH DMC DMw DMw0

� � DPC DPw DPw0

� Sym � Dvw Dvw0

� � � � Dw0

26666664

37777775 ðA:1Þ

The following equations provide the expressions of the different
submatrices appearing in Eq. (A.1), having denoted the values of
the indices r1 and r2 corresponding to the kth warping term wr1r2

by k1 and k2, respectively.

DNE ¼

R
R

Q55
J dR 0

R
R

Q53
J dRR

R
Q44

J dR 0

Sym
R

R
Q33

J dR

2664
3775 ðA:2Þ

DNH ¼

R
R Q 53

X2
J dR �

R
R Q 53

X1
J dR �

R
R Q55

X2
J dR

0 0
R

R Q 44
X1
J dRR

R Q 33
X2
J dR

R
R Q33

X1
J dR �

R
R Q35

X2
J dR

2664
3775 ðA:3Þ

DNC ¼

R
R Q53

X2
1

J2 dR �
R

R Q 53
X2

2
J2 dR �

R
R Q 53

X1X2
J2 dR

0 0 0R
R Q33

X2
1

J2 dR
R

R Q 33
X2

1

J2 dR �
R

R Q 33
X1X2

J2 dR

26664
37775 ðA:4Þ

DNw ¼ DNw
ik

h i
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

DNw
1k ¼

Z
R

k1Q 55XK1�1
1 XK2

2 dR; DNw
2k

¼
Z

R
k2Q 44XK1

1 XK2�1
2 dR; DNw

3k ¼
Z

R
k1Q35XK1�1

1 XK2
2 dR ðA:5Þ

(no sum on k1, k2)

DNw0 ¼ DNw0

ik

h i
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

DNw0

1k ¼
Z

R
Q 53

XK1
1 XK2

2

J
dR; DNw0

2k ¼ 0; DNw0

3k

¼
Z

R
Q 33

XK1
1 XK2

2

J
dR ðA:6Þ

DMH ¼

R
R Q 53

X2
2
J dR �

R
R Q 33

X1X2
J dR �

R
R Q35

X2
2
J dRR

R Q33
X2

1

J2 dR
R

R Q 44
X1X2

J dR

Sym
R
R Q44

X2
1
J þ Q 55

X2
2
J

� �
dR

266664
377775 ðA:7Þ

DMC ¼

R
R Q 33

X2
1X2

J2 dR
R

R Q 33
X3

2
J dR �

R
R Q33

X1X2
2

J2 dR

�
R

R Q 33
X3

1
J2 dR �

R
R Q 33

X1X2
2

J2 dR
R

R Q33
X2

1X2

J2 dR

�
R

R Q 53
X2

1X2

J2 dR �
R

R Q 53
X3

2
J2 dR

R
R Q53

X1X2
2

J2 dR

266664
377775
ðA:8Þh i
DMw ¼ DMw
ik i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

DMw
1k ¼

Z
R

k1Q 35XK1�1
1 XK2þ1

2 dR ðno sum on k1Þ

DMw
2k ¼ �

Z
R

k1Q 35XK1
1 XK2

2 dR

DMw
3k ¼

Z
R

k1Q 44XK1�1
1 XK2�1

2 dR�
Z

R
k1Q 55XK1�1

1 XK2þ1
2 dR ðno sum on k1; k2Þ

DMw0 ¼ DMw0

ik

h i
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

ðA:9Þ
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DMw0

1k ¼
Z

R
Q 44

XK1
1 XK2þ1

2

J
dR; DMw0

2k

¼ �
Z

R
Q 33

XK2þ1
1 XK2

2

J
dR; DMw0

3k

¼ �
Z

R
Q 53

XK1
1 XK2þ1

2

J
dR ðA:10Þ

DPC ¼

R
R Q 33

X4
1

J3 dR
R

R Q 33
X2

1X2
2

J3 dR �
R

R Q 33
X3

1X2

J3 dRR
R Q33

X4
2

J3 dR �
R

R Q 33
X1X3

2
J3 dR

Sym
R

R Q 33
X2

1X2
2

J3 dR

266664
377775 ðA:11Þ

DPw ¼ DPw
ik

h i
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

DPw
1k ¼

Z
R

k1Q35
XK1þ1

1 XK2
2

J
dR; DPw

2k

¼
Z

R
k1Q35

XK2�1
1 XK2þ2

2

J
dR; DPw

3k

¼ �
Z

R
k1Q 35

XK1
1 XK2þ1

2

J
dR ðA:12Þ

(no sum on k1)

DPw0 ¼ DPw0

ik

h i
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

DPw0

1k ¼
Z

R
Q 33

XK1þ2
1 XK2

2

J2
dR; DPw0

2k

¼
Z

R
Q 33

XK1
1 XK2þ2

2

J
dR; DPw0

3k

¼ �
Z

R
Q 33

XK1þ1
1 XK2þ1

2

J
dR ðA:13Þ

Dvw ¼ Dvw
ik

� �
i ¼ 1;2;3; k ¼ 1;2; . . . ;mw

Dvw
hk ¼

Z
R

h1k1Q55Xh1þK1�2
1 Xh2þK2

2 JdR

þ
Z

R
h2k1Q44Xh1þK1

1 Xh2þK2�2
2 JdR ðno sum on h1; h2; k1; k2Þ ðA:14Þ

Dvw0 ¼ Dvw0

hk

h i
h; k ¼ 1;2; . . . ;mw

Dvw0

hk ¼
Z

R
h1Q 53Xh1þK1�1

1 Xh2þK2
2 dR ðno sum on h1Þ ðA:15Þ
Appendix B

Let us compute the derivative of the stiffness matrix defined by
Eq. (27). Accounting for the symmetry of the bilinear form BL(Ue)-
DUe, we easily obtain the equation

DðBLðUeÞUeÞDUe ¼ 2BLðUeÞDUe ðB:1Þ

which can also be written as

DBT
L ðUeÞDUe

h ibSðUeÞ ¼ GTeSðUeÞGDUe ðB:2Þ

where eS is the following 9 � 9 symmetric matrix
sN3 0 0 0 M1
R �N2 0 0 �M1

N3
N3
R 0 M2

R N1 0 0 �M2

N3
R 0 M2

R2
N1
R 0 0 �M2

R

0 M2
2R

N1
2 �

M3
2R

� 	
0 �M3

2 �M2
2

�M1
R þ

P1þP2
R2

� �
N2
2

M3
2 0 M1

2 �
P1þP2

R

� 	
M1
R þ

P1

R2

� �
�M2

2 þ
P3
R

� 	 M1
2 þ

P1
R

� 	
0

P2 P3 0
Sym P1 0

ðP1 þ P2Þ

266666666666666666664

377777777777777777775
ðB:3Þ

By discarding second-order terms, we hence obtain:

DKeðUÞeDUe ¼ ½K0e þ KLeðUeÞ þ KGe ðUeÞ�DUe ðB:4Þ

where

K0e ¼
Z 1

�1
BT

0
bDB0Gdn ðB:5Þ

KLe ðUeÞ ¼
Z 1

�1
BT

0
bDBLðUeÞ þ BT

L ðUeÞbDB0 þ BT
L ðUeÞbDBLðUeÞ

h i
Gdn ðB:6Þ

KGe ðUeÞ ¼
Z 1

�1
GTeSðUeÞG Gdn ðB:7Þ

are the initial stiffness matrix; initial displacement stiffness matrix;
and geometric stiffness matrix of the current element, respectively.

We compute now the derivative of the element second-order
force vector Q ð2Þe ðUeÞ defined in Eq. (26)2, obtaining

KQe ¼ DQ ð2Þe ðUeÞDUe ¼
Z 1

�1
NT bCNDUeGdn ðB:8Þ

where

bC½m�m� ¼
0 0 0

0 bbC 0
0 0 0

264
375 ðB:9Þ

bbC ½3�3� ¼
�C22

1
2 ðC12 þ C21Þ 1

2 C31
1
2 C12 þ C21ð Þ C11

1
2 C32

1
2 C31

1
2 C32 � C11 þ C22ð Þ

264
375 ðB:10Þ

with Cij being the components of the second-order tensor C defined
in [35].

For what concerns the second-order nodal force vectors, we
obtain

DQ ð2ÞI ðûIÞDûI ¼ bCIDûI ðB:11Þ

where

bC1
½m�m�

¼
0 0 0

0
bbCI 0

0 0 0

264
375 ðB:12Þ

bbC I
½3�3�
¼

�CI22
1
2 ðCI12 þ CI21 Þ 1

2 CI31

1
2 ðCI12 þ CI21 Þ CI11

1
2 CI32

1
2 CI31

1
2 CI32 �ðCI11 þ CI22 Þ

264
375 ðB:13Þ

with CIij
being the components of the second-order tensors CI de-

fined in [35].
The total tangent stiffness matrix of the generic element is

therefore given by

KTðU; kÞ ¼ Ko þ KLðUÞ þ KGðUÞ � kKQ ðB:14Þ

where K0, KL and KG are the global versions of the matrices defined
by Eqs. (B.5)–(B.7); while KQ is the load-correction matrix deriving
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by the assembly of the element matrices (B.8), and the nodal matri-
ces (B.11). From equation (B.14), we easily deduce:

DkKTðU; kÞV ¼ �KQ V ðB:15Þ

We end by computing the generic element contributions to the hi

vectors introduced in Eq. (44) of the main paper (i = 1,2.3). Making
use of Eqs. (B.4)–(B.8), (B.15), and discarding second-order terms,
we obtain

hej
¼�

Z þ1

�1
BT

0 þ BLðUeÞ
h iT bDBLðDUej

Þ þ BT
L ðDUej

ÞbD B0 þ BT
L ðUej

Þ
h i�

þGTDeSjG
o

VEGdn ðj ¼ 1;2;3Þ ðB:16Þ

where DeSj is a 9 � 9 matrix obtained through Eq. (B.3), by replacing
the generalized stresses bS with the incremental stresses

DbSj ¼ bD½B0 þ BLðUej
Þ�DUej

ðB:17Þ
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