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a b s t r a c t

We formulate in situ parameter identification techniques for multistable spring models of compressed
CNT bundles, which capture the sequential buckling through the height of the bundle, as well as the over-
all mechanical response. The proposed techniques are validated against a SEM-assisted compression
experiment on a CNT pillar [1]. Using multi-spring models, we propose a ‘microscopic’ identification tech-
nique based on the determination of stress–strain curves of vertical segments of the tested structure (fea-
turing few micron height). We show that the in situ identified models can effectively reproduce the
experimentally-observed stress–strain response (single-spring models), and strain localization effects
(multi-spring model), within a simple 1D framework.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Carbon nanotubes (CNTs) have been of great interest for a vari-
ety of applications due to their excellent mechanical, electrical, and
thermal properties, and the low density of structures of CNTs [2].
They can be readily synthesized using simple chemical vapor depo-
sition techniques into low-density structures of nominally-aligned
CNTs (e.g., [3]). These structures can exhibit foam-like properties in
compression [4] as well as interesting strain localization and col-
lective buckling effects [5]. Aligned arrays of CNTs have the poten-
tial to be used as stand-alone multifunctional, low-density energy-
dissipative materials (e.g., [4,6]), or as components in advanced
composites leading to enhanced electrical [7], multifunctional
[8], and mechanical [9,10] properties relative to traditional com-
posites. These potential applications have motivated efforts to
understand the details of the mechanical response and the mecha-
nisms involved with the behavior of the systems. In compression, a
hysteretic stress–strain response is observed, which in the past has
been related to the behavior of open cell foams [4,11]. Depending
on synthesis conditions, CNT arrays have been observed to either
recover most of their original height after compression (e.g.,
[4,12]) or to stay completely collapsed (e.g., [1,5]), with some evi-
dence for switching between these behaviors [13].

Photolithographic techniques have been used in the past to syn-
thesize various patterns of CNT structures (e.g., [14]), such as
microscale pillars [1,15]. These (order 10–100 lm diameter) pillars
ll rights reserved.
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have proven ideal for experimentally visualizing, e.g., via in situ
scanning electron microscopy (SEM), microscale deformation of
these compliant structures. In particular, in situ videos during com-
pression of pillars show local rearrangements of CNTs and the for-
mation of collective buckles to accommodate increasing
compressive strain [1]. These form sequentially from the base up-
ward, with each buckle completing prior to the formation of a new
buckle, and with the upper part of the structure (the part not in-
volved with buckling) undergoing only a minimal fraction of the
overall deformation. It has also been noted that the stress–strain
response of compressed CNT bundles typically features repeated
stress-drops with increasing compressive strain. Each drop takes
place simultaneously to the nucleation or the propagation of a
buckle [1,15]. Discontinuous stress drop phenomena are less fre-
quent in compression experiments of much larger, millimeter-
scale CNT arrays, since the dominant mechanics at the mesoscale
often masks the microscale instabilities associated with the pro-
gressive buckling of the tubes, by averaging the local deformation
over a larger length scale (cf., e.g, [4,6]).

Some recent studies acknowledge a temperature- and rate-
independent character to the dissipative behavior of CNTs
[16,17], arguing that the energy dissipation properties of such
structures mainly originate from dynamic snap events due to
attachments/detachments of individual tubes, driven by van der
Waals forces [16], and/or local kinking of portions of the tubes
[17]. These snaps occur over an internal timescale much faster than
the external loading, giving rise to mesoscopic and macroscopic
time-independency of the material response. It is also worth not-
ing that fatigue-type damage (material preconditioning) of com-
pressed CNT arrays has been observed with features similar to



Fig. 1. Snapshots from the in situ video of the analyzed experiment showing the
bottom-to-top succession of buckles observed via SEM [1].
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the well known Mullins effect of filled rubbers and rubber-like
materials [18]. Length-scale effects are magnified by inhomogene-
ity of material density and tubes’ alignment along the thickness of
CNT arrays, which typically feature higher density at the top of the
structure (cf., e.g., [1,4,19]). The compression experiments on CNT
pillars presented in [1] reveal that the buckling wavelength does
not dependent on the applied strain-rate. In contrast, a more recent
study [20] observes some influence of rate effects on the recovery
and dissipation capacities of vertically aligned CNT pillars.

Multiscale models based on bistable spring elements have been
recently proposed to capture the behavior of CNT arrays in com-
pression, preconditioning damage, and the coupling of micro-,
meso- and macro-scopic length scales [17,18]. Some of the main
features of such models are the following:

� the modeling of stress drop events as elastic phase transforma-
tions, which mark fast, unstable transitions from the initial
stress–strain regime (low or moderately large strains) to the
local post-buckling response (material densification) of suitable
elements of the structure (e.g., microscopic portions undergoing
local buckling, elements of coarse-grained models, or the entire
array, cf. [17]);
� the description of the material response at the meso- and

macro-scales through rate-independent hysteretlc models
[17,21];
� the inclusion of fatigue-type damage by setting to zero the stiff-

ness of suitable springs [18];
� the possibility to model rate effects by placing dashpot ele-

ments in series or in parallel with the bistable spring units.

In [22], an in situ technique has been devised to allow bistable
spring models to be applied to experimental results on the com-
pression of CNT arrays, requiring only a video (with sufficient res-
olution to capture the strain localization due to local buckling) that
is synchronized with the global stress–strain response of the sys-
tem. So far, the above technique has only been applied to millime-
ter-scale CNT arrays which were observed with optical devices,
with sufficient resolution only to capture the relevant mechanics
at the model’s meso- and macro-scopic scales [22].

In this paper, we model the micro-scale deformation of CNT pil-
lars examining in situ scanning electron microscope (SEM) images
of buckle formation and stress–strain data provided in [1]. We ana-
lyze a compression experiment on a 50 lm diameter CNT pillar
and �1.2 aspect ratio (�61 lm undeformed height), which was
compressed up to 50% axial strain within a SEM-assisted apparatus
(cf. Section 2). We model the response of the system using different
spring models that account for multiple phase transformations
along the given loading history, generalizing the bistable spring
model presented in [17] (Section 3). We make use of single bistable
spring (SBS), single multistable spring (SMS), and multiple bistable
spring (MBS) models (Section 4). The material properties of the SBS
and SMS models (representing the pillar as a unique 1D spring) are
identified by simply inspecting the overall stress–strain response
of the pillar, while those of the MBS model (representing the pillar
as a collection of 1D springs piled one over the other, with each
spring describing either a buckle or the unbuckled portion of the
pillar) are determined through a SEM-assisted (‘microscopic’) iden-
tification technique [22] (Section 4). All the examined models al-
low us to capture the overall stress–strain response of the
examined CNT pillar. The SMS and MBS models are also capable
of reproducing all the sequential stress drops observed in the
experiment. In particular, the MBS model is able to simulate strain
localization phenomena and the individual formation of buckles. In
each case, we prove that it is possible to successfully identify the
constitutive properties of effective spring models of compressed
CNT bundles, once the experimental stress–strain response and
strain localization data are available. We draw the main conclu-
sions of the present study in Section 5.

2. Analyzed experiment

The CNTs modeled in this study were grown via thermal chem-
ical vapor deposition, as discussed in [1]. CNT pillars were obtained
using a pre-patterned catalyst deposited on growth substrates
using standard photolithographic techniques. A custom instrument
that combines an SEM image acquisition system and a manipulator
capable of compression, allowed the authors in [1] to obtain simul-
taneous images of compression with stress–strain data.

We show in Fig. 1 graphical renderings of selected frames ex-
tracted from an in situ video of the analyzed experiment (see [1],
Supporting online material). The snapshots in Fig. 1 illustrate the
collapse of the six folds that progressively appeared during the
loading phase along the height of the tested pillar (cf. also [1],
Figs. 4 and 5), and were taken in correspondence with the right ex-
tremes of the regions labeled with 1, 2, 3, 4, 5r, 5l and 6 in the
stress–strain plot shown in Fig. 2. Region 1 corresponds to the
nucleation of the first buckle at the right of the pillar and its prop-
agation to the left; region 2 marks the nucleation of the second
buckle at the left and its propagation to the right; region 3 corre-
sponds to nucleation of the third buckle at the center-right and
its propagation to left and right; region 4 is associated with the
nucleation of the fourth buckle at the center-right and its propaga-
tion to left and right; region 5r corresponds to the nucleation of the
fifth buckle at the right; region 5l marks the propagation of the
fifth buckle to the left; and region 6 corresponds to the nucleation
of the sixth buckle at the right and its propagation to the left. For



Fig. 2. Stress–strain response during the loading phase of the analyzed experiment.
The labeled regions denote the snaps associated with the nucleation and collapse of
the buckles shown in Fig. 1 (1: nucleation of the first buckle at the right of the pillar
and its propagation to the left; 2: nucleation of the second buckle at the left and its
propagation to the right; 3: nucleation of the third buckle at the center-right and its
propagation to left and right; 4: nucleation of the fourth buckle at the center-right
and its propagation to left and right; 5r: nucleation of the fifth buckle at the right;
5l: propagation of the fifth buckle to the left; 6: nucleation of the sixth buckle at the
right and its propagation to the left).
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future use, we let Pa
i ¼ �eðiÞa ; �rðiÞa

� �
denote the left-end point of region

i and Pb
i ¼ �eðiÞb ; �rðiÞb

� �
the right-end point of same region, for i = 1, 2,

3, 4, 5r, 5l, 6. We also let Pa
7 ¼ �eð7Þa ; �rð7Þa

� �
denote the end point of

the stress–strain response in Fig. 2.

3. Mechanical modeling

We model the mechanical response of a CNT bundle through
multistable spring elements featuring the stress–strain response
r0 � e0 shown in Fig. 3, where r0 = r � r0, and e0 = e � e0. Here
and in what follows, r and e denote the actual stress and strain
of the spring, respectively; r0 denotes an eventual prestress; and
e0 denotes an eventual prestrain. The response shown in Fig. 3
alternates unstable phases (stress drops for increasing strains)
and stable phases (stress increasing with strain). Eventually, two
stable phases may follow each other without an intermediate
unstable phase (say, e.g., the final densification phase and the
unloading phase, cf. Fig. 3). Let (i) denote the region of the spring
response formed by the succession of an unstable phase
r0 ¼ rðiÞunst

� �
and the subsequent stable phase r0 ¼ rðiÞst

� �
. We de-

scribe the corresponding stress–strain behavior through the
equations
Fig. 3. Stress–strain response of a multistable spring model.
rðiÞunst ¼ rðiÞa þ
rðiÞb � rðiÞa

� �
eðiÞb � eðiÞa

� � e0 ð1Þ

rðiÞst ¼
kðiÞ e0 � eðiÞ�
� �

1� e0 � eðiÞ�
� � ð2Þ

where rðiÞa ; rðiÞb ; eðiÞa and eðiÞb are the quantities shown in Fig. 3, while
k(i) and eðiÞ� are two additional constitutive parameters. It is seen that
the unstable phases feature linear stress–strain response, while the
stable phases feature a nonlinear stress–strain behavior ruled by
the stiffness parameter k(i) and the strain parameter eðiÞ� (strain e0

at which the stress r0 ¼ rðiÞst is zero). The branch preceding region
(1) in Fig. 3 describes the response of the spring when it is first
loaded from the reference configuration e = e0, r = r0. We label (0)
such a branch, which we model through the stress–strain relation-
ship r0 = r(0), where

rð0Þ ¼ k0 e0

1� e0
ð3Þ

k0 denoting an initial stiffness parameter. Under a given loading his-
tory, we determine the response of a system composed of one or
more multistable springs (1)–(3) through the dynamic relaxation
strategy illustrated in Section 4 of [17].

4. In situ parameter identification

4.1. SBS model

The first model we use to simulate the experiment described in
Section 2 is composed of a single bistable spring, which features
only regions (0) and (1) of the response illustrated in Fig. 3, and
a total of five independent constitutive parameters, which we iden-

tify with k0; eð1Þa ; eð1Þb ; kð1Þ and eð1Þ� . By setting the prestrain e0 and

the prestress r0 to zero, we let eð1Þa ;rð1Þa

� �
coincide with the coordi-

nates �eð1Þa ; �rð1Þa

� �
of the first peak Pa

1 of the experimental response.

Next, we determine the initial stiffness k0 by requiring that branch
(0) passes through Pa

1, obtaining

k0 ¼
rð1Þa 1� eð1Þa

� �
eð1Þa

ð4Þ

Regarding the stable portion of region (1), upon setting
eð1Þb ¼ �eð1Þb , we determine k(1) and eð1Þ� by fitting the function rð1Þst de-
fined by Eq. (2) to the portion Pb

1 � Pa
7 of the experimental response

in Fig. 2. Using the ‘FindfFit’ function of Mathematica� 8, we obtain
the set of constitutive parameters shown in Table 1, where rð1Þb de-
notes the value attained by the best fit function rð1Þst at e0 ¼ eð1Þb . A
comparison between the stress–strain response predicted by the
SBS model and the experimental response is shown in Fig. 4.

4.2. SMS model

The second spring model analyzed in this work consists of a sin-
gle spring featuring seven different ‘post-buckling’ regimes, hereaf-
ter denoted by the labels (1), (2), (3), (4), (5r), (5l), and (6), which
follow the pre-buckling response (0). By setting the prestrain e0
Table 1
Constitutive parameters of the SBS model (e0 = 0; r0 = 0; initial stiffness:
k0 = 8.357 MPa).

Region eð1Þa rð1Þa (MPa) eð1Þb rð1Þb (MPa) k(1) (MPa) eð1Þ�

1–6 0.019 0.164 0.038 0.058 0.1318 �0.269



Fig. 4. Comparison between the stress–strain response of the SBS model and the
experimental response (constitutive parameters in Table 1).

Fig. 5. Comparison between the stress–strain response of the SMS model and the
experimental response (constitutive parameters in Table 2).
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and the prestress r0 to zero, as in the previous case, we now iden-
tify the quantities eðiÞa ; rðiÞa with the coordinates �eðiÞa ; �rðiÞa of the
points Pa

i of the experimental response (i = 1, . . . ,7), and the quan-
tities eðiÞb ; rðiÞb with the coordinates �eðiÞb ; �rðiÞb of the points Pb

i

(i = 1, . . . ,6). In addition, we let eðiÞc and rðiÞc coincide with �eðiþ1Þ
a and

�rðiþ1Þ
a , respectively (i = 1, . . . ,6). The initial stiffness k0 of the present

model is again determined through Eq. (4), as in the SBS model,
while the constitutive parameters k(i) and eðiÞ� are computed by
requiring that the stress–strain branches defined by Eq. (2) pass
through the points ðeðiÞa ;rðiÞa Þ and ðeðiÞc ;rðiÞc Þ, obtaining

kðiÞ ¼ rðiÞb �
ðiÞ
c � �ðiÞb rðiÞc � rðiÞb �

ðiÞ
b þ rðiÞc �

ðiÞ
c þ rðiÞb � rðiÞc þ D

2 �ðiÞb � �
ðiÞ
c

� � ð5Þ

eðiÞ� ¼
rðiÞb �

ðiÞ
c � �ðiÞb rðiÞc þ rðiÞb �

ðiÞ
b � rðiÞc �

ðiÞ
c � rðiÞb þ rðiÞc þ D

2 rðiÞb � rðiÞc

� � ð6Þ

where

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðiÞc � rðiÞb

� �
rðiÞc 1þ �ðiÞb � �

ðiÞ
c

� �2
� rðiÞb 1� �ðiÞb þ �

ðiÞ
c

� �2
� �s

ð7Þ

Table 2 lists the constitutive parameters that we determined for
the SMS model through Eqs. (4)–(7). Fig. 5 instead shows the
stress–strain response predicted by such a model, which very clo-
sely reproduces the experimentally recorded behavior. It is worth
noting that the nucleation and propagation of buckles 1, 2, 3 and
4 actually leads to stress-drops and unstable stress–strain response
of the pillar ðrðiÞb < rðiÞa Þ, while the nucleation and propagation of
buckles 5 and 6 leads to stable ‘bends’ of the stress–strain path
ðrðiÞb > rðiÞa Þ. This is explained by the stabilizing effect played by
large material densification (e P 30%) on the stress–strain
response.
Table 2
Constitutive parameters of the SMS model (e0 = 0; r0 = 0; initial stiffness:
k0 = 8.357 MPa).

Region eðiÞa rðiÞa (MPa) eðiÞb rðiÞb (MPa) k(i) (MPa) eðiÞ�

1 0.019 0.164 0.038 0.090 0.132 �0.367
2 0.064 0.100 0.087 0.085 0.463 �0.069
3 0.151 0.130 0.183 0.120 0.438 �0.032
4 0.234 0.159 0.262 0.150 0.337 �0.044
5r 0.314 0.189 0.349 0.193 1.575 0.240
5l 0.369 0.232 0.410 0.252 1.313 0.249
6 0.4327 0.295 0.455 0.324 2.953 0.356
4.3. MBS model

Single spring models may be effective in the phenomenological
modeling of the stress–strain response of a CNT pillar, as shown,
e.g., by the SMS vs experiment comparison presented in Fig. 5.
However, such models are unable to predict strain localization
and multiscale effects, which may play an important role in the
mechanics of CNT structures, since the latter are typically affected
by multiple length- and time-scales, as we already observed in
Section 1.

With the aim of developing a finer, ‘microstructurally-informed’
(phenomenological) modeling of the analyzed experiment (captur-
ing the internal structure to the pillar at the micron scale), we start
by observing that the analyzed experiment (as well as similar ones
presented in [1]) features marked stress- and stiffness-drops in
correspondence with the first buckling event, and much softer
‘humps’ of the stress–strain path for larger strains (cf. Fig. 2). Mov-
ing from this observation, we hereafter formulate a composite
modeling of the pillar under testing, which deals with a single
bistable spring turning into a collection of seven bistable springs
at the end of the first buckling (FB) event (nucleation and propaga-
tion of the first buckle at the bottom of the pillar). The primary
bistable spring element is introduced to account for the initial
stress- and stiffness-drops of the pillar, and its response is defined
by phases 0 and 1 of the SMS model presented in the previous sec-
tion (cf. Table 2). Once the pillar reaches the ‘post-first-buckling’
(PFB) regime, such a spring splits into a chain of bistable springs
piled one over the other, which aim to reproduce the buckles (or
portions of buckles) forming on top of the first one, and the resid-
ual upper portion of the pillar (we assume that the first buckle is
completely annihilated at the end of the FB phase). On assuming
quasi-static loading conditions (i.e., discarding inertial effects),
the different springs of the PFB chain carry equal axial stresses,
but may feature different axial strains, due to strain localization ef-
fects (cf. also [17]). We progressively number the PFB springs from
bottom-to-top, with spring i replicating the portion p(i) of the pil-
lar, where: p(1), . . ., p(6) correspond to buckles 2, 3, 4, 5r, 5l and 6,
respectively, wile p(7) corresponds to the portion of the pillar
placed on top of the sixth buckle. It is worth noting that alternative
multi-spring models of the present experiment would require
chains of springs featuring at least three different stable phases.
For the sake of simplicity, from now on we make use of the short-
hand notations kðiÞ0 ; eðiÞa ; eðiÞb ; rðiÞb and kðiÞ1 to denote the five indepen-
dent constitutive parameters of the ith spring, letting rðiÞa and eð1Þ�
instead denote the corresponding dependent parameters.

As shown in [22], an effective in situ identification of a spring
chain model requires a synced recording of the applied stress



Fig. 6. Comparison between the stress–strain response of the MBS model and the
experimental response (constitutive parameters in Table 3).

Fig. 7. Snapshots of the deformation history of the MBS model (movie animation
available as Supporting online material). The snapshot Pa;b

i simulates the configu-
ration of the system in correspondence with point �Pa;b

i of the experimental response.
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and the axial strains of suitable vertical segments of the CNT sam-
ple under test. Once such data is available, one can draw a local
stress–strain response in each analyzed segment, which is useful
to identify the constitutive parameters of a single spring model
representing that section of the structure. In the present case, the
available SEM recording of the experiment under examination
unfortunately does not help us to analytically track the local
strains of the different buckles, since it is not possible to exactly lo-
cate them in the different frames of the video, and also due to a
pronounced ‘rocking’ of the tested CNT bundle at the base, which
induces coupling of axial and bending strains. Therefore, we can
only roughly estimate the pre- and post-buckling strains of the dif-
ferent PFB springs, making use of the equations

eðiÞa;b ¼
hðiÞ � hðiÞa;b

hðiÞ
� e0 ð8Þ

where hðiÞa denotes the height of the portion p(i) of the bundle before
collapse; hðiÞb denotes the corresponding height after collapse; h(i)

indicates the undeformed height of p(i); and e0 denotes the initial
strain of the PFB system, that we set equal to the overall strain mea-
sured at the end of the FB phase ðe0 ¼ �eð1Þb ¼ 0:038Þ. For i = 1, . . ., 6,
we estimate the deformed heights hðiÞa;b through inspection of the
in situ video, by looking at the pre- and post-collapse configurations
of the different buckles, and taking the ratio between the area occu-
pied by the generic buckle in the current frame, and the correspond-
ing transverse dimension. Since [1] estimates the undeformed
height of each buckle equal to 6 lm, and the PFB chain includes
six springs modeling five different buckles (from bottom to top:
buckles 2, 3, 4, 5r and 5l, and 6), we assume that each of the PFB
springs approximately spans 5 lm in the unstrained configuration.
Concerning the stiffness parameters, we assume
kðiÞ0 ¼ kðiÞ1 ¼ 0:537 MPa for i = 1, . . ., 6, which approximately corre-
sponds to the average stiffness of the SMS model in the initial phase
of the PFB regime (regions 2–5l, cf. Table 2). We next compute the
pre- and post-buckling stresses rðiÞa;b of springs 1–6, through

rðiÞa ¼
kðiÞ0 eðiÞa

1� eðiÞa

;rðiÞb ¼
kðiÞ0 eðiÞa

1� eðiÞa

� �rðpðiÞÞa � �rðpðiÞÞb

� �
ð9Þ

The identification of the constitutive parameters of springs 1–6 is
completed with the determination of eðiÞ� , which we compute as

eðiÞ� ¼ eðiÞb �
rðiÞb

kðiÞ1 þ rðiÞb

ð10Þ

For what concerns spring No. 7, we assume kð7Þ0 ¼ kð7Þ1 ¼ 9:392 MPa
ðkð7Þ0 � kð1Þ0 ¼ kð2Þ0 ¼ � � � ¼ kð6Þ0 Þ and absence of buckling.

The complete list of the constitutive parameters that we deter-
mined for the MBS model is given in Table 3. It is seen that the local
buckling strains eðiÞa progressively grow moving from spring 1 to
spring 6, while the stress drops rðiÞa � rðiÞb

� �
progressively shrink

moving in the same direction. Such parameter settings allow us
to mimic the effects of bottom-to-top gradients in material density
Table 3
Constitutive parameters of the MBS model in the PFB regime (e0 = 0.038;
r0 = 0.09 MPa, kðiÞ ¼ kðiÞ0 ¼ kðiÞ1 ).

Spring/buckle eðiÞa rðiÞa (MPa) eðiÞb rðiÞb (MPa) k(i) (MPa) eðiÞ�

1/2 0.045 0.014 0.577 �0.001 0.537 0.580
2/3 0.129 0.044 0.734 0.034 0.537 0.675
3/4 0.186 0.067 0.733 0.058 0.537 0.635
4/5r 0.229 0.088 0.664 0.108 0.537 0.497
5/5l 0.330 0.145 0.585 0.149 0.537 0.367
6/6 0.360 0.166 0.590 0.195 0.537 0.324
7/top – – – – 9.392 0.000
and tubes’ alignment (cf. Section 1 and Ref. [1]). The stress–strain
response of the MBS model, which is provided in Fig. 6, highlights
that such a model is rather effective in predicting both strain local-
ization and the overall mechanical response of the system at hand,
despite the large number of assumptions that have been intro-
duced to identify its constitutive parameters so far. In particular,
the deformation snapshots inserted into Fig. 6, which are also rep-
resented in Fig. 7 in larger scale, illustrate the ability of the MBS
model in replicating the effective buckling dynamics of the exam-
ined CNT pillar in the PFB region. The discrepancies between SMS
stress–strain curve and the experimental response is explained
by the uncertainties related to the estimation of the local deforma-
tion histories of the different regions of the model. Such a draw-
back could be, e.g., overcome by marking in different colors the
regions where local buckling is expected, and/or embedding strain
sensors in such regions. This would allow us to in situ estimate all
the constitutive parameters of the different sections of the model,
without making any ‘a priori’ assumptions about local stiffness,
strain and stress parameters.

5. Concluding remarks

We have presented in this work in situ identification procedures
for multistable spring models of compressed CNT arrays, consider-
ing both single-spring and multi-spring models. The proposed pro-
cedures have been validated against a SEM-assisted compression
test on a CNT bundle [1]. In the case of single-spring models, we
have shown that the proposed identification procedures allow us
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to accurately simulate the overall stress–strain response of the
bundle, especially if a sufficiently large number of elastic phases
are taken into account. Each phase reproduces the behavior of
the bundle after the nucleation and (transverse) propagation of a
buckle. Concerning multi-spring models, we have proved that it
is possible to successfully identify the mechanical properties of a
chain of multistable springs at the microscopic scale, by syncing
an in situ SEM video recording of the bundle deformation with
the stress–strain response. Such a ‘microscopic’ identification tech-
nique leads us to determine the local stress–strain responses of
suitable vertical segments of the CNT bundle (with few micron
thickness), which are in turn used to identify the constitutive
parameters of a multistable spring chain model of the bundle.
The latter proved to be able to effectively simulate both the overall
stress–strain response, and the bottom-to-top sequential initiation
and propagation of buckling folds in the bundle.

Recent studies have shown that the continuum limits of spring
models (at the meso- or macro-scales) are able to capture several
experimentally-observed behaviors of CNT arrays, including multi-
ple length- and time-scale effects, bending–stretching coupling,
and preconditioning damage [17,18,22,23]. The results of the pres-
ent work pave the way to the effective in situ identification of such
models, through the observation of the real stress–strain behavior
of a CNT array at the microscopic scale. Without the microscale
identification of multistable spring chain models, it would be re-
quired to use genetic algorithms, considering the large number of
constitutive parameters involved, and the ‘bumpy’ nature of the
fitting search space (typically featuring multiple local minima)
[24–26].

Future work may lead to a refinement of the microscopic iden-
tification procedure presented in this paper, using special marking
techniques of vertical segments of the CNT array, along with the
formulation and experimentation of in situ identification tech-
niques for 2D and 3D spatial networks of multistable springs.
The latter can be used to capture the coupling of axial and bending
strains, which are often observed in compression tests on CNT bun-
dles [1] and multilayer composite materials based on CNT arrays
and polymeric or metallic interlayers [22].
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