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A numerical study on the elastic response of single- and multi-layer systems formed by alternating
pentamode lattices and stiffening plates is presented. Finite element simulations are conducted to
analyze the dependence of the effective elastic moduli of such structures upon suitable aspect ratios,
which characterize the geometry of the generic pentamode layer at the micro- and macro-scale, and
the lamination scheme of the layered structure. The given numerical results highlight that the examined
structures exhibit bending-dominated response, and are able to achieve low values of the effective shear
modulus and, contemporarily, high values of the effective compression modulus. We are lead to conclude
that confined pentamode lattices can be regarded as novel metamaterials that are well suited for seismic
isolation and impact protection purposes. Their elastic response can be finely tuned by playing with
several geometrical and mechanical design variables.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Pentamode lattices are mechanical metamaterials with uncon-
ventional mechanical properties induced by the peculiar geometry
of the primitive unit cell, which is formed by four rods meeting at a
point. The repetition over the three dimensional space of such a
cell gives rise to a diamond-like structure that supports five soft-
modes of deformation (zero-energy modes), and one single rigid
mode in the stretch-dominated limit [1]. Physical models of penta-
mode lattices have been obtained through additive manufacturing
techniques at different scales, employing both metallic and poly-
meric materials [2–4].

Practical applications of pentamode metamaterials have been
proposed for the realization of shear waves band-gap materials
[5,6], and graded structures that make defined regions of space
invisibly isolated from mechanical waves (elasto-mechanical
cloak) [7,8]. More recently, pentamode lattices confined between
stiffening plates have been proposed for the realization of tunable
seismic isolation and impact protection devices, which show soft
modes controlled through the tuning of the bending moduli of
members and junctions [4,9]. It has been recognized that the
mechanical response of such metamaterials features some
analogies with that of elastomeric bearings obtained by bonding
layers of synthetic or natural rubber to stiffening plates made of
steel or fiber-reinforced composites [10–15].

The present study aims at extending the research initiated in
Refs. [4,9], through a numerical investigation on the elastic
response of single- and multi-layered confined pentamode lattices
featuring different aspect ratios and lamination schemes. We
examine a wide range of values of selected design variables, which
are related to the size of the nodal junctions (microstructure aspect
ratio), the ratio between the number of unit cells placed in the ver-
tical and horizontal directions in each layer (macrostructure aspect
ratio), and the number of layers. Our goal is to extend the experi-
mental study presented in Ref. [4] (single-layer confined penta-
mode lattices) to multilayer systems obtained by alternating
pentamode lattices and stiffening plates. We show that a suitable
design of the lattice microstructure and the lamination scheme of
the examined systems leads us to obtain metamaterials featuring
bending-dominated response characterized by a high ratio
between the effective (uniaxial) compression modulus and the
effective shear modulus. Such a result is of key importance with
the aim of designing devices that have sufficiently high vertical
load-carrying capacity, and contemporarily exhibit low shear
rigidity. It is worth noting that many-cells, unconfined pentamode
lattices do not owe such a property, exhibiting homogenized engi-
neering constants (in the continuum limit) such that the Young
and shear moduli are approximately equal each other [16].
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Table 1
Physical and mechanical properties of the fully dense isotropic polycrystalline Ti-6Al-
4V titanium alloy forming the rods of the examined structures.

q0 [g/cm3] 4.42
ry0 [MPa] 910.00
E0 [GPa] 120.00
t0 0.342
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The structure of the paper is as follows. We begin in Section 2
by describing the analyzed confined pentamode lattices, and the
parameters that we assume as design variables. Next, we pass to
illustrate the finite element modeling that we employ to investi-
gate on the mechanical response of such structures (Section 3).
In Sections 4 and 5 we present a comprehensive parametric study
on the effective elastic moduli of single-layer (Section 4) and
multi-layer (Section 5) confined pentamode lattices. Section 6 is
devoted to an experimental validation of the numerical predictions
of the effective elastic moduli, with reference to single-layer sys-
tems. We end in Section 7 by reviewing of the main results of
the present study and drawing directions of future research.

2. Layered pentamode lattices

We analyze structures composed of layers of pentamode lat-
tices confined between stiffening plates. The examined lattices
are obtained by replicating the extended face-centered-cubic
(fcc) unit cell in Fig. 1(a), which is formed by four primitive unit
cells and 16 linkages (or rods) meeting at four distinct points
(nodes/connections). Such a unit cell is periodically repeated along
the x; y; z axes of a Cartesian frame aligned with the unit cell edges,
giving rise to layers of pentamode lattices featuring different
aspect ratios (Fig. 1(b)). The nodal connections are rigid and the
rods are formed by the union of two truncated bi-cones featuring
large diameter D at the mid-span and small diameter d at the
extremities (size of nodal junctions) [1–8].

The pentamode lattices and the stiffening plates are assumed to
be made of the Ti-6Al-4V titanium alloy, which was employed in
[4] to manufacture physical samples of single-layer pentamode lat-
tices through Electron Beam Melting (EBM). As in Ref. [4], we
assume a ¼ 30 mm and D ¼ 2:72 mm (D=a � 9%), and we let the
microstructure aspect ratio d=a vary between the case with
d � 0, which approximates hinged connections between the rods,
and the case with d ¼ D (rigid connections). The mass densityq0,
the yield strength ry0 , the Young’s modulus E0 and the Poisson’s
ratio t0 of the fully-dense Ti-6Al-4V alloy are given in Table 1
[4]. We let nx, ny and nz respectively denote the number of unit
cells placed along the x; y and z axes in the generic layer, with
nx ¼ ny (square pentamode layers), and nz ¼ 1 in multi-layer sys-
tems (Fig. 1(b)). In addition, we let Lx, Ly and t ¼ 1 mm denote
the edge lengths and the thickness of the confining plates, respec-
tively. We also make use of the symbol Hi to denote the height of
(a)

Fig. 1. (a): Unit cell of pentamode lattice analyzed in the present study: extended face-
system obtained by alternating pentamode lattices and confinement plates.
the generic pentamode layer, and introduce the following nota-
tions: H ¼ nzHi (total height of the pentamode layers); and
A ¼ nxnya2 (load area). The symbol �H is used to denote the overall
height of the layered structure, which includes the thicknesses of
the confinement plates (Fig. 1(b)).

3. Finite element modeling

We use a 3D finite element model (FEM) to study the mechan-
ical response of the structures illustrated in the previous section.
The employed FEM makes use of tetrahedral solid elements to dis-
cretize both the rods of the pentamode lattices and the stiffening
plates, with minimum features variable between 7% and 20% of
the junction size d (Fig. 2). Assuming quasi-static loading condi-
tions, we employ the MUMPS solver of COMSOL Multiphysics� to
solve the linear-elastic problem of the structure under prescribed
displacements of the topmost plate, by keeping the bottommost
plate at rest.

We numerically estimate the effective shear modulus Gc and
the effective compression modulus Ec of a laminated pentamode
structure through the following formulae

Gc ¼ Fh H
dhA

; Ec ¼ Fv H
dvA

ð1Þ

where Fh and Fv denote the total lateral and vertical forces mea-
sured at the bottom plate of the FEM, respectively under a uniform
horizontal displacement dh (along either x or y), and a uniform ver-
tical displacement dv of the top plate.

4. Single layer systems

Fig. 3 shows the variation of Ec and Gc with the ‘‘macroscopic”
aspect ratio H=a and the ‘‘microscopic” aspect ratio d=a, for
nx ¼ ny ¼ 2. In such a figure and the remainder of the paper, we
(b)

centered-cubic (fcc) cell formed by rods with variable cross-section. (b): Multilayer



Fig. 2. 3D view of a solid FEM of a confined pentamode unit.
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compare Ec and Gc to the Young modulus Er and the shear modulus
Gr of a rubber material typically employed for the manufacturing
of rubber bearings (Er � 4:00 MPa; Gr � 1:00 MPa) [17]. The results
in Fig. 3 show that the Ec=Er and Gc=Gr ratios significantly increase
with decreasing values of the H=a aspect ratio (that is, in ‘‘thick”
systems), especially in presence of large d=a ratios (large size nodal
junctions). For H=a ¼ 1, we observe that it results Ec ¼ 0:071Er and
Gc � Gr=1000 for d=a ¼ 0:002; Ec ¼ 0:92Er and Gc ¼ 0:67Gr for
d=a ¼ 0:015; Ec ¼ 70:17Er and Gc ¼ 85:26Gr for d=a ¼ 0:09. Since
the elastic moduli of many-cells, unconfined pentamode lattices
(a) 

(c)

Fig. 3. Variation of the effective compression modulus Ec (a) and the effective shear mo
aspect ratios. The (c) panel shows the variation of the Ec=Gc ratio with the macro-scale (H
(D ¼ 2:71 mm, a ¼ 30 mm, t ¼ 1 mm, nx ¼ ny ¼ 2).
are independent of the H=a ratio, and are such that the Young mod-
ulus is approximately equal to the shear modulus [16], we deduce
that the above ‘‘stiffening” effects of Ec and Gc are due to the con-
finement effect played by the terminal plates against the deforma-
tion of the pentamode lattice.

For what specifically concerns the compression modulus Ec , we
note that such a property is almost always larger than Er , with
exception to cases with d=a 6 0:015. When it results H=a P 3, Ec

asymptotically tends to a constant value, for d=a < 0:07 (small size
nodal junctions), or a local minimum at H=a ¼ 5 (Ec � 8� 16 Er),
for d=a P 0:07 (Fig. 3(a)). The effective shear modulus Gc always
monotonically decreases with increasing values of H=a. When
H=a ¼ 4, it results Gc � 2=10:000Gr for d=a ¼ 0:002, and
Gc ¼ 7:15Gr for d=a ¼ 0:09 (Fig. 3(b)).

It is worth remarking that in most applications, like, e.g., anti-
seismic base isolation of buildings, one desires a sufficiently large
compression modulus Ec in association with a markedly low shear
modulus Gc .

Let us now examine the variation of the Ec=Gc ratio with H=a
and d=a. The results shown in Fig. 3(c) highlight that such a ratio
attains a global minimum at H=a ¼ 2. For H=a ¼ 1, it results:
Ec=Gc ¼ 253:88, Ec=Gc ¼ 3:29 and Ec=Gc ¼ 5:48 respectively for
(b)

dulus Gc (b) of single-layer pentamode lattices with microscopic and macroscopic
=a) and micro-scale (d=a) aspect ratios of single-layer confined pentamode lattices



Fig. 5. Variation of the Ec=Gc ratio with macro-scale and micro-scale aspect ratios of
multi-layer confined lattices (D ¼ 2:71 mm, a ¼ 30 mm, t ¼ 1 mm, nx ¼ ny ¼ 2).
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d=a ¼ 0:002, d=a ¼ 0:09, and d=a ¼ 0:015. For H=a ¼ 4, it instead
results Ec=Gc ¼ 4:14, Ec=Gc ¼ 3:96 and Ec=Gc ¼ 4:29 respectively
for d=a ¼ 0:002, d=a ¼ 0:09, and d=a ¼ 0:015. It is worth noting
that the shear modulus of rubber-steel composite bearings is
approximatively equal to that of the rubber layer (G � Gr), while
the compression modulus Ec of a single layer rubber-steel bearing
is controlled by a shape factor S defined as the ratio between the
load area and the force-free (bulge) area [10]. In the case of a
square rubber-steel pad with S ¼ 5 (single-layer rubber thickness
t equal to 1/20 of the pad edge length L) it results Ec � 169Gr [10].

5. Multi-layer systems

We now pass to study the elastic response of multilayer sys-
tems composed of pentamode layers showing a single unit cell
across the thickness (nz ¼ 1), and 2� 2 unit cells in the horizontal
plane (nx ¼ ny ¼ 2). As in the case of single layer systems, we
examine lattices featuring different microscopic aspect ratios d=a,
and various macroscopic aspect ratios H=a. The latter provide the
number of layers forming the laminated structure, in virtue of
the assumption nz ¼ 1 in each layer.

The results in Fig. 4 show that the distributions of the Ec=Er and
Gc=Gr ratios with H=a and d=a resemble those observed in single-
layer systems (cf. Figs. 3 and 4).

Fig. 4 highlights that the largest values of the Ec=Er and Gc=Gr

ratios are obtained in the case of single layer systems (H=a ¼ 1),
and that the Gc=Gr ratio exhibits a larger decrease rate with the
number of layers, as compared to Ec=Er . For d=a ¼ 0:002 (small
junction size), we pass from the effective moduli Ec ¼ 0:071Er

and Gc � Gr=1000 of a single-layer structure (cf. the previous sec-
tion), to the effective moduli Ec ¼ 0:069Er and Gc ¼ 1:04 � 10�3Gr

of a four-layer structure (H=a ¼ 4). Similarly, for d=a ¼ 0:09 (large
junction size), we get Ec ¼ 70:17Er and Gc ¼ 85:26Gr for a single-
layer structure; Ec ¼ 52:03Er and Gc ¼ 25:59Gr for a four-layer
structure.

We analyze the distribution of the Ec=Gc ratio with H=a and d=a
in Fig. 5. The results shown in such a figure highlight that the Ec=Gc

ratio significantly grows with the number of layers (H=a), for any
analyzed value of d=a. In the case of a five-layer structure
(H=a ¼ 5), we note that it results Ec ¼ 27:28Gc for d=a ¼ 0:008,
and Ec ¼ 10:61Gc for d=a ¼ 0:09.

Our next goal is to study the dependence of the Ec=E0 and Gc=E0

ratios on the solid volume fraction of the unit cell / (volume of the
rods in the unit cell divided by the volume of the unit cell). Such a
(a)

Fig. 4. Variation of the effective compression modulus Ec (a) and the effective shear m
aspect ratios (D ¼ 2:71 mm, a ¼ 30 mm, t ¼ 1 mm, nx ¼ ny ¼ 2).
study is aimed at detecting the nature of the overall response of the
confined structure (stretching-dominated or bending-dominated)
[18–20]. The Ec=E0 vs. / and Gc=E0 vs. / plots in Fig. 6(a, b) refer
to systems featuring different values of nx � ny � nl, where nl

denotes the number of layers. It is seen that the Ec=E0 and Gc=E0

ratios vary with / according to non-linear laws, which proves evi-
dence of a bending-dominated response of the examined struc-
tures [18–20] (quadratic regressions of the FEM results are
represented by solid lines in Fig. 6).

We conclude our parametric study by comparing the Ec=Gc

ratios of single- and multi-layer structures at constant H=a ¼ 4,
for different values of the microstructure aspect ratio d=a (Fig. 7).
The results in Fig. 7 highlight that a four-layer structure with small
junction size (d=a ¼ 0:002) achieves the ratio Ec=Gc � 267, which is
greater than the Ec=Gc ratio of a square rubber pad confined by
rigid plates with thickness equal to 1/20 of the edge length
(Ec=Gc � 169, cf. the previous section).

6. Experimental validation

The current section presents an experimental validation of the
solid FEM described in Section 3 against the results of quasi-
static laboratory tests on EBM samples of pentamode structures
(b)

odulus Gc (b) of multi-layer pentamode lattices with microscopic and macroscopic



(a) (b)

Fig. 6. Variation of the Ec=E0 and Gc=E0 ratios with the solid volume fraction / (markers indicate FEM results; solid lines denote quadratic regressions of FEM results).

Fig. 7. Comparison of the Ec=Gc ratios of single- and multi-layer structures.
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[4]. Such a validation relates experimental and numerical values of
vertical and horizontal stiffness properties of single-layer penta-
mode lattices featuring thick and slender macroscopic aspect
ratios.

The analyzed lattices are composed of two unit cells in the hor-
izontal plane (nx ¼ ny ¼ 2) and varying number of unit cells along
the z-axis. Following the notation given in [4], we hereafter name
TPM the systems featuring nz ¼ 2 (‘‘thick pentamode materials”),
and SPM systems featuring nz ¼ 4 (‘‘slender pentamode materials”).
For each of such systems, we analyze physical samples featuring
different values of d (d1; d2; d3Þ and fixed values of a and D, as
shown in Table 2. We use the label i to denote the SPM/TMP sam-
ple featuring d ¼ di.

SPM and TPM specimens have been subject to quasi-static shear
and compression tests in Ref. [4]. Shear tests consisted of cyclic lat-
eral force (Fh) vs. lateral displacement (dh) tests in displacement
control, under constant applied vertical load. Compression tests
Table 2
Geometrical properties of physical samples of confined pentamode lattices analyzed
in Ref. [4].

a [mm] D [mm] d1 [mm] d2 [mm] d3 [mm]

Built size 30 2.72 0.49 1.04 1.43
(CAD size) (30) (2.71) (0.45) (0.90) (1.35)
instead consisted of vertical force (Fv) vs. vertical displacement
(dv) tests under zero applied lateral force. Hereafter we let �Kh;eff

and �Kv ;eff denote the mean values of the effective (secant) stiffness
coefficients experimentally determined as described in [4]. Such
coefficients are used to determine experimental values of the effec-
tive elastic shear modulus Gc and the effective elastic compression
modulus Ec , through the following equations

Gc;exp ¼ �Kh;eff � HA ; Ec;exp ¼ �Kv;eff � HA ð2Þ

Let us now compare the experimental effective moduli with
finite element predictions Gc;fem and Ec;fem of the same quantities
(Table 3).

The results in Table 3 show a good agreement between the
orders of magnitude of experimental and numerical moduli. It is
seen that such quantities markedly increase for increasing values
of the size d of the nodal junctions, which is related to the bending
rigidity of the lattice (as we noticed before, perfect pin joints are
obtained in the limit d=a ! 0, while the case with d=a > 0 corre-
sponds to nonzero bending rigidities of nodal junctions and rods).
The numerical predictions of the effective moduli are always larger
than the experimental values, both in SPM and TPM systems. Such
a result is explained by approximation errors of the finite element
solutions, and the fact that such simulations do not capture the
micro-plasticity damage that was observed in the experiments
before macro-yielding [4,21]. By examining the results in Table 3,
we find out that the Gc;fem=Gc;exp ratio is equal to 1.69 (1.67) in
SPM1 (TPM1); 1.94 (2.52) in SPM2 (TPM2); and 2.90 (4.31) in
SPM3 (TPM3). The Ec;fem=Ec;exp ratio is instead equal to 1.01 (1.26)
in SPM1 (TPM1); 1.42 (2.00) in SPM2 (TPM2); and 1.50 (2.19) in
SPM3 (TPM3). The growth of the FEM approximation errors with
d follows by the increased role played by micro-plasticity damage
effects on the experimental response of SPM and TPM specimens,
as the size of the nodal junctions gets larger [4]. It is worth noting
that both experimental results and finite element simulations lead
to (effective) compression moduli greater than shear moduli, for
each analyzed system.
Table 3
Experimental and FEM values of the effective shear modulus and effective compres-
sion modulus of SPM and TPM specimens (kPa).

SPM1 SPM2 SPM3 TPM1 TPM2 TPM3

Gc;exp 70.43 444.77 1033.01 222.04 1061.90 1957.77
Gc;fem 118.20 860.73 2702.73 372.63 2685.00 8441.83
Ec;exp 501.49 3384.47 8165.70 657.98 2971.50 8538.12
Ec;fem 507.67 4811.00 12265.67 829.18 5935.67 18696.70
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7. Concluding remarks

We have conducted a numerical study on the elastic response of
single-layer and multi-layer systems obtained by alternating pen-
tamode lattices and stiffening plates. The elastic response of such
systems turned out to be different from that of unconfined penta-
mode lattices, due to the confinement effect played by the stiffen-
ing plates. While in unconfined pentamode lattices the Young
modulus is approximately equal to the shear modulus [16], in con-
fined pentamode lattices we observe that the effective compres-
sion modulus Ec is always larger than the effective shear
modulus Gc . In the case of single-layer systems, the results given
in Section 4 highlight that the Ec=Gc ratio attains a global minimum
at H=a ¼ 2 (Ec=Gc � 2), and significantly grows both towards
H=a ¼ 1 (thick systems), and for H � a (slender systems). For
multi-layer systems, on the other hand, the Ec=Gc ratio monotoni-
cally increases with the number of layers (cf. Section 5). The vali-
dation of numerical predictions of the effective moduli against
the experimental data presented in Ref. [4] highlighted good the-
ory vs. experiment matching, and confirmed the result that the
compression modulus of a confined pentamode lattice is always
greater than the shear modulus (Section 6).

Overall, the results of the present study highlight several analo-
gies between the response of confined pentamode lattices and that
of rubber bearings alternating layers of rubber and stiffening
plates, which are commonly employed as seismic isolation devices
[10–15]. In fact, the role played by the stiffening plates is similar in
such systems, being mainly devoted to stiffen the vertical deforma-
tion mode of the structure. The use of confined pentamode lattices
as novel impact protection devices and seismic isolators (‘‘penta-
mode bearings”) deserves special attention, based on the following
considerations:

- the mechanical properties of the pentamode layers forming
such devices mainly depend on the geometry of the lattice,
more than on the chemical nature of the employed materials
(metallic, ceramic, polymeric, etc.);

- it is easy to adjust themechanical properties of pentamode bear-
ings to those of the structure to be protected/isolated, by playing
with the lattice geometry and the nature of the material, as
opposed to rubber bearings, where instead the achievement of
very low shear moduli implies marked reductions of the vertical
load carrying capacity, making such devices not particularly
convenient in the case of structures with very high fundamental
periods of vibrations (such as, e.g., very tall buildings; highly
compliant structures; very soft soils; etc.) [12,22,23];

- the dissipation of pentamode bearings can be conveniently
designed through an accurate choice of the material to be used
for the pentamode lattices, and inserting, - when necessary, an
additional dissipative element within the device (such as, e.g., a
lead core);

- the possibility to design and fabricate laminated composite
bearings showing layers with different materials, geometries
and properties: such a design approach is instead much less
effective in the state-of-the-art laminated rubber bearings,
where the only lamination variable consists of the type of rub-
ber to be employed for the soft pads (natural rubber or syn-
thetic rubber);

- the freedom in the choice of the materials of the pentamode lat-
tices, by keeping the elastic properties of the device essentially
unchanged, allows the designer to adapt the energy dissipation
capacity and the life span (i.e., the durability) of the device to
the actual use conditions [22,23];

- the possibility to replace the fluid components of the structural
bearings and energy absorbing devices currently available on
the market (such as, e.g., viscous fluid dampers and tuned mass
dampers) with pentamode lattices: such a replacement would
lead to significantly reduce the technical issues related to fluid
leaking and frequent maintenance, which currently affect the
state-of-the-art devices involving fluid materials;

- the mechanical properties of pentamode bearings can be
dynamically adjusted and measured, by equipping selected
struts of the pentamode lattices with sensors and/or actuators;

- pentamode bearings can be directly manufactured from
computer-aided design data outputted by a computational
material design phase, on employing advanced and fast additive
manufacturing techniques at different scales, and single or mul-
tiple materials (metals, polymers, etc.).

Several aspects of the present work pave the way to relevant
further investigations and generalizations that we address to
future work. First, mechanical models for composite rubber-steel
bearings [10] need to be generalized to pentamode-steel bearings,
accounting for the peculiar deformation models of such systems,
and discrete-to-continuum approaches [16,24,25]. Second, physi-
cal models of pentamode isolators need to be constructed, employ-
ing, e.g., additive manufacturing techniques [2–4] or manual
assembling methods [26]. An experimental verification phase is
also needed to assess the actual isolation and dissipation capabili-
ties of pentamode bearings arising, e.g., from inelastic response
and/or material fracture [27,28]. Another relevant generalization
of the present research regards the design of dynamically tunable
systems based on the insertion of structural hinges [29] and/or
prestressed cables within pentamode lattices, with the aim of
designing novel metamaterials and bio-inspired lattices tunable
by nodal stiffness properties (semi-rigid nodes; dissipative junc-
tions, etc.), as well as local and global prestress [30].
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