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a b s t r a c t

The present study considers the optimal pre-tensioning design of lattice structures forming composite
cable-stayed bridges. With reference to a model problem, a target bending moment distribution over
the longitudinal beams is identified, with the aim of achieving an optimized use of the material compos-
ing the bridge. Next, a procedure for the optimization of cable forces is developed, in order to achieve the
desired bending moment distribution through the application of a self-equilibrated state of stress
induced by optimal cable pre-tensioning. Results indicate that the given design approach is suitable
for the optimization of the pre-tensioning sequence of arbitrary composite cable-stayed bridges.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The use of composite materials in long-span bridges is attract-
ing increasing interest, as these materials exhibit higher
stiffness-to-weight and strength-to-weight ratios compared with
traditional structural materials. Composite materials are extremely
lightweight and display extreme fatigue resistance and high dura-
bility in any type of environment. Unlike traditional technologies,
their qualities also included speed of execution and complete
reversibility. Other benefits include low energy consumption dur-
ing manufacturing, construction and execution processes [1–6].
The use of hybrid Fiber Reinforced Polymer (FRP) cables in long-
span cable-stayed bridges is an area of particular interest [7–12].
Their excellent durability means that composite materials also
entail low maintenance costs. Such properties are very useful for
extending the service life of bridge structures, as bridges are usu-
ally exposed to severe environmental conditions [13]. While the
cost of composite materials is generally greater than that of tradi-
tional structural materials, the extended life of a composite struc-
ture results in reduced long-term structural costs. Low
maintenance costs are one of the most important considerations
in Bridge Life Cycle Cost Analysis (BLCCA).
Several examples of long-span cable-stayed bridges using com-
posite materials have been developed in recent years, including
Sutong Bridge (1088 m span) in China, Stonecutters Bridge
(1018 m) in Hong Kong, and Tatara Bridge (890 m) in Japan [7].
The Sutong Bridge is a cable-stayed bridge with double-plane
and twin-pylon. Two auxiliary piers and one transitional pier were
erected in each side span. The main span of the bridge is 1088 m
making it the world’s longest main cable-stayed bridge span. The
stay cables are arranged in double inclined cable planes and made
of a parallel wire strands consisting of 7 mm wires. Other pedes-
trian and vehicular bridges have been constructed in the past using
FRP cables, including Aberfeldy footbridge (UK, 1992 – one of the
finest such examples), Herning Bridge (Denmark, 1999) and I-5/
Gilman Bridge (USA, 2002), the latter being a composite cable-
stayed bridge with an eccentric type pylon [8,9].

The construction of cable-stayed bridges is characterised by a
series of phases in which geometry, boundaries, and loads vary sig-
nificantly, causing changes in the state of stress [14–19]. The opti-
mization of the construction process via the regulation of the initial
forces in cables is important for the optimal control of the whole
structural behaviour [20]. One of the most common problems
when dealing with cable-stayed bridges concerns the computing
of the initial cable forces and the pre-tensioning sequence, which
are needed to obtain the designed configuration [21]. An optimal
pre-tensioning sequence is useful for controlling stress and strain
during and after the construction phases. The literature offers sev-
eral different approaches [18,19], and the best solution remains an
open issue. In fact, there are no closed form analytical solutions
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that allow for the computing of the pre-tensioning sequence given
a final design configuration. Only iterative algorithms are available
[18,19], although these require several cable tightening operations
that lead to technological, structural, and economic problems.

The absence of closed form solutions is due to the large number
of parameters in characterizing cable stress distribution in CSBs.
The structural behaviour of CSBs depends on geometry, statics,
material properties, construction process, and technology. The
development of tools to control the behaviour of these structures
is therefore an open issue.

The present work deals with the formulation of a procedure for
the optimization of cable pre-tensioning forces that is suitable for
any kind of CSBs. The proposed approach allows for the optimiza-
tion of the bending moment distribution in the deck under relevant
pre-tensioning force values. We employ the ‘influence matrix
method’ to compute the optimal pre-tensioning sequence that
guarantees the achievement of the designed bending moment dis-
tribution (BMD), which is statically equivalent to another target
distribution.

The proposed procedure falls under the so-called ‘force equilib-
rium methods’ [20,22] methods that act directly on the internal
forces and indirectly on the elastic deformations. It can be applied
to any construction sequence and can be generalized to account for
time-dependent phenomena [23]. It is worth noting that the over-
all structural system of a cable-bridge, which is composed of the
Fig. 1. The At Tannumah Bridge: (a) top view, (b) 3D view, (c) deck cross
bridge deck, the supporting piers and the suspending cables, may
be regarded as a composite lattice structure whose mechanical
performance and structural weight can be profitably optimized
by experimenting with different optimal design of cables’
prestress.

2. Model problem

Our study refers to a composite-material re-design of the At
Tannumah Bridge (ATB), which is a part of a highway viaduct con-
necting Basra city centre to the At Tannumah area in Iraq, passing
over the Shatt al Arab River. The original design of such a bridge
was developed by the Studio ‘De Miranda Associati’ in Milan, Italy.

The present bridge concept includes a semi-fan, a central sus-
pended span, and a self-supported cable-stayed system (Fig. 1).
In the longitudinal direction, the bridge’s mid-span is symmetric.
It includes two towers and two sets of cables. The deck is made
of three spans – a central span of 150 m and two lateral spans of
75 m each. The deck is assembled from semi-precast elements with
lengths of 12.50 m each. The towers are made of pre-built sections
of reinforced high-strength concrete (class C45/55), as per Euro-
code 2 [24].

In the original design, the deck is made of steel welded beams
(class S355) [23] and a reinforced concrete slab (class C25/30)
[23] of 26 cm thickness. The connection between the concrete slab
section [16] (courtesy of Studio ‘De Miranda Associati’, Milan, Italy).
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and the steel beams is made with metallic bolts. The original S355
steel welded beams are replaced with S235 steel welded beams
wrapped with Carbon Fiber Reinforced Polymer (CFRP) layers
(Fig. 1c) in the present study. This composite redesign of the longi-
tudinal beams uses a kind of steel (S235) with 1/3 strength, as
compared with that used in the original ATB design (S335). The
S235 steel is employed in such a way as to obtain overall strength
and stiffness equal to those of the original S335 beams, under
approximately the same weight (Fig. 1c). In this study, the steel
cables of the original ATB design (cables with diameter of 22 cm
made of a set of 110 braided steel wires with diameter of 16 mm
each) are replaced with equivalent hybrid basalt and carbon cables
(B/CFRP), using the principle of cable replacement given in [8]. In
the new design, BFRP wires are arrayed in the centre of the cable,
while hybrid B/CFRP wires are arrayed in the outer layer of the
cable. A viscoelastic material is inserted in the gap between the
center and outer layers [8].

Fig. 1 shows different views of the ATB, while Fig. 2 illustrates
the layout of the structural model that we employed to describe
such a bridge. The elastic problem of the CSB model in Fig. 2 has
been solved by assuming a linear elastic response for all the bridge
elements, using the numerical algorithm detailed in [19] and refer-
ences therein.

Hereafter, we refer to the bridge model S0 (Fig. 3a) that corre-
sponds to assumed zero pre-tensioning forces in the cables (bridge
unstressed under zero external loads) as ‘initial’. We shall see in
the next section that such a model induces a highly non-uniform
moment distribution over the longitudinal bridge axis, which is
not ideal for the optimal use of the material (assuming uniform
cross section of the deck along the span).

Similarly, we have named the realization Sd of the bridge model
in Fig. 3(a) that corresponds to pre-tensioning forces inducing a
bending moment distribution over the deck identical to that exhib-
Fig. 2. Lattice structure of th
ited by a low-stiffness re-design of the ATB deck (‘optimal’ bending
moment distribution) as ‘optimal design’ [25]. The model deriving
from a low stiffness re-design of the deck is hereafter referred to as
‘auxiliary’, and denoted by Sa (Fig. 3b).

It is shown in [25], where different alternative designs of the
ATB are compared, the above optimal bending moment distribu-
tion is nearly uniform over the span, determining an optimized
use of the material composing the deck. The proposed optimal
design procedure allows us to obtain a target bending moment dis-
tribution through the application of a self-equilibrated state of
stress induced by optimal cable pre-tensioning. Our final goal is
to experiment with the pre-tensioning forces of the cables of the
model in Fig. 2(a), in order to achieve on the real bridge the same
bending moment distribution shown by the auxiliary bridge model
Sa in Fig. 2(b).

3. Initial and optimal bending moment distributions

Figs. 4 and 5 show the bending moment and cable force distri-
butions for the initial and auxiliary bridge models defined in the
previous section. It is worth noting that the bending moment dis-
tribution over the longitudinal beams of the initial model (M0) is
rather non-uniform along the deck, featuring a peak value for the
deck-pier junction that is more than five times larger than the
moment at the middle of the span (Fig. 4a). In the same model,
the axial force carried by the most-stressed cable (cable # 7) is
3.28 times larger than the axial force carried by cable # 1 (Fig. 4b).

The optimal bending moment distribution (Md) is illustrated in
Fig. 5, with Md showing a much more uniform distribution over the
span than M0 (Fig. 4a).

As stated previously, M0 was computed on the real model of the
ATB prescribing zero pre-tensioning forces in all cables. Such
moment distribution on the initial portions of the two branches
e adopted bridge model.
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Fig. 3. (a) Initial bridge model S0, (b) auxiliary bridge model Sa. The dashed thick line indicates a low stiffness deck.

Fig. 4. (a) Bending moment distribution (M0) and (b) normalized cable forces t0i
(divided by the axial force carried by cable #1 for the initial model (zero cable pre-
tensions).
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departing from the central pier (Fig. 4a) resembles that of a can-
tilever beam under uniform transverse loading. The Md bending
moment distribution was instead computed on a auxiliary bridge
model with a low-stiffness deck and zero cable pre-tensions [25].
Such moment distribution over the initial portions of longitudinal
beams departing from the pier resembles that of a multi-support
continuous beam under uniform transverse loading (Fig. 5). The
goal of the following section is to show how one can get the bend-
ing moment distribution Md over the real bridge model (Fig. 2a), by
playing with a suitable cable pre-tensioning.

4. Algorithm for the computation of the optimal pre-tension
forces

This section is devoted to the formulation of a pre-tensioning
design of the S0 model, which ensures that the bending moment
distribution over the longitudinal beams corresponds to Md

(Fig. 5). Let X ¼ fx1; � � � xngT denote the vector collecting the pre-
tensioning forces of all cables (n = 12). By repeatedly solving elastic
problems of the bridge model in Fig. 2(a), we compute the axial
force carried by the j-th cable when the i-th cable is subject to a
unit axial force (Si system). Let dij denote such a force coefficient,
and let D denote the n� n influence matrix collecting all such
entries [25]. We are interested in solving the following linear
problem [26]:



Fig. 5. Target bending moment distribution for the optimal model (Md).

Fig. 6. Normalized cable forces tdi (divided by the axial force carried by cable #1)
for the optimal model (including cable pre-tensions Dti).
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DTX ¼ DT ð1Þ
where DT ¼ fDt1; � � �DtngT is the vector with current entry
Dti ¼ tdi � t0i, tdi and t0i denoting the forces in the i-th cable, respec-
tively, in correspondence of the optimal design and in the initial
models. The algebraic system of Eq. (1) is obtained by solving the
n + 2 elastic systems S0, Sa, S1, . . ., Sn. Its solution allows us to deter-
mine the pre-tensioning forces Dti to be applied to the different
cables in order to achieve the target bending moment distribution
Md (Fig. 6). The optimal cable force distribution illustrated in
Fig. 6 shows a more uniform profile compared to that of the initial
model (Fig. 4b), with a maximum cable force (in cable #9) that is
1.96 times larger than the force carried by cable #1.

5. Concluding remarks

We have presented an approach to the optimal pre-tensioning
design of composite cable-stayed bridges whose aim is to achieve
a target bending moment distribution over the deck. Such an
approach allows designers to recover from construction errors that
could compromise the structural safety of the bridge.

The proposed methodology is based on the matrix of influence
method, and relies on the determination of the cable forces on n+2
elastic structural models, with n denoting the total number of
cables. It can be applied to any construction phase and can be
easily generalized to account for major dynamic effects (such as,
e.g., wind and fluttering); time-dependent phenomena due, e.g.,
to material viscosity [23], and/or fracture damage [26]. Such a
bridge design technique can also be applied to prestressed concrete
structures, arch bridges with suspended decks, and tensegrity
bridges [25,27,28]. Other fields of application of the current influ-
ence matrix approach include the study of the optimal prestress of
tensile reinforcements for existing masonry and concrete struc-
tures [22,29–33]; the optimal design of cable-stayed bridges using
innovative concretes reinforced with 3D printed rebars [34–36];
and the optimal pre-tensioning of mechanical metamaterials to
be used as novel seismic isolation devices [37,38].
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