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We present a tensegrity approach to the strengthening of masonry vaults and domes performed by bond-
ing grids of fiber reinforced composites to the masonry substrate. A topology optimization of such a rein-
forcement technique is formulated, on accounting for a tensegrity model of the reinforced structure; a
minimal mass design strategy; different yield strengths of the masonry struts and tensile composite rein-
forcements; and multiple loading conditions. We show that the given optimization strategy can be prof-
itably employed to rationally design fiber-reinforced composite material reinforcements of existing or
new masonry vaults and domes, making use of the safe theorem of limit analysis. A wide collection of
numerical examples dealing with real-life masonry domes and vaults highlight the technical potential
of the proposed approach.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The field of Discrete Element Modeling (DEM) of materials and
structures is growing rapidly, attracting increasing attention from
physicists and mechanicians working in different research areas.
Originally, such a computational technique was aimed at describ-
ing particle interactions in discrete systems, via suitable force
and/or torque systems (fully discrete systems, refer, e.g., to [1]
and references therein). Nowadays, DEMs are also frequently used
in association with continuous approximation schemes (coupled
discrete-continuum models), in order to tackle scaling limitations
of purely discrete models. DEMs may indeed require a large num-
ber of variables, being well suited to describe small process zones
(dislocation and fracture nucleation, nanoindentation, atomic rear-
rangements, etc., cf. [2–7]).

In structural mechanics, a special class of DEMs is that of equiv-
alent truss models of solids and structures, which includes Lumped
Strain/Stress Models (LSM) of plates and shells [8–10]; Thrust Net-
work Approaches (TNA) to masonry structures [11–16]; mechani-
cal models of chains of granular materials or carbon nanotube
(CNT) arrays [17,18]; and strut and tie models of discontinuous
regions in reinforced-concrete structures [19], just to name a few
examples. Some convergence studies of such methods in the con-
tinuum limit are presented in [20–22] for bending plates, 2D elas-
ticity, and CNT arrays, respectively.

Tensegrity structures are prestressable truss structures, which
are obtained by stabilizing a set of compressed members (bars or
struts) through a network of tensile elements (cables or strings).
Tensegrity architectures have been used to describe a large variety
of natural [23] and engineering systems [24–26], and it has been
shown that the tensegrity approach to structural mechanics leads
to design minimal mass systems in different mechanical problems
[27–32].

The present work deals with the topology optimization of rein-
forcements of masonry vaults and domes realized through meshes
of Fiber Reinforced Polymers (FRP) and/or Fabric Reinforced
Cementitious Matrix (FRCM) composites bonded to the masonry
substrate. We model the examined structures as tensegrity net-
works of masonry struts and tensile elements corresponding to
the FRP-/FRCM-reinforcements. Such reinforcements are often
applied to masonry structures in the form of meshes of 1D ele-
ments [33,34], and are aimed at carrying tensile forces that would
otherwise cause cracking damage of masonry [35–39]. The pro-
posed optimization strategy determines the minimal mass tenseg-
rity structure connecting a given node set, under prescribed
yielding constraints. Each node is potentially connected to all the
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neighbor nodes lying in a ball of given radius, through compressive
and tensile elements. Such a connection pattern defines a back-
ground structure that is subject to minimal mass optimization
[30], assuming different yield strengths for the masonry struts
(compressive elements), and the FRP/FRCM reinforcements. An
optimization procedure takes the node set defining the geometry
of the structure (obtained, e.g., through a laser-scanner), the mate-
rial density and the compressive and tensile material strengths as
input parameters. It produces a minimal mass resisting mechanism
of the reinforced structure as output, which can be regarded as a
lumped stress/thrust network/strut and tie model of the examined
structure [12,14,15]. Under the assumption of perfectly plastic
response of masonry in compression and FRP/FRCM reinforce-
ments in tension, the safe theorem of the limit analysis of
elastic–plastic bodies [40] ensures that the reinforced structure is
safe under the examined loading conditions. It is worth noting that
the Italian Guide for the Design and Construction of Externally Bonded
FRP Systems for Strengthening Existing Structures claims what
follows: ‘Simplified schemes can also be used to describe the
behavior of the structure. For example, provided that tensile
stresses are directly taken by the FRP system, the stress level
may be determined by adopting a simplified distribution of stres-
ses that satisfies the equilibrium conditions but not necessarily
the strain compatibility’ (see [39], Section 5.2.1). A minimal mass
resisting mechanism allows for an optimized design of the
FRP-/FRCM-reinforcements, preventing excessive over-strength of
the reinforced structure, which may be responsible for reduced
‘cracking-adaptation’ capacity [41].

It worth noting that the strengthening of pre-existing masonry
structures may require the application of a suitable state of pre-
stress to be effective [39].

The paper is structured as follow. Section 2 describes the pro-
posed tensegrity model of a reinforced masonry vault or dome,
which is based on an automatically generated background struc-
ture. Next, Section 3 formulates a minimum mass optimization of
such a structure, under given yielding constraints and multiple
loading conditions. The following Section 4 presents a parade of
case studies dealing with FRP-/FRCM- reinforcements of a dome
(Section 4.1), a groin vault (or cross vault), a cloister vault (or dom-
ical vault) and a barrel vault (Section 4.2). Concluding remarks and
prospective work are illustrated in Section 5.

2. Tensegrity model of a reinforced masonry vault

Let us consider a masonry vault or dome with mean surface
described by a set of nn nodes in the 3D Euclidean space. In a given
Cartesian frame fO; x; y; zg, the components ðxk; yk; zkÞ of the posi-
tion vectors nk of all such nodes (k ¼ 1; . . . ;nn) can be arranged into
the following 3� nn node matrix

N ¼
x1 . . . xnn
y1 . . . ynn
z1 . . . znn

2
64

3
75 ð1Þ

We now introduce a background structure, which is obtained by
connecting each node nk with all the neighbors nj such that it
results jnk � njj 6 rk (interacting neighbors). Here, jnk � njj is the
Euclidean distance between nk and nj, and rk is a given connection
radius. Fig. 1 shows the particular case in which the interacting
neighbors of a selected node coincide with its nearest neighbors.
We connect nk to each interacting neighbor nj through two ele-
ments working in parallel: a compressive masonry strut (or bar)
bi ¼ nk � nj, and a tensile FRP/FRCM element (or string)
si ¼ nk � nj. The minimal mass optimization of the background
structure presented in Section 3 will choose which one such mem-
bers (bar or string) is eventually present between nodes nk and nj
in the optimized configuration (i.e., which one of the above mem-
bers eventually carries a nonzero axial force in the minimal mass
configuration, see also [30], Section 7). For future use, we let nb

and ns denote the total number of bars and the total number of
strings composing the background structure, respectively (with
nb ¼ ns in the non-optimal configuration), and we set nx ¼ nb þ ns.

We assume that the background structure is subject to a num-
ber m of different loading conditions, and, with reference to the j-

th condition, we let kðjÞbi denote the compressive force per unit

length (force density) acting in the i-th bar, and let cðjÞsi denote
the tensile force per unit length acting in the i-th string, both
defined to be positive quantities. The static equilibrium equations
of the nodes in correspondence of the current load condition can be
written as follows

AxðjÞ ¼ wðjÞ ð2Þ
where A is the 3nn � nx static matrix of the structure, depending on
the geometry and the connectivity of bars and strings (see [30]);wðjÞ

is external load vector, which stacks the 3nn Cartesian components of
the external forces acting on all nodes in the current loading condi-
tion; and xðjÞ is the vector with nx entries that collects the force den-
sities in bars and strings in correspondence of the same loading
condition, that is

xðjÞ ¼ ½kðjÞ1 � � � kðjÞnb jc
ðjÞ
1 � � � cðjÞns �

T ð3Þ
Let rbi and rsi respectively denote the compressive strength of

the generic bar and the tensile strength of the generic string form-
ing the background structure, which we hereafter assume behav-
ing as perfectly plastic members. Yielding constraints in bars and
strings require that, for each loading condition, it results

kðjÞi bi 6 rbiAbi ; cðjÞi si 6 rsiAsi ð5Þ
where Abi and Asi respectively denote the cross-section areas of the
generic bar and string.

The masses of the generic bar and string of the background
structure are computed as follows

mbi ¼ qbi
Abibi; msi ¼ qsi

Asi si; ð6Þ
where qbi

and qsi
denote the mass densities of such members,

respectively.

3. Minimal mass design

Following [30], we formulate a minimal mass design of the back-
ground structure through the following linear program

minimize
xðjÞ ;y

m ¼ dTy

subject to
AxðjÞ ¼ wðjÞ

CxðjÞ 6 Dy
xðjÞ P 0; y P 0

8><
>: ;

ð7Þ

where

y ¼ ½Ab1 � � �Abnb
jAs1 � � �Asns �T ð8Þ

dT ¼ ½.bi
bi � � �.bnb

bnb j.si
si � � �.sns

sns � ð9Þ

C ¼ diagðb1; � � � ; bnb Þ 0
0 diagðs1; � � � ; sns Þ

� �
ð10Þ

D ¼ diagðrb1 ; � � � ;rbnb
Þ 0

0 diagðrs1 ; � � � ;rsns Þ

" #
ð11Þ



Fig. 1. Background structure associated with a node set extracted from a dome (left) and interacting neighbors of a selected node (right).

Fig. 2. Cross-section of the dome of the church of Santa Maria di Monteverginella in
Naples.
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Problem (7) returns an optimal topology of the background
structure, which consists of the set of all members (bars and

strings) exhibiting nonzero force density (kðjÞi or cðjÞi ) in at least
one of the examined loading conditions. The optimal configura-
tion exhibits minimal mass among all the possible configurations
of the background structure, under the equilibrium constraints
(2) and the yielding constrains (5). It is worth noting that the
mass of the background structure should not be confused with
the self-weight of the masonry dome or vault under examination,
which we agree to include in the external load vector wðjÞ. The
quantity subject to minimization in problem (7) should instead
be regarded as the mass of an internal resisting mechanism of
the structure. As we already observed, the latter is formed by a
collection of masonry struts (bars), and a network of FRP/FRCM
reinforcements loaded in tension (strings), which are able to
carry axial forces that equilibrate the examined external loads
without violations of the local yielding constraints.

4. Numerical results

This section presents a parade of applicative examples of the
optimization procedure formulated in Section 3, which deal with
the FRP/FRCM reinforcements of a masonry dome (Section 4.1),
and three different typologies of masonry vaults: a groin vault
(or cross vault), a cloister vault (or domical vault) and a barrel
vault (Section 4.2). Let fO; x; y; zg be a Cartesian frame with the
z-axis oriented upward along the vertical direction. We consider
a vertical loading condition, corresponding to the masonry self-
weight, and four loading conditions summing the effects of the
masonry self-weight with those produced by horizontal forces
acting along the þx;�x;þy, and �y directions. The latter are
equal in magnitude to 35% of the vertical forces, and mimic the
effects of seismic excitations of the examined structures, through
a conventional, static approach (refer, e.g., to Eurocode 8 [42]).
We name seismic loadings the conditions that sum the masonry
self weight to the above horizontal forces. The examined masonry
consists of a ‘Neapolitan’ tufe brick masonry, which is largely dif-
fused in the area of Naples. We assume that such a masonry exhi-
bits 15.0 kN/m3 self-weight, and 13 MPa compressive strength rb

[44]. In addition, we assume a tensile strength rs equal to
376.13 MPa in the string elements, on taking an average value
of the bond strengths of the FRP and FRCM reinforcements of
masonry structures analyzed in [33,34], respectively. The exam-
ined background structures are restrained by fixed hinge supports
at the basis. We used the software Tensopt [43] to numerically
solve problem (7).
4.1. The dome of the church of Santa Maria di Monteverginella in
Naples

Let us analyze the dome of the church of Santa Maria di Mon-
teverginella in Naples, whose FRP-/FRCM-reinforcement has
already been studied in [44] through a r-adaptive finite-element
approach (refer to Fig. 2 for geometric details). We model the mid-
dle surface of such a dome through a tensegrity network with 145
nodes and 1504 connections (background structure in Fig. 1). The
optimal FRP/FRCM reinforcement patterns obtained through the
procedure formulated in Section 3 are shown in Fig. 3a–i.

Under vertical loading, the results in Fig. 3a–c highlight that the
minimal mass FRP/FRCM reinforcements of the current structure
are polar-symmetric and placed along parallel circles above the
drum, with width increasing downward. Seismic loading in the x
direction instead combines parallel-circles’ reinforcements with
diagonal reinforcements placed over the portions of the dome par-
allel to the x–z plane (�y edges, cf. Fig. 3d–f). In this case, the
widths of the reinforcements placed over the þx edge and the �y
edges of the dome are considerably larger than the widths of the
reinforcements placed over the �x edge.

The ‘combo’ loading condition combining vertical loading and
seismic loading in two perpendicular directions returns polar-
symmetric and parallel-circle reinforcements (Fig. 3g–i). It is worth
noting that the FRP/FRCM reinforcements corresponding to seismic
loading have markedly larger widths than those corresponding to
vertical loading (compare Fig. 3a–c with Fig. 3g–i). The width of
the top hoop reinforcements under vertical loading is about
100mm (cf. Fig. 3a–c), while that of the central hoop reinforcements



Fig. 3. Top, side and 3D views of the optimal reinforcement patterns of a masonry dome with FRP/FRCM strips of 0.34 mm thickness (marked in red), under different loading
conditions. (a)–(c): Vertical loading. (d)–(f): Seismic loading in the þx-direction. (g)–(i): Combined vertical loading and seismic loading in two perpendicular directions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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under combo vertical and seismic loading is 578 mm (cf. Fig. 3g–i).
The compressed members of the internal resisting mechanism of
the dome are mainly composed of meridian-shaped struts
(Fig. 3a–c), which are combined with diagonal struts in presence
of seismic loading (Fig. 3d–i). The results in Fig. 3 are in agreement
with the frequent observations of ‘meridional’ (or ‘orange-slice’)
crack patterns in unreinforced masonry domes (refer, e.g., to
[41,44] and references therein).

4.2. Groin, cloister and barrel vaults

Figs. 4–6 show the minimal mass FRP/FRCM reinforcements
that we obtained for a groin vault, a cloister vault and a barrel
vault, respectively. The geometries of the examined vaults are
illustrated in above figures, together with the corresponding back-
ground structures.
The background structure of the examined groin vault features
237 nodes and 1840 connections (cf. Fig. 4a–c). The minimal mass
reinforcement pattern of such a vault consists of FRP/FRCM strips
with 0.17 mm thickness on the web panels (width of the meridian
strips near the crown under vertical loading: 340 mm; total width
of the square reinforcing patch covering the crown under combo
seismic loading: 3000 mm); and 200 mm � 3.24 mm FRCM strips
by the side of the groins at the corners (Fig. 4). The latter can be
eventually replaced with pultruded FRP profiles with circular
cross-section, 11.18 mm radius and 620.5 MPa tensile strength
[45]. It is worth observing that the above reinforcements prevent
‘hinging’ cracks departing from the crown and meridian cracks,
in the case of vertical loading (Fig. 4d–f); and meridian cracks,
cracks parallel to the groins, and the so-called ‘Sabouret’ cracks
parallel to wall ribs, under combined vertical and seismic loading
(Fig. 4g–l). The masonry strut network of the groin vault consist



Fig. 4. Top, side and 3D views of the optimal reinforcement patterns of a groin vault with FRP/FRCM strips of 0.17 mm thickness on the web panels, combined with
200 mm � 3.24 mm FRCM strips or, alternatively, 11.18 mm radius pultruded FRP profiles at the corners (reinforcements marked in red). (a)–(c): Background structure.
(d)–(f): Vertical loading. (g)–(i): Seismic loading in the þx-direction. (j)–(l): Combined vertical loading and seismic loading in two perpendicular directions.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of four main arches at the ribs, which are completed by secondary
meridian arches and diagonal struts over the webs.

For the cloister vault we employed a background structure with
441 nodes and 4508 connections (see Fig. 5a–c). The optimal rein-
forcement of such a vault under vertical loading is mainly formed
by parallel FRP/FRCM strips with 0.17 mm thickness and 82 mm
maximum width near the crown (Fig. 5d–f). The above reinforce-
ments are combined with diagonal FRP/FRCM strips with about
140 mm maximum width near the intersections of the four vault
segments, under combined vertical and seismic loading (Fig.
5g–l). The compressed truss network include couples of diagonal
arches near the corners, parallel-line arches, and diagonal struts
over the vault segments (Fig. 5d–l).

In the case of the barrel vault, we focused our attention on seis-
mic loading in the þx direction (Fig. 6a–c), and combined vertical
loading and seismic loading in two orthogonal directions
(Fig. 6d–f), neglecting simple vertical loading. The background
structure of the current vault is composed of 231 nodes and
1660 connections (Fig. 6). The resisting mechanism of the barrel
vault under seismic loading includes transverse compressed



Fig. 5. Top, side and 3D views of the optimal reinforcement patterns of a cloister vault with FRP/FRCM strips of 0.17 mm thickness (marked in red), under different loading
conditions. The widths of the FRP/FRCM reinforcements are magnified by a factor 2 for visual clarity. (a)–(c): Background structure. (d)–(f): Vertical loading. (g)–(i): Seismic
loading in the þx-direction. (j)–(l): Combined vertical loading and seismic loading in two perpendicular directions. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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arches, longitudinal FRP/FRCM strips with 0.17 mm thickness, and
diagonal struts, as shown in Fig. 6d–f. The FRP/FRCM reinforce-
ments feature rather small width in the present case (minimum
width: 0.1 mm; maximumwidth: 4 mm), and have been magnified
by a factor 10 in Fig. 6 for visual clarity.
5. Concluding remarks

We have presented a minimal mass approach to the search for
internal resisting mechanisms of masonry domes and vaults
composed of compressed masonry struts and tensile FRP/FRCM



Fig. 6. Top, side and 3D views of the optimal reinforcement patterns of a barrel vault with FRP/FRCM strips of 0.17 mm thickness (marked in red). The widths of the FRP/FRCM
reinforcements are magnified by a factor 10 for visual clarity. (a)–(c): Seismic loading in the þx-direction. (d)–(f): Combined vertical loading and seismic loading in two
perpendicular directions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reinforcements. Such mechanisms can be regarded as tensegrity/strut
and tie models of the examined structures, in line with available
technical standard for the FRP reinforcement of masonry structures
[39]. The existence of internal resisting mechanisms subject to
given yielding constraints ensures that the reinforced structure is
safe under the examined loading conditions, according to the safe
theorem of the limit analysis of perfectly plastic bodies [40]. Several
numerical examples have highlighted the potential of the proposed
approach in designing minimal mass FRP/FRCM reinforcements of
masonry vaults and domes,which are aimed at preserving sufficient
‘cracking-adaptation’ capacity of the reinforced structure.

Future directions of the present study will be devoted to formu-
lating tensegrity models of FRP/FRCM reinforced planar masonry
structures (e.g., masonry walls), and three-dimensional assemblies
of domes, vaults and supporting structures (including walls, piers,
flying buttresses; drums; etc.). Additional extensions of the present
research will deal with discrete-to-continuum approaches to
tensegrity membranes [6], and 3D tensegrity networks.
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