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The local behaviour of a composite profile with annular cross-section is studied in presence of interfacial
cohesive forces at the ends, where the lateral surface may be involved in a bonding connection. Features
include the possibility of warping displacements, nonlinear shear strains within the thickness of the
annular wall originated by the bonding interactions. Numerical simulations are carried out in order to
investigate the tube behaviour over the loading path up to the failure, thus underlining the relevance
of the thickness on the magnitude of the shear strains.
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1. Introduction

Thick-walled tubular composite profiles with annular cross-
section represent the optimal solution for a number of applications
(large truss covers, large bridge decks or spatial frames). Within
this context, the possibility of connecting the composite tubes by
means of co-axial nodal devices has been recently investigated
with the aim of developing a standard, reliable, easy to make sys-
tem for onsite assembling modality by using a structural glue.

Many factors affect the bonding behaviour at the ends of the
tube, where the adhesive interface to the nodal device exists: the
constitutive properties for the device (metal, composite) and the
tube (GFRP, CFRP), the choice of the glue, the length and thickness
of the bonding layer, the considered loading path.

A useful approach for modelling the mechanical response of the
adhesive interface refers to the cohesive fracture mechanics. In this
view, the interfacial interactions come from appropriate potentials
thus allowing a simple mathematical formulation of the bonding
problem.

The cohesive fracture mechanics literature includes many con-
tributions over the recent years especially devoted to the bonding
of composite adherents.

Almitani and Othman [1] investigated the harmonic response of
single lap and double-lap joints including viscoelastic properties of
the adhesive and the adherents. To this aim they assumed a
viscous-elastic behaviour for the adhesive and the adherents,
which is represented by a complex modulus written using the
model of Kelvin-Voigt.

Xu and Qu [2] developed a model that incorporates the unload-
ing behaviour varying from full plasticity to damage. They cap-
tured the irreversible deformation mechanisms resulting from
the localized plastic deformation and damage accumulation due
to the nonlinear separation of fibre–matrix interface under trans-
verse loading and unloading conditions.

The last models are the most recent ones. However, for the
specific scope of the present study, which is focused on the analysis
of the local behaviour of the tube in presence of cohesive forces, we
have chosen to start a discussion from two well-known papers by
Rose et al. [3,4]. These works exhibit a great interest due to their
universal binding energy law for studying the mode I crack propa-
gation in metallic and bimetallic interfaces. Moreover, the work by
Camacho and Ortiz [5] is also considered. They define, in fact, an
effective opening displacement as a function of the opening (mode
I) and sliding (mode II) interfacial displacements and introduce a
coupling rule in order to account for both.

In a recent work [6] the mechanical behaviour of tubular com-
posite profiles bonded to apposite nodal devices has been investi-
gated in a combined manner which accounts for both the
kinematics of the tube and the cohesive behaviour of the bonding
interface. The effects of shear strains within the thickness of the
tube are also considered. Although internal stresses essentially
accord to the axial regime, it is observed that shear strains and
stresses originated by the interfacial interactions are present
within the composite tube over the adhesive bonding zones. As a
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Notation

O origin of the reference system
i1; i2; k unit vectors (orthonormal)
r radial coordinate
z longitudinal coordinate (axial)
zI axial coordinate at the beginning of the cohesive zone
Oi intersection between z-axis and the generic cross-

section (i.e. O1)
tb thickness of the bonding layer
Lb length of cohesive zone
t thickness of the composite tube
L length of the composite tube
r2 inner radius of the composite tube
r3 outer radius of the composite tube
f dimensionless axial coordinate over the cohesive zone :

f ¼ ðz� zIÞ=Lb
q dimensionless radial coordinate: q ¼ ðr � r2Þ=t
wðr; zÞ displacement field (axial)
wiðzÞ displacement field (axial) at a defined radial coordinate

ri
f iðrÞ polynomials of the radial coordinate
dr interfacial normal displacement

dk interfacial tangential displacement
kI; kII coupling coefficients between the normal and tangen-

tial interfacial displacements
h interfacial equivalent displacement
hc characteristic value of the interfacial displacement (re-

lated to a static fracture)
UU fracture energy (per unit surface)
FðhÞ cohesive potential
trk interfacial tangential traction (per unit surface)
trr interfacial normal traction (per unit surface)
p interfacial traction
pc strength of the cohesive interface
j secant slope of the cohesive interface law
pzðrÞ normal traction forces (per unit surface) applied at the

loaded end of the system
T resultant traction
Tmax failure load
ci average shear strain over the inner half thickness of the

composite tube
co average shear strain over the outer half thickness of the

composite tube
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consequence, the local behaviour of the composite profile is
affected by them and the failure criterion should account for this.

In the present work a parametric numerical analysis has been
carried out in order to investigate the strains and stresses within
the tube accounting for the interfacial interactions distribution.
Moreover, the load provoking the bonding failure is evaluated.
The numerical model has been developed according to the
mechanical model described in [6,7]. A preliminary assumption
has been made: the nodal device stiffness has been considered
extremely high in comparison with the tube stiffness, that is a con-
dition which substantially occurs in practice. The considered
parameters of the study include the thickness of the composite
tube, the bonding lengths, the load entity over a monotonic loading
path up to the failure (Fig. 1).

2. The mechanical model

The mechanical model considered in the present study is based
on appropriate kinematic hypotheses [6,7] that allow to investigate
how the shear strains can influence the system response in terms
of displacements and failure load. The model, which is very gen-
eral, is now proposed for studying the response of a pultruded
tubular profile made of FRP when generic forces, for instance cohe-
sive forces or active forces, act on the lateral surface of the tube.
The main feature of this model is the simulation of the axial dis-
placement field as a linear combination of generalised
unknowns,wiðzÞ, which assume the physical meaning of axial dis-
placements at defined radial coordinates, ri. Moreover, the combi-
nation coefficients are polynomials of the radial coordinate, f iðrÞ,
truncated at the second order terms:
k
1i

2i

O

Constrained end

Fig. 1. Composite tube (
wðr; zÞ ¼ wiðzÞf iðrÞ ði ¼ 1;2;3Þ ð1Þ
The geometry of the problem under consideration is shown in

Figs. 2a and 2b, where symbols L,t,r2 and r3 denote the length,
the thickness, the inner and the outer radius of the tube, while Lb
is for the length over which the cohesive forces act.

Furthermore, i1, i2 and k represent the unit vectors of the
orthonormal basis, with k aligned to the z-axis, while i1, i2 lying
within the cross-section plane, as well as the point O is a global ori-
gin. The symbol O1 denotes the intersection between the z-axis and
the 1–1 cross section.

By virtue of axisymmetric geometry, it is possible to model the
distribution of the cohesive forces (per unit of surface) acting over
the bonding zone (i.e. the interfacial normal traction, trr , and the
tangential interaction, trk) as a function of the conjugated displace-
ments dr and dk (Fig. 3).

According to [6–7], the following potential is introduced:

FðhÞ ¼ UU 1� 1þ h
hc

� �
e�ðh=hc Þ

� �
ð2Þ

where h indicates the norm of the vector h:

h ¼ kIdrnþ kIIdkk ð3Þ
with kI and kII the coupling coefficients between the normal and
tangential interfacial displacements.

The corresponding interaction, p, is assumed as follows:

p ¼ 1
kI
trr nþ 1

kII
trk k ¼ p

h
h

ð4Þ

with the norm p being expressed by:
T

Loaded end

axonometric view).



Fig. 2a. Geometric configuration (diametric longitudinal section).
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Fig. 2b. Geometric configuration (cross-section).
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Fig. 3. Interfacial cohesive forces trr and trk (per unit surface).
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p ¼ dF
dh

¼ pc
h
hc

eð1�h=hcÞ ð5Þ

Eq. (5) shows the dependency on the parameters hc and pc,
related to the fracture energy (per unit surface):

UU ¼ epchc ð6Þ
The expressions of h and p are finally obtained:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkIdrÞ2 þ ðkIIdkÞ2

q
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtrr
kI
Þ
2

þ ðtrk
kII
Þ
2

s
ð7:a-bÞ

It is also easy to observe that the cohesive model simulates the
softening effect for h > hc while the full separation is achieved in
an asymptotic sense (for h ! 1).

3. Finite element model

A finite element approximation of the continuum problem
above summarised is proposed in [6]. According to the numerical
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Fig. 4. Finite
setup indicated in [6], the considered mesh is composed of two
nodes finite elements (Fig. 4), with the single node having 6
degrees of freedom. The numerical approximation concerns the
generalised kinematical unknowns wiðzÞ

The interpolation of wi is obtained by means of cubic Hermitian
polynomials:

wiðnÞ ¼ h10ðnÞwð1Þ
i þ h11ðnÞw0ð1Þ

i þ h20ðnÞwð2Þ
i þ h21ðnÞw0ð2Þ

i ð8Þ
where:

h10 ¼ 1
4
ð2� 3nþ n3Þ h11 ¼ le

8
1� n� n2 þ n3
� � ð9:a-bÞ

h20 ¼ 1
4
ð2þ 3n� n3Þ h21 ¼ le

8
ð�1� nþ n2 þ n3Þ ð9:c-dÞ

being le the length of the finite element; wð1Þ
i and wð2Þ

i the nodal val-

ues of the kinematic unknown under consideration while w0ð1Þ
i and

w0ð2Þ
i the nodal values of the derivative of wi with respect to the axial

coordinate z.
The following generalised displacements vector wðeÞ, with

dimensions 3 � 1, is considered:

wðeÞ ¼ ½w1;w2;w3�T ¼ NUðeÞ ð10Þ
In previous expression N denotes the four-block matrix, with

dimensions 3 � 12:

N ¼ ½N10;N11;N20;N21� ð11Þ
where (p = 1, 2 and q = 0, 1):

Npq ¼ diagðhpq;hpq;hpqÞ ð12Þ
Moreover, UðeÞ is a numeric vector, with dimensions 12 � 1,

which collects the values of the kinematic unknowns attained at
both the nodes of the finite element:

UðeÞ ¼ UT
ðe;1Þ;U

T
ðe;2Þ

h iT
ð13Þ

with Uðe;pÞ denoting the kinematic unknowns at the p node (p = 1,
2):

Uðe;pÞ ¼ wðpÞ
1 ;wðpÞ

2 ;wðpÞ
3

	 

; w0ðpÞ

1 ;w0ðpÞ
2 ;w0ðpÞ

3

	 
h iT
ð14Þ
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Table 1
Geometry of the cohesive zone.

Length of the cohesive zone – Lb

Case 1 ðt ¼ 10 mmÞ 10t 100 mm
20t 200 mm
30t 300 mm
40t 400 mm

Case 2 ðt ¼ 20 mmÞ 10t 200 mm
20t 400 mm
30t 600 mm
40t 800 mm

Case 3 ðt ¼ 30 mmÞ 10t 300 mm
20t 600 mm
30t 900 mm
40t 1200 mm

Table 2
GFRP constitutive properties.

Transverse normal modulus (ET = 3700 N/mm2)
Longitudinal normal modulus (EL = 37,000 N/mm2)
Shear modulus (n� k plane) (GTL = 1850 N/mm2)
Poisson coefficients (mTT ¼ mTL ¼ mLT ¼ 0)

Table 3
Parameters of the cohesive potential.

Fracture energy (per unit surface) (UU ¼ 0.2 N mm/mm2)
Characteristic value of h (hc = 0.0123 mm)
Mode I/mode II coupling coefficients (kI ¼ 0; kII ¼ 1)

A. Orefice et al. / Composite Structures 160 (2017) 1126–1135 1129
With reference to the generic finite element, the interfacial dis-
placements along both the n-axis (radial) and the z-axis, dr and dk,
can be expressed as a function of the nodal unknowns UðeÞ.

If only mode II activates (dr ¼ 0), then h ¼ kIIdkk . Under this
assumption, the interfacial behaviour is represented by a unique
cohesive relationship between trk and dk. It results:

dk ¼ DNUðeÞ ð15Þ
with D the following numeric vector, with dimensions 1 � 3:

D ¼ ½0;1;0� ð16Þ
Finally, the interfacial interaction along the z-axis, trk, is:

trk ¼ jdk ð17Þ
where the symbol j denotes the secant slope of the cohesive law:

j ¼ kII
pc

hc
eð1�kIIdk=hcÞ ð18Þ

If a non-linear solution exists (i.e. before collapse), it can be
achieved by a numerical iterative algorithm which performs the
updating of j at any point of the numerical model for the new
iteration.

4. Numerical results

The numerical analyses proposed in this paper deal with the
response of a glass fibre-reinforced polymer (GFRP) tube bonded
to a rigid substrate by means of a cohesive interface. An axisym-
metric normal stress distribution pzðrÞ is considered (loaded end)
as indicated in Fig. 5:

The resultant traction force, T, is:

T ¼ 2p
Z r3

r2

pzðrÞrdr ð19Þ

The main scope of the present paper is to investigate the effect
of the cohesive forces on the strains and stresses within the tube.
With the aim of pointing out this effect, three values of the wall
thickness are considered (Table 1). Moreover, four values of the
length of the cohesive zone have been associated with the generic
thickness value.

The global length of the tube is fixed ðL ¼ 10LbÞ, thus guarantee-
ing that local effects at the loaded end do not interfere with local
effects at the bonded end. The inner radius of the GFRP tube is fixed
(66.0 mm); the thickness of the cohesive interface has been consid-
ered equal to tb = 2.0 mm, which is a reasonable value when deal-
ing with onsite bonding solutions.
rkt

bL

rkt

Fig. 5. Cohesive forces and external app
The constitutive properties of the GFRP are presented in Table 2,
while the parameters of the cohesive potential are indicated in
Table 3.

It is important to remark that in the present study, which is a
preliminary study, no coupling between mode I/mode II is consid-
ered, due to the assumption of zero Poisson coefficients for the
GFRP.

Twelve numerical analyses have been performed as a combina-
tion of three thickness values with four lengths of the cohesive
zone. The strain-stress behaviour has been studied over the loading
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Table 4
Failure loads (numeric).

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

Case 1 ðt ¼ 10 mmÞ Tmax ½N� 158,250 170,000 171,000 171,000
FðhmaxÞ=UU 0.990 0.995 0.999 0.999

Case 2 ðt ¼ 20 mmÞ Tmax ½N� 247,300 257,000 257,000 257,000
FðhmaxÞ=UU 0.985 0.990 0.992 0.992

Case 3 ðt ¼ 30 mmÞ Tmax ½N� 325,800 337,000 338,000 338,000
FðhmaxÞ=UU 0.985 0.995 0.999 0.999

Fig. 6. Interfacial cohesive forces over the bonding zone at collapse (Case 1).

Fig. 7. Interfacial cohesive forces at collapse over the bonding zone (Case 2).

Fig. 8. Interfacial cohesive forces at collapse over the bonding zone (Case 3).
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path up to the failure, which occurs as the separation of the tube
from the substrate.

The prediction of the failure load, Tmax, is presented in Table 4.
In addition, the corresponding ratio of the stored interfacial energy
to the fracture energy, FðhmaxÞ=UU, is also indicated.

As it is well-known, the failure load does not increase as the
length Lb increases above a certain threshold value, more or less
equal to Lb ¼ 20t for the considered problem.
In Figs. 6–8, the interfacial cohesive forces trk at collapse are
plotted in a dimensionless manner. They are normalized, in fact,
with reference to the peak value corresponding to the strength of
the interface. Also the axial coordinate has been normalised with
respect to the global length of the bonding zone.

Several considerations are appropriate.

i) The full separation of the interface is achieved at f ¼ 1:0.
This condition can be detected in a numeric sense if the ratio
of the stored interfacial energy to the fracture energy
becomes higher than an arbitrary fixed value (0.980 in the
present study).

ii) The peak value of the interactions shifts towards the right
end (the inner end) of the cohesive zone as Lb increases.

iii) The secondary peak at the opposite end of the bonding zone
(left end – f ¼ 0:0) depends on the ratio between the stiff-
ness of the substrate to the tube stiffness. The higher the
ratio the lower the secondary peak.

In Table 5 the axial displacements at collapse (T ¼ Tmax) are pre-
sented for different cross-sections over the bonding length (f ¼ 0:0,
f ¼ 0:5 and f ¼ 1:0), being here the place where the effects of the
shear deformability of the GFRP tube are mostly expected. The val-
ues indicated in Table 5 are relative to the inner lateral surface (r2),
the mid-surface (rm) and the outer lateral surface (r3) of the tube.

Moreover, in Figs. 9–12 the graphs of the axial displacements
(at collapse) are plotted versus the dimensionless radial coordinate
q. They refer to the inner cross-section (f ¼ 1:0), where the full
separation occurs.



Table 5
Axial displacements of the GFRP tube for three cross-sections over the cohesive zone.

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

w2½mm� wm½mm� w3½mm� w2½mm� wm½mm� w3½mm� w2½mm� wm½mm� w3½mm� w2½mm� wm½mm� w3½mm�
Case 1 ðt ¼ 10 mmÞ f ¼ 0:0 0.003 0.010 0.012 0.001 0.003 0.004 0.001 0.002 0.003 0.001 0.002 0.002

f ¼ 0:5 0.012 0.022 0.024 0.009 0.015 0,017 0.011 0.015 0.016 0.013 0.014 0.014
f ¼ 1:0 0.058 0.060 0.061 0.092 0.093 0.093 0.131 0.131 0.131 0.136 0.136 0.136

Case 2 ðt ¼ 20 mmÞ f ¼ 0:0 0.003 0.013 0.016 0.002 0.006 0.007 0.002 0.006 0.007 0.002 0.006 0.007
f ¼ 0:5 0.038 0.051 0.055 0.019 0.022 0.024 0.027 0.028 0.028 0.036 0.036 0.036
f ¼ 1:0 0.081 0.084 0.085 0.106 0.108 0.109 0.124 0.126 0.127 0.142 0.144 0.145

Case 3 ðt ¼ 30 mmÞ f ¼ 0:0 0.003 0.017 0.020 0.003 0.012 0.013 0.003 0.011 0.013 0.003 0.011 0.013
f ¼ 0:5 0.018 0.034 0.039 0.034 0.038 0.039 0.051 0.052 0.052 0.067 0.067 0.067
f ¼ 1:0 0.093 0.097 0.100 0.133 0.137 0.138 0.176 0.178 0.180 0.209 0.211 0.212

Fig. 9. Axial displacements versus the radial coordinate ðf ¼ 1:0; Lb ¼ 10tÞ.

Fig. 10. Axial displacements versus the radial coordinate ðf ¼ 1:0; Lb ¼ 20tÞ.

Fig. 11. Axial displacements versus the radial coordinate ðf ¼ 1:0; Lb ¼ 30tÞ.
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A simple consideration emerges: the gradient of the axial dis-
placements within the thickness of the GFRP tube is responsible
for evident non-uniform shear strains.

These strains can be appreciated in a simplified manner by
means of the following formulas, which represent the average
shear strains over the inner and outer half-thickness of the tube:
ci ¼
wm �w2

t=2
co ¼

w3 �wm

t=2
ð20:a-bÞ

In Table 6 the shear strain analysis (at collapse) for the consid-
ered numerical simulations is presented.

The shear strains (averaged) have been analysed over the entire
loading path up to the failure in order to detect the influence of the



Fig. 12. Axial displacements versus the radial coordinate ðf ¼ 1:0; Lb ¼ 40tÞ.

Table 6
Averaged shear strains (at collapse) within the thickness of GFRP tube.

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

ci co ci co ci co ci co

Case 1 ðt ¼ 10 mmÞ f ¼ 0:0 1.34E�03 4.55E�04 3.94E�04 1.07E�04 2.83E�04 6.55E�05 2.66E�04 5.91E�05
f ¼ 0:5 2.00E�03 5.56E�04 1.20E�03 3.99E�04 7.44E�04 2.66E�04 1.66E�04 6.24E�05
f ¼ 1:0 3.67E�04 1.85E�04 7.70E�05 4.90E�05 9.27E�06 6.73E�06 9.00E�06 6.60E�06

Case 2 ðt ¼ 20 mmÞ f ¼ 0:0 1.01E�03 3.07E�04 4.59E�04 9.76E�05 4.32E�04 8.75E�05 4.31E�04 8.71E�05
f ¼ 0:5 1.31E�03 3.45E�04 3.72E�04 1.37E�04 7.44E�05 2.79E�05 1.51E�05 5.92E�06
f ¼ 1:0 2.45E�04 1.55E�04 1.66E�04 1.06E�04 1.66E�04 1.05E�04 1.66E�04 1.05E�04

Case 3 ðt ¼ 30 mmÞ f ¼ 0:0 8.99E�04 2.34E�04 5.90E�04 1.15E�04 5.78E�04 1.10E�04 5.77E�04 1.10E�04
f ¼ 0:5 1.06E�03 3.37E�04 2.24E�04 8.20E�05 5.11E�05 1.89E�05 9.65E�06 3.68E�06
f ¼ 1:0 2.83E�04 1.58E�04 2.04E�04 1.25E�04 1.26E�04 8.59E�05 1.26E�04 8.59E�05

Fig. 13. Average shear strain ci versus applied load (Lb ¼ 10t) ( t ¼ 10 mm, t ¼ 20 mm, t ¼ 30 mm).

Fig. 14. Average shear strain ci versus applied load (Lb ¼ 20t) ( t ¼ 10 mm, t ¼ 20 mm, t ¼ 30 mm).
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Fig. 15. Average shear strain ci versus applied load (Lb ¼ 30t) ( t ¼ 10 mm, t ¼ 20 mm, t ¼ 30 mm).

Fig. 16. Average shear strain ci versus applied load (Lb ¼ 40t) ( t ¼ 10 mm, t ¼ 20 mm, t ¼ 30 mm).

Table 7
Shear strains within the thickness of GFRP tube over the cohesive zone (f ¼ 0:0).

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

T=Tmax T½N� ci co T½N� ci co T½N� ci co T½N� ci co

Case 1 ðt ¼ 10 mmÞ 0:2 31,650 1.32E�04 4.13E�05 34,000 5.79E�05 1.34E�05 34,200 5.39E�05 1.18E�05 34,200 5.36E�05 1.18E�05
0:4 63,300 2.72E�04 8.60E�05 68,000 1.16E�04 2.70E�05 68,400 1.07E�04 2.37E�05 68,400 1.07E�04 2.36E�05
0:6 94,950 4.29E�04 1.37E�04 102,000 1.75E�04 4.10E�05 102,600 1.61E�04 3.56E�05 102,600 1.60E�04 3.53E�05
0:8 126,600 6.28E�04 2.04E�04 136,000 2.37E�04 5.62E�05 136,800 2.14E�04 4.75E�05 136,800 2.13E�04 4.71E�05
1:0 158,250 1.34E�03 4.55E�04 170,000 3.94E�04 1.07E�04 171,000 2.83E�04 6.55E�05 171,000 2.66E�04 5.91E�05

Case 2 ðt ¼ 20 mmÞ 0:2 49,460 1.30E�04 3.38E�05 51,400 8.93E�05 1.80E�05 51,400 8.75E�05 1.73E�05 51,400 8.74E�05 1.73E�05
0:4 98,920 2.63E�04 6.89E�05 102,800 1.78E�04 3.62E�05 102,800 1.74E�04 3.48E�05 102,800 1.74E�04 3.47E�05
0:6 148,380 4.01E�04 1.06E�04 154,200 2.67E�04 5.45E�05 154,200 2.61E�04 5.22E�05 154,200 2.61E�04 5.21E�05
0:8 197,840 5.55E�04 1.50E�04 205,600 3.55E�04 7.31E�05 205,600 3.46E�04 6.97E�05 205,600 3.46E�04 6.95E�05
1:0 247,300 1.01E�03 3.07E�04 257,000 4.59E�04 9.76E�05 257,000 4.32E�04 8.75E�05 257,000 4.31E�04 8.71E�05

Case 3 ðt ¼ 30 mmÞ 0:2 65,160 1.46E�04 3.31E�05 67,400 1.18E�04 2.22E�05 67,600 1.18E�04 2.20E�05 67,600 1.18E�04 2.18E�05
0:4 130,320 2.93E�04 6.69E�05 134,800 2.36E�04 4.45E�05 135,200 2.34E�04 4.38E�05 135,200 2.34E�04 4.37E�05
0:6 195,480 4.42E�04 1.02E�04 202,200 3.52E�04 6.69E�05 202,800 3.50E�04 6.58E�05 202,800 3.50E�04 6.58E�05
0:8 260,640 5.99E�04 1.41E�04 269,600 4.68E�04 8.96E�05 270,400 4.64E�04 8.80E�05 270,400 4.64E�04 8.79E�05
1:0 325,800 8.99E�04 2.34E�04 337,000 5.90E�04 1.15E�04 338,000 5.78E�04 1.10E�04 338,000 5.77E�04 1.10E�04
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nonlinear cohesive behaviour on the shear strains and stresses. Of
course, this effect is expected as a local effect nearby the con-
strained end of the tube, where the cohesive forces act.

A nonlinear effect in terms of shear strains is identified over the
cohesive zone for higher load levels (Figs. 13–16). This is a clear
consequence of the equilibrium between shear stresses arising
on the lateral surface of the tube and interfacial forces (per unit
surface) lying on the softening branch of the cohesive law (Tables
7–9).

As a final result, it is worth interesting to consider the evolution
of the axial strains by means of the following formula, which
returns the average value of the axial strain over the cohesive zone
with reference to the mid-surface of the GFRP tube :
eavg ¼ ðwmðf ¼ 1Þ �wmðf ¼ 0ÞÞ=Lb ð21Þ
A nonlinear dependency of the average axial strain on the

applied load emerges over the bonding length (Table 10).
In the following section a review of the main relevant results is

discussed.

5. Conclusive remarks

The use of a novel kinematical model of a composite tube
loaded in traction is proposed in this study in order to capture non-
linear shear stresses originated by the equilibrium with possible
cohesive forces acting on the lateral surface of the member. The



Table 9
Shear strains within the thickness of GFRP tube over the cohesive zone (f ¼ 1:0).

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

T=Tmax T½N� ci co T½N� ci co T½N� ci co T½N� ci co

Case 1 ðt ¼ 10 mmÞ 0:2 31,650 4.14E�04 8.67E�05 34,000 4.37E�04 9.13E�05 34,200 4.39E�04 9.20E�05 34,200 4.39E�04 9.20E�05
0:4 63,300 7.58E�04 1.74E�04 68,000 7.93E�04 1.83E�04 68,400 7.96E�04 1.84E�04 68,400 7.96E�04 1.85E�04
0:6 94,950 9.96E�04 2.58E�04 102,000 1.02E�03 2.69E�04 102,600 1.02E�03 2.71E�04 102,600 1.02E�03 2.71E�04
0:8 126,600 1.04E�03 3.22E�04 136,000 9.94E�04 3.25E�04 136,800 9.88E�04 3.26E�04 136,800 9.88E�04 3.26E�04
1:0 158,250 3.67E�04 1.85E�04 170,000 7.70E�05 4.90E�05 171,000 9.27E�06 6.73E�06 171,000 9.00E�06 6.60E�06

Case 2 ðt ¼ 20 mmÞ 0:2 49,460 3.49E�04 6.24E�05 51,400 3.56E�04 6.32E�05 51,400 3.56E�04 6.31E�05 51,400 3.56E�04 6.31E�05
0:4 98,920 6.52E�04 1.28E�04 102,800 6.64E�04 1.30E�04 102,800 6.63E�04 1.30E�04 102,800 6.63E�04 1.30E�04
0:6 148,380 8.79E�04 1.97E�04 154,200 8.89E�04 2.00E�04 154,200 8.88E�04 1.99E�04 154,200 8.89E�04 1.99E�04
0:8 197,840 9.54E�04 2.63E�04 205,600 9.41E�04 2.65E�04 205,600 9.41E�04 2.65E�04 205,600 9.41E�04 2.64E�04
1:0 247,300 2.45E�04 1.55E�04 257,000 1.66E�04 1.06E�04 257,000 1.66E�04 1.05E�04 257,000 1.66E�04 1.05E�04

Case 3 ðt ¼ 30 mmÞ 0:2 65,160 3.05E�04 4.92E�05 67,400 3.09E�04 4.91E�05 67,600 3.10E�04 4.92E�05 67,600 3.10E�04 4.92E�05
0:4 130,320 5.76E�04 1.02E�04 134,800 5.83E�04 1.02E�04 135,200 5.84E�04 1.02E�04 135,200 5.84E�04 1.02E�04
0:6 195,480 7.91E�04 1.59E�04 202,200 7.96E�04 1.59E�04 202,800 7.97E�04 1.59E�04 202,800 7.97E�04 1.59E�04
0:8 260,640 8.86E�04 2.19E�04 269,600 8.78E�04 2.20E�04 270,400 8.77E�04 2.20E�04 270,400 8.77E�04 2.20E�04
1:0 325,800 2.83E�04 1.58E�04 337,000 2.04E�04 1.25E�04 338,000 1.26E�04 8.54E�05 338,000 1.26E�04 8.59E�05

Table 8
Shear strains within the thickness of GFRP tube over the cohesive zone (f ¼ 0:5).

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

T=Tmax T½N� ci co T½N� ci co T½N� ci co T½N� ci co

Case 1 ðt ¼ 10 mmÞ 0:2 31,650 1.99E�04 7.30E�05 34,000 4.65E�05 1.75E�05 34,200 1.06E�05 3.98E�06 34,200 2.41E�06 9.07E�07
0:4 63,300 4.17E�04 1.51E�04 68,000 9.83E�05 3.69E�05 68,400 2.25E�05 8.49E�06 68,400 5.10E�06 1.90E�06
0:6 94,950 6.69E�04 2.39E�04 102,000 1.61E�04 6.02E�05 102,600 3.68E�05 1.38E�05 102,600 8.32E�06 3.08E�06
0:8 126,600 1.01E�03 3.49E�04 136,000 2.54E�04 9.47E�05 136,800 5.84E�05 2.20E�05 136,800 1.33E�05 5.06E�06
1:0 158,250 2.00E�03 5.56E�04 170,000 1.20E�03 3.99E�04 171,000 7.44E�04 2.66E�04 171,000 1.66E�04 6.24E�05

Case 2 ðt ¼ 20 mmÞ 0:2 49,460 1.38E�04 5.06E�05 51,400 2.76E�05 1.03E�05 51,400 5.51E�06 2.09E�06 51,400 1.09E�06 4.11E�07
0:4 98,920 2.84E�04 1.04E�04 102,800 5.69E�05 2.13E�05 102,800 1.13E�05 4.20E�06 102,800 2.25E�06 8.46E�07
0:6 148,380 4.46E�04 1.62E�04 154,200 8.98E�05 3.36E�05 154,200 1.78E�05 6.65E�06 154,200 3.56E�06 1.34E�06
0:8 197,840 6.49E�04 2.32E�04 205,600 1.32E�04 4.93E�05 205,600 2.63E�05 9.81E�06 205,600 5.24E�06 1.96E�06
1:0 247,300 1.31E�03 3.45E�04 257,000 3.72E�04 1.37E�04 257,000 7.44E�05 2.79E�05 257,000 1.51E�05 5.92E�06

Case 3 ðt ¼ 30 mmÞ 0:2 65,160 1.13E�04 4.10E�05 67,400 2.14E�05 7.89E�06 67,600 4.04E�06 1.50E�06 67,600 7.70E�07 2.97E�07
0:4 130,320 2.31E�04 8.35E�05 134,800 4.40E�05 1.62E�05 135,200 8.24E�06 3.03E�06 135,200 1.20E�06 9.33E�07
0:6 195,480 3.59E�04 1.29E�04 202,200 6.79E�05 2.49E�05 202,800 1.27E�05 4.60E�06 202,800 2.14E�06 5.24E�07
0:8 260,640 5.10E�04 1.82E�04 269,600 9.70E�05 3.56E�05 270,400 1.84E�05 6.90E�06 270,400 3.44E�06 1.23E�06
1:0 325,800 1.06E�03 3.37E�04 337,000 2.24E�04 8.20E�05 338,000 5.11E�05 1.89E�05 338,000 9.65E�06 3.68E�06

Table 10
Axial strain analysis over the bonding length.

Lb ¼ 10t Lb ¼ 20t Lb ¼ 30t Lb ¼ 40t

T=Tmax T ½N� eavg ½le� T ½N� eavg ½le� T ½N� eavg ½le� T ½N� eavg ½le�
Case 1 ðt ¼ 10 mmÞ 0:2 31,650 58 34,000 40 34,200 31 34,200 26

0:4 63,300 119 68,000 82 68,400 64 68,400 54
0:6 94,950 188 102,000 130 102,600 100 102,600 84
0:8 126,600 273 136,000 191 136,800 146 136,800 122
1:0 158,250 497 170,000 449 171,000 430 171,000 335

Case 2 ðt ¼ 20 mmÞ 0:2 49,460 42 51,400 32 51,400 27 51,400 25
0:4 98,920 86 102,800 65 102,800 55 102,800 50
0:6 148,380 133 154,200 100 154,200 84 154,200 77
0:8 197,840 189 205,600 140 205,600 117 205,600 105
1:0 247,300 353 257,000 254 257,000 200 257,000 172

Case 3 ðt ¼ 30 mmÞ 0:2 65,160 37 67,400 31 67,600 29 67,600 26
0:4 130,320 75 134,800 62 135,200 56 135,200 53
0:6 195,480 115 202,200 94 202,800 85 202,800 80
0:8 260,640 159 269,600 129 270,400 115 270,400 108
1:0 325,800 268 337,000 208 338,000 186 338,000 166
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model is limited to axisymmetric geometric conditions (annular
cross-section) and is able in general to account for the coupling
between mode I/mode II. A preliminary parametric analysis indi-
cates the need for considering local nonlinear shear strains in eval-
uating the response of the composite tube, as well as the influence
of such strains on the average axial strain of the system over the
length where the cohesive forces act. The obvious evolution of
the present study will concern the response of the tube under
applied dynamic traction force (cyclic).
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