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a b s t r a c t

We derive general conditions for the design of two-dimensional stiffest elastic networks with tetrakis-
like (or ‘Union Jack’-like) topology. Upon generalizing recent results for tetrakis structures composed
of two different rod geometries (length and cross-sectional area), we derive the elasticity tensor of a
lattice with generalized tetrakis architecture, which is composed of three kinds of rods and generally
exhibits anisotropic response. This study is accompanied by an experimental verification of the theoretical
prediction for the longitudinalmodulus of the lattice. In addition, the introduction of a third rod geometry
allows to extend considerably the possible lattice geometries for isotropic, stiffest elastic lattices with
tetrakis-like topology. The potential of the analyzed structures as innovative metamaterials featuring
extremely high elastic moduli vs. density ratios is highlighted.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, there has been a growing interest in the design
and fabrication of lattice metamaterials exhibiting a variety of
‘extreme’ behaviors not found in natural materials. These may
include: exceptional strength- and stiffness-to-weight ratios; ex-
cellent strain recoverability; very soft and/or very stiff deformation
modes; auxetic behavior; phononic band-gaps; sound control abil-
ity; negative effective mass density; negative effective stiffness;
negative effective refraction index; superlens behavior; and/or
localized confined waves, to name some examples (refer, e.g.,
to [1–10] and references therein).

As a matter of fact, a challenging approach to fill holes in
material property charts (relating elastic stiffness and/or strength
properties to material density) consists of playing with the mi-
crostructure of lattice materials in order to obtain an optimal com-
bination ofmaterial and space (voids) at different scales [1]. Lattice
metamaterials are structural networks made up of a large number
of unit cells, which feature macroscopic length scales much larger
than the length scales of the individual rods, and are such that their
mesoscopic mechanical properties mainly derive by the geometry
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of the microstructure, rather than from the chemical composition
of the material. Lightweight and strong lattices with nanoscale
features and hierarchical architecture have been recently fabri-
cated through the coating of additively manufactured polymeric
scaffolds with metallic or ceramic materials, obtaining ultralight
hollow-tube ceramic nanolattices that exhibit ultrastiff properties
across more than three orders of magnitude in density [8], and/or
ductile-like deformation and recoverability [6]. Attention is in-
creasingly being given to metamaterials that feature geometrical
nonlinear behavior, and precompression-tuned response [11–14].

In a recent work, Gurtner and Durand [15] studied themechan-
ical properties of isotropic networks of elastic rods in the linear
elastic regime. As long as the typical dimensions of a junction are
the same as the typical rod thickness, the energy cost associated
with node deformation can be neglected in comparison with the
rod stretching energy. However, no assumption is made on the
relative importance of energy cost associated with node defor-
mation and rod bending, so the mechanical response is generally
not equivalent to those of pin-jointed structures. On dimensional
grounds [1], it is clear that networks deforming primarily through
the beam stretching mode are much stiffer than those deforming
through the bending mode. However, stiffness still varies sig-
nificantly among stretch-dominated networks. Only few struc-
tures have the peculiarity of deforming through beam stretching
rather than bending: most structures will indeed deform primarily
through other mechanisms than pure beam stretching. As an illus-
tration, an hexagonal network will deform through beam bending
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mode if the energetic cost of node deformation is relatively much
higher, and through node deformation in the opposite limit (which
coincides to pin-jointed structures). Gurtner and Durand [15] have
demonstrated the existence of stiffest elastic networks, which are
stiffer than any lattice materials featuring the same symmetry,
density and rod elastic properties. These stretch-dominated net-
works deform in affineway down to the heterogeneity scale under
any loading conditions that are compatible with the linear elastic
regime. Their elastic moduli constitute upper-bounds which are
identical (3D) or below (2D) the well-known Hashin–Shtrikman
(HS) bounds in the low-density limit. Then, these bounds are more
precise than the HS bounds, but limited to networks of elastic
rods only, while HS bounds apply to any diphasic structures. It
is also worth noting that Deshpande et al. [16] have shown that
triangulated structures having bars mutually clamped in the joints
still exhibit stretching-dominated regime, and the collapse load is
dictated mainly by the axial strength of the struts.

In the two-dimensional (2D) case, a special class of stiffest
elastic networks is that of structures showing tetrakis (or ‘Union
Jack’) architecture, that is, lattices that tassellate the plane through
square modules of right isosceles triangles [17]. By design, these
lattices employ rods with two different lengths: one for the hori-
zontal and vertical rods, and one for the diagonal rods. The cross-
sectional areas are then adjusted to satisfy isotropic elastic prop-
erties [15].

From the fabrication point of view, both stretching-dominated
and bending-dominated lattices can be fabricated employing
additive-manufacturing technologies. Some examples are given
in [18], in which mechanical microarchitected metamaterials
made out of highly stretchable elastomers are fabricated through
projectionmicro-stereo-lithography. Available literature results in
this area confirm the theoretical findings about the stiffer response
of stretch-dominated lattices structure, as compared to struc-
tures featuring relevant bending deformation effects at the nodes
and within the bars [6,8]. It is noteworthy that the stretching-
dominated response survives in cellular structures away from ide-
alized networks with freely hinged joints [19]. The additive man-
ufacturing of lattices featuring rods tapered near the junctions has
also been investigated [20,21], with the aim ofminimizing bending
effects. The role played bymechanical interlocking connections has
been studied in [22].

The present Letter presents a multifold generalization of the
results obtained by Gurtner and Durand for tetrakis lattices [15]:
(i) we derive the elasticity tensor of a tetrakis lattice with arbitrary
shape and anisotropic response (Section 2); (ii) we present an
experimental validation of the longitudinal elastic modulus pre-
dicted by such a theory against laboratory tests on a physicalmodel
(Section 2.2); (iii) we derive more general optimality conditions
for the achievement of 2D stiffest networks (Section 3), which
assume the presence of three different kinds of rods (horizontal,
vertical, and diagonal) in the unit cell. The given results allow
us to develop general conditions for the achievement of stiffest
elastic networks in 2D, and pave the way to the design of stiff and
lightweight structures featuring either one dimensionmuch larger
than the others (plane strain), or one dimensionmuch smaller than
the others (plane stress). These may be e.g. employed to design
lightweight and stiff components of aeronautical structures, or
next generation facades of tall buildings.

2. Anisotropic response of tetrakis-like lattices

Gurtner and Durand focus their study [15] primarily on stiffest
elastic networks with isotropic symmetry (see also [23]). In the
present work, we initially extend this study by analyzing the
existence conditions for anisotropic structures with ‘tetrakis-like’
architecture that deform affinely under any loading conditions.

Such lattices tessellate the plane through rectangular –rather than
square – modules of right triangles that show arbitrary aspect
ratios between horizontal and vertical edges (Fig. 1(a)). Their ele-
mentary unit cell (or ‘building block’) consists of the hatched region
shown in Fig. 1(b), which features at least two axes of geometric
symmetry (depending on the h1 vs. h2 ratio). The tetrakis lattices
studied in [15] are obtained as a special case, by setting h1 = h2,
assuming two different cross-sectional areas for the horizontal and
vertical elements (first cross section) and the diagonal elements
(second cross section), and using the samematerial for all the rods.
We hereafter allow our tetrakis-like lattices to exhibit different
materials and cross-section in different rods, and make use of the
symbols Ak, Lk and Ek to respectively denote the cross sectional
area, the reference length, and the Young modulus of the kth rod
forming the building block shown in Fig. 1(b), which connects the
central node 0 to node k (k = 1, . . . , 8).

Following thework of [15], we look for the structural conditions
under which a tetrakis-like architecture deforms affinely down
to the microscopic scale, given an arbitrary, homogeneous and
infinitesimal deformation of the lattice at the mesoscopic scale. In
a first step, we calculate the strain energy that would be associated
with such an affine deformation. We describe such a deformation
through a displacement field of the form

u = εx, (1)

where x denotes the position vector, and ε denotes the infinitesi-
mal strain matrix with Cartesian components εij with respect to a
frame {O, e1, e2, e3} having the e1 and e2 unit vectors aligned with
horizontal and vertical rods, respectively, and the e3 unit vector
orthogonal to the lattice plane. It is an easy task to compute the
strain energy EL associated to an affine deformation of a tetrakis-
like lattice as follows

EL =
ε2
11

2

(
h1(E1A1 + E5A5) +

h4
1

16h3
3

× (E2A2 + E4A4 + E6A6 + E8A8)

)
+

ε2
22

2

(
h2(E3A3 + E7A7) +

h4
2

16h3
3

× (E2A2 + E4A4 + E6A6 + E8A8)

)
+ (2ε2

12 + ε11ε22)
h2
1h

2
2

16h3
3

(E2A2 + E4A4 + E6A6 + E8A8)

+ ε12
(
h2
1ε11 + h2

2ε22
) h1h2

8h3
3

(E2A2 − E4A4 + E6A6 − E8A8) .

(2)

Let us define the solid volume intercepted by the building block
as VL =

∑
kAkLk, and the solid volume fraction as φ = VL/V ,

where V denotes the volume of the building block. The homoge-
nized strain energy density of the lattice is computed as follows

ϕL =
EL
V

= φ
EL
VL

. (3)

Wenowestablish the structural properties of the lattice that are
compatible with an affine deformation down to the microscopic
scale, by enforcing the balance of forces everywhere in the struc-
ture. Under affine deformation, forces distributed in the lattice
are parallel to the rods, and the balance equation at every node
k = 1, . . . , 8 yields:

EiAiεi = Ei+4Ai+4εi+4 i = {1, . . . , 4}, (4)

where εi = e0iεe0i is the extension of rod connecting nodes 0 and
i, and e0i its unit tangent vector. Trivially, e0i+4 = −e0i, εi+4 = εi,
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Fig. 1. Tetrakis-like lattice and its elementary unit cell (hatched region). The Pythagorean theorem implies h2
3 = (h1/2)2 + (h2/2)2 .

and thus, affine deformation requires the following relationships
between the elastic stiffness coefficients of the rods forming the
building block in Fig. 1(b)

Ei+4Ai+4 = EiAi i = {1, . . . , 4}. (5)

It is a trivial task to verify that the balance equation is also
satisfied at the central node 0 when Eqs. (5) are satisfied.

The strain energy density of an anisotropic, hyperelastic contin-
uum in 2D is given by (see, e.g., [24,25])

ϕC =
1
2

(
C1111ε

2
11 + 2C1122ε11ε22 + C2222ε

2
22

)
+ 2ε12 (C1112ε11 + C1212ε12 + C2212ε22) . (6)

Comparing termby termEqs. (3) and (6), andmakinguse of Eqs. (5),
we finally obtain the following expressions for the homogenized
anisotropic elastic coefficients of a tetrakis-like lattice that deforms
affinely under any loading condition:

C1111 =
φh1

(
16h3

3E1A1 + h3
1(E2A2 + E4A4)

)
8h3

3VL
, (7)

C2222 =
φh2

(
16h3

3E3A3 + h3
2(E2A2 + E4A4)

)
8h3

3VL
, (8)

C1212 = C1122 =
φh2

1h
2
2 (E2A2 + E4A4)

8h3
3VL

, (9)

C1112 =
φh3

1h2 (E2A2 − E4A4)

8h3
3VL

, (10)

C2212 =
φh1h3

2 (E2A2 − E4A4)

8h3
3VL

. (11)

It is interesting to observe that as a consequence of Eq. (5), the
elastic coefficients C1212 and C1122 are equals. Indeed, under affine
deformation, forces acting on junctions are oriented along the rods
(‘‘axial interactions’’) and we recover the Cauchy relation for 2D
materials [26]. Eqs. (10)–(11) also show that C1112 and C2212 are
related to the geometry of the elementary unit cell of tetrakis-like
lattices through:
C1112

h2
1

=
C2212

h2
2

, (12)

reducing the number of independent elastic coefficients to 4.
Let us investigate the sign of the elastic coefficients C1112 and

C2212, by introducing the following dimensionless ratios

ri =
EiAi

E4A4
, i = {1, 2, 3} (13)

and observing that it results

C1112, C2212

{
> 0 , for r2 > 1
= 0 , for r2 = 1
< 0 , for r2 < 1

. (14)

We close the present section by providing the elasticity ma-
trix of anisotropic tetrakis-like lattices in Voigt’s notation (refer,
e.g. to [26]), which reads

Ĉ =

( C1111 C1122 C1112
C2222 C2212

Sym. C1212

)
. (15)

A special anisotropic case is that of a lattice whose elasticity
matrix (15) is invariant under rotations of the reference frame of
an angle π about e3 (orthotropic response in the lattice plane,
see, e.g., [25]). It is an easy task to verify that such a condition is
matched when it results C1122 = C1212 = 0 i.e., for E2A2 = E4A4 (cf.
Eq. (14)). In terms of homogenized engineering elastic constants,
namely Young moduli Êii, Poisson ratios ν̂ij (i, j = 1, 2), and shear
modulus Ĝ12, it results (see [27])

Ê11 =
C1111C2222 − C2

1122

C2222

=
2h1φ(h3

2E1A1E2A2 + A3(8h3
3E1A1 + h3

1E2A2)E3)
VL
(
h3
2E2A2 + 8h3

3E3A3
) , (16)

Ê22 =
C1111C2222 − C2

1122

C1111
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2h2φ(h3

2E1A1E2A2 + A3(8h3
3E1A1 + h3

1E2A2)E3)
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h3
1E2A2 + 8h3

3E1A1
) , (17)

ν̂21 =
C1122

C1111
=

h1h2
2E2A2

8h3
3E1A1 + h3

1E2A2
, (18)

ν̂12 =
C1122

C2222
=

h2
1h2E2A2

8h3
3E3A3 + h3

2E2A2
, (19)

Ĝ12 = C1212 =
h2
1h

2
2φE2A2

4h3
3VL

. (20)

The stiffest isotropic elastic networks analyzed in [15] exhibit
Youngmodulus Ê = φE0/3, shearmodulus Ĝ = φE0/8 and Poisson
ratio ν̂ = 1/3, where E0 denotes the Young modulus of the rods’
material, which is supposed to be equal from rod to rod (see also
Section 3). We observe that a tetrakis-like lattice with orthotropic
symmetry can achieve directional Young moduli greater than the
isotropic value φE0/3, by properly adjusting the geometry and the
stiffness coefficients of the rods. As an example, let us consider a
square lattice (h1 = h2) made out of a single material with Young
modulus E0, as in [15]. Upon setting

A2 <
√
2 A3 and

A3

2
+

A2

(√
2 A2 + A3

)
2
(
A2 + 2

√
2 A3

)
< A1 < A3 +

√
16A2

3 − 6A2
2 −

√
2 A2

4

(21)
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Fig. 2. The experimental setup: (a) sketch showing the elementary unit cell of a tetrakis-like lattice (central solid lines) superimposed to the layout of the tested specimen
(dashed lines); (b) photograph of the specimen under testing.

it is easily shown that it results

Ê11 >
φE0
3

, Ê22 >
φE0
3

(22)

although it must be accepted

ν̂12 <
1
3
, ν̂21 <

1
3

Ĝ12 <
φE0
8

. (23)

2.1. Limitations on the anisotropic elastic coefficients

The stability of the material in its natural state (refer, e.g., to
[24,25]) imposes conditions on the elastic coefficients (or elastici-
ties) in Eqs. (7)–(11), namely

C1111 > 0, C2222 > 0, C1212 > 0, (24)

C2
1122 < C1111C2222, C2

2212 < C1212C2222,

C2
1112 < C1111C1212, (25)

C2
1122C1212 + C1111C2

2212 + C2
1112C2222 < 2C1112C1122C2212

+ C1111C1212C2222. (26)

By inspecting Eqs. (7)–(9), we immediately verify that our
predictions of the elastic coefficients of anisotropic tetrakis-like
lattices match the inequalities (24). On the other hand, by taking
into account Eqs. (7)–(11), conditions (25) are easily reduced to the
equivalent limitations

E3A3 (E2A2 + E4A4) h3
1 + E1A1 (E2A2 + E4A4) h3

2

+ 16E1A1E3A3h3
3 > 0, (27)

E2A2E4A4h3
2 + 4E3A3 (E2A2 + E4A4) h3

3 > 0, (28)

E2A2E4A4h3
1 + 4E1A1 (E2A2 + E4A4) h3

3 > 0, (29)

and similarly Eq. (26) is rewritten as

E2A2E4A4
(
E1A1h3

2 + E3A3h3
1

)
+ 4E1A1E3A3 (E2A2 + E4A4) h3

3

> 0, (30)

which trivially turn out to be always true.

2.2. Experimental verification of the theoretical prediction for the
longitudinal modulus

We carried out an experimental verification of the theoretical
prediction (8) for the longitudinal modulus C2222 by running an
unidirectional tension test under zero lateral strain on the module
of a square tetrakis lattice shown in Fig. 2(a). The central horizontal
and vertical rods of the tested specimen consist of M6 threaded
bars made out of white zinc plated grade 8.8 steel (DIN 976-1),
with nominal cross sectional area A1 = A3 = 20.10 mm2. The
perimeter rods are insteadmade ofM4 threaded barswith nominal
area of 8.78 mm2. The Young moduli of the above bars are E1 =

E3 = 206 kN mm−2. The diagonals consist of standard galvanized
steel wire ropes formed by 72 wires (EN 10244-2) with nominal
cross sectional area A2 = A4 = 3.073 mm2 and Young modulus
E2 = E4 = 196 kN mm−2 (all the above properties refer to man-
ufacturer’s data). It is worth noting that it results (E2A2)/(E1A1) =

0.145 in the examined structure,while the optimality condition for
a stiffest isotropic network implies that the same ratio is equal to√
2 [15].
In order to enforce zero lateral strain, the specimen shown in

Fig. 2(a) was framed by a steel structure, made of two U-shaped
profiles (see Fig. 2(b)). Such profiles were allowed to freely move
with respect one another in the vertical direction,while preventing
lateral deformation. Hinged connections ensure that the structure
deforms in stretching mode, while the high rigidity of the confine-
ment frame guarantees that the deformation of such a structure is
negligible as compared to that of the tetrakis lattice.

Fig. 3 shows the force F vs. longitudinal strain ε plot recorded
during the test. The longitudinal strain was measured through a
strain gauge applied on the central vertical bar, with properties
shown in Table 1. The solid straight line appearing in the plot of
Fig. 3 provides the least-squares linear fit F = fLε to experimental
data, with f = 12.4 kN mm−2 and L = 660 mm the specimen
length (Fig. 2(a)).

Introducing V ∗, the volume of the parallelepiped domain con-
taining the structure under testing (cf. Fig. 1(b)):

V ∗
= 2V = 2

VL

φ
, (31)

the strain energy density corresponding to the experimental data
can be written as follows

ϕexp =
1
2
σε =

1
2
FL
V ∗

ε =
1
4
fL2φ
VL

ε2
=

1
2
C (exp)
2222 ε2, (32)
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Table 1
Characteristics of the strain gauges by Luchsinger, type FLA 3 11 3LT, which employ Cu–Ni alloy foils for the grid and
epoxy resin for the backing.

Gauge length (mm) Gauge width (mm) Backing length (mm) Backing width (mm) Resistance (�)

3 1.7 8.8 3.5 120

Fig. 3. Experimental data and least square fit for the longitudinal modulus.

where C (exp)
2222 is the experimental value of the longitudinal modulus

to be compared with the theoretical prediction C (th)
2222 given by

Eq. (8). Making use of the numerical data in Eqs. (8) and (32), we
obtain

C (th)
2222 = 97.73 φ kNmm−2, C (exp)

2222 = 91.86 φ kNmm−2 (33)

with a theory vs. experiment mismatch of about 6%, which is
reasonably acceptable for most engineering applications.

3. The isotropic case

Isotropic tetrakis-like lattices are obtained as a special case of
the orthotropic lattices analyzed in Section 2, by requiring C1111 =

C2222 = C1122 + 2C1212(= 3C1122), which implies invariance of
the elasticity matrix (15) under arbitrary rotations of the reference
frame about e3 [25]. Making use of Eqs. (7)–(9) we obtain the
following requirements for isotropic response of a tetrakis-like
lattice

A2 =
A1

h1

E1
E2

8h3
3

3h2
2 − h2

1
, A3 =

A1

h1

E1
E3

h2(3h2
1 − h2

2)
3h2

2 − h2
1

. (34)

In order for A2 and A3 to be both positive in Eqs. (34), the inequality
h1
√
3

< h2 < h1
√
3, (35)

must hold, giving rise to the feasibility region for isotropic response
that is hatched in Fig. 4. It is worth noting that Eqs. (34) reduce to
E2A2 =

√
2E1A1 and E3A3 = E1A1 when h1 = h2, i.e., in the case of

a square tetrakis lattice [15].
For a lattice made out of a single material with Young modulus

E0, the substitution of Eqs. (34) into Eqs. (7)–(9) yields

λ̂ = µ̂ = Ĝ =
E0φ
8

M̂ =
3E0φ
8

, Ê =
E0φ
3

, ν̂ =
1
3

(36)

where we have introduced the homogenized Lamé constants µ̂ =

C1212 and λ̂ = C1122, and the homogenized longitudinal modulus
M̂ = C1111 = C2222 = λ̂ + 2µ̂. We recover the values obtained
by Gurtner and Durand [15], but the validity of Eqs. (36) is here

Fig. 4. Admissible values of the h2/h1 ratio for isotropic response of tetrakis-like
lattices.

generalized to the wider feasibility region of isotropic response of
tetrakis-like lattices that is illustrated in Fig. 4.

4. Concluding remarks

We have generalized the results presented by Gurtner and
Durand in [15] for stiffest isotropic elastic networks in 2D, by
analyzing a new class of networks based on tetrakis-like lattices.
Such lattices feature three different kinds of rods: horizontal, ver-
tical and diagonal, as opposed to the two different kinds of rods
of the square tetrakis lattices analyzed in [15]. We have shown
that tetrakis-like lattices may exhibit the highest elastic moduli
achievable by isotropic lattice materials in 2D, under more gen-
eral geometry and material conditions, as compared to standard
tetrakis lattices (Section 3).

We have also examined the anisotropic response of tetrakis-
like lattices that match affinity and equilibrium conditions. Such
a study has been complemented by an experimental verification of
the theoretical prediction for the longitudinal modulus, which has
shown rather good theory-experiment matching. By specializing
the anisotropic study to the case of orthotropic lattices, we have
proved that is possible to achieve directional Young moduli higher
than the upper bound relative to the isotropic case, through a suit-
able design of the aspect ratio of the unit cell and rods’ properties
(Section 2). Such a noticeable result paves theway to future studies
dealing with the optimal design of anisotropic lattices matching
optimal properties along preferred directions. Additional future
research lines may regard studies on the effects of suitable initial
states of self-stress on the tangent elastic response of lattice ma-
terials, as well as investigations on novel additive manufacturing
techniques for the realization of prototypes of the designed meta-
materials,with special focus on rapid prototyping techniques using
materials with different coefficients of thermal expansion and/or
swelling materials [28], in order to create internal pre-stress.
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