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a b s t r a c t

We present a novel approach to the elastic problem of masonry walls, which generalizes the lumped
stress method presented in Fraternali (2001, 2007, 2010) and Fraternali et al. (2002). The generalization
consists of a mixed lumped stress–displacement approach to the elastic problem of a wall that incor-
porates no-tension elements. Such an approach depends on the nodal values of the Airy stress function
and the displacements of selected (“pivot”) nodes. The latter coincide with inter-element and boundary
nodes. The mixed lumped stress–displacement method can be conveniently coupled with standard finite
element and boundary element approaches. Numerical applications dealing with recurrent structural
elements are given, showing that such a method is able to capture some essential features of the actual
response of masonry constructions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the numerical implementation of the elas-
tic no-tension (ENT) model of masonry structures may involve a
number of operational difficulties, such as non-existence, indeter-
minacy and/or discontinuity of the solution, divergence or locking
of the numerical approximations in the limit of the mesh size tend-
ing to zero, etc. This is mainly due to the “sharp” nature of the
ENT constitutive equations (cf., e.g., Giaquinta and Giusti, 1989; Del
Piero, 1989). Stress approaches to ENT (or “masonry-like”) struc-
tures exhibit some peculiar advantages, since one can prove the
uniqueness of the solution of the ENT boundary value problem
in terms of the stress field (Cuomo and Ventura, 2000; Angelillo,
1994; Fraternali, 2007; Fortunato, 2000). Interesting displacement
approaches for no-tension bodies have been proposed in Lucchesi
et al. (1994), Baratta and Corbi (2004), and Angelillo et al. (2010).

A lumped stress method (LSM) for the elastic problem of a
plane body ˝ has been formulated in Fraternali (2001, 2007),
and Fraternali et al. (2002). Such a non-conforming method
approximates the 2D stress field through a piece-wise constant
regularization of singular (or lumped) stresses, which are defined
over the skeleton of a triangulation ˘h of ˝. It leads to approxi-
mate the continuous body with a non-conventional truss structure,
whose energy is defined per nodes (and not per elements) over a
dual tessellation ˆ̆

h of ˝. The convergence of the LSM towards
the “exact” solution of the continuous boundary value problem has
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been proved mathematically in Fraternali (2007), and numerically
in Fraternali (2001) and Fraternali et al. (2002). Its application to
plane ENT bodies and vaulted masonry structures has been pre-
sented in Fraternali (2007, 2010), respectively, through a pure
stress approach. A similar representation of the stress field of
masonry structures is at the basis of the thrust network analysis
(TNA) presented in Block and Ochsendorf (2007) and Block (2009).

The present paper deals with a mixed LSM-displacement
method (LSDM) for the elastic problem of a wall that incorpo-
rates ENT elements. As in the standard LSM, the stress field of
the wall is approximated through a network of lumped stresses,
making use of polyhedral stress functions and a complemen-
tary energy approach (Fraternali, 2001; Fraternali et al., 2002).
The standard LSM admits either a stress function formulation (cf.
Fraternali, 2001, 2007; Fraternali et al., 2002), or a nodal dis-
placement formulation (Fraternali et al., 2002). The first one (SFF)
consists of a cost-effective equilibrium approach, which assumes
the nodal values of the stress function as primary unknowns (just
one degree of freedom per node). Nevertheless, the SFF is restricted
to simple connected bodies, does not allow for the direct com-
putation of nodal displacements, and is not easily coupled with
other numerical methods, such as finite elements and boundary
elements approaches. The nodal displacement formulation (NDF),
on the other hand, leads to a full-range stiffness matrix. The
originality of the present LSDM approach consists of a special treat-
ment of the inter-element equilibrium equations of the discrete
model, which are approached through an augmented Lagrangian
technique (Nocedal and Wright, 2006). This leads us to a mixed
approach, which admits the nodal values of the polyhedral stress
functions of the different wall elements and the displacements
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Fig. 1. (Top) Primary and secondary meshes of a plane body described through
the lumped stress method. (Bottom) Polyhedral approximation of the Airy stress
function and current lumped stress Ps

n .

of “pivot” nodes as primary unknowns. In particular, the stiffness
matrix ruling the update of pivot displacements is diagonal. The
no-tension constraint is traced back to the concavity of the polyhe-
dral stress functions (Giaquinta and Giusti, 1989), and use is made
of the convex-hull technique (Avis and Fukuda, 1992) to formulate
appropriate initial points of the solution-search strategy (Angelillo
and Rosso, 1995).

The structure of the paper is as follows. We begin by summariz-
ing the main ingredients of the LSM in Section 2. Next, we present
the mixed LSM-displacement method (LSDM) in Section 3, and
some numerical results in Section 4. Finally, we describe the main
conclusions of the present study and future work in Section 5.

2. Preliminaries on the lumped stress method

Let us consider the elastic problem of a plane body ˝ subject
to kinematical boundary conditions u = ū on a given portion � u

of its boundary � ≡ ∂˝, and surface tractions p over � p = � /� u.
We suppose, for the sake of simplicity, that ˝ is polygonal and
simply connected and that and no body forces are applied. The
first assumption allows us to exactly cover ˝ with a triangula-
tion ˘h ={˝1, . . ., ˝M} (primary mesh), and a dual tessellation
ˆ̆

h = { ˆ̋ 1, . . . , ˆ̋
N} (dual mesh). We extend ˘h outside the por-

tion �p of �, introducing an “extended mesh” ˘ ′
h

(Fig. 1). Here and
in what follows, h = sup

m∈ {1,...,M}
{diam(˝m)} denotes the mesh size.

The assumptions of zero body forces and simple-connectivity of
˝ allow us to derive the stress field of the body from a single-valued
scalar potential or Airy stress function ϕ (cf., e.g., Gurtin, 1972). The
lumped stress method presented in Fraternali (2001) and Fraternali
et al. (2002) approximates ϕ through piece-wise linear functions
ϕ̂ defined over ˘ ′

h
(Fig. 1), and introduces the following “relaxed”

version of the complementary energy of the body

Eh(ϕ̂) = 1
2

N∑
n=1

Sn∑
s,t=1

Âst
n Ps

n(ϕ̂)Pt
n(ϕ̂)−

∑
n∈U

Rn(ϕ̂) · ūn, (1)

where

Âst
n =

�s
n�t

nA[ĥ
s

n ⊗ ĥ
s

n] · ĥt

n ⊗ ĥ
t

n

4 | ˆ̋ n|
(2)

In (1) and (2), N is the total number of nodes of ˘h; Sn indicates
the number of nearest neighbors of the generic node n; �s

n is the

length of the edge n− s; k̂
s

n and ĥ
s

n are the tangent and normal unit
vectors to such an edge, respectively; Pn

n = [[∂ϕ̂/∂h]]s
n is the jump

of ∇ϕ̂ · ĥs

n across n− s (i.e., the normal derivative of ϕ̂ through this
edge); and it results

Rn(ϕ̂) = −
Sn∑
s=1

Ps
n(ϕ̂)k̂

s

n (3)

The quantities Ps
n can be regarded as the axial forces carried

by the bars of an ideal truss Bh, which has the same geometry
of the skeleton of ˘ ′

h
(Fig. 1). Similarly, the quantity Rn can be

regarded as the total force acting at node n of such a truss. Due
to the assumption of zero body forces, Rn will be nonzero only at
the boundary (support reaction). The discrete functional (1) defines
a non-conventional complementary energy of the truss Bh, which
is defined per dual elements ˆ̋ n, and not per elements (as in an
ordinary truss).

Let ϕo denote the minimizer of the “exact” complementary
energy of the body, and ϕ̂h the minimizer of (1). It has been shown
in Fraternali (2007) that ϕ̂h strongly converges to ϕo in the limit
h→0, under suitable smoothness assumptions on ϕ0 and the pri-
mal and dual meshes. The latter require that ˘h has a structured
core, and ˆ̆

h is made up of polygons connecting the middle points
of the edges of ˘h with the barycenters of the primal triangles
(“barycentric” dual mesh, cf. Fig. 1). A � -convergence proof of the
LSM for the biharmonic problem of isotropic elasticity is given in
Davini (2002), considering families of triangulations that are regu-
lar in the sense of Ciarlet (1978). Such meshes include unstructured
coverings of ˝. A strong/weak convergence proof of the LSM for
ENT bodies and distorted triangulations is an open and challenging
problem, which is beyond the scopes of the present work. We here-
after follow Fraternali et al. (2002) assuming that the dual mesh is
barycentric.

3. A mixed LSM-displacement approach to masonry walls

We now examine a wall made up of an arbitrary collection of
simply connected elements (beams, columns, etc.) ˝1, . . . , ˝Ne ,
which include either standard elastic elements and/or ENT ele-
ments. As we shall see in short, such a discretization of the wall
allows us to conveniently combine the SFF and NDF formulations
of the LSM presented in Fraternali et al. (2002). We name pivot the
interelement and boundary nodes that are not subject to kinemati-
cal constraints. On applying the LSM to each element and assuming
that arbitrary nodal forces are applied to the pivot nodes, we for-
mulate the equilibrium problem of the wall into the following
variational form

min
�̂∈Rn

Eh(�̂) = 1
2

P(�̂) · AP(�̂)− R(�̂) · ū (4)

such that :

{
Sϕ̂ − q = 0
P(ϕ̂) ≤ 0 in ENT elements
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Fig. 2. (Left) Elastic solution in terms of the Airy stress function for a clamped masonry beam. (Right) Corresponding concave hull.

where �̂ is the vector collecting the nodal values of the Airy
stress functions of each element; P(�̂) is the vector collecting the
lumped stresses Ps

n = [[∂ϕ̂/∂h]]s
n; A is the compliance matrix defined

through (8); R(�̂) is the vector collecting the support reactions; ū is
the vector of the imposed nodal displacements; q is the vector col-
lecting the nodal forces applied to the pivot nodes; S is the coefficient
matrix of the equilibrium equations of the pivot nodes.

In order to solve (4), we introduce the augmented Lagrangian
given by

LA(�̂, u, �) = Eh(�̂)− u · (S�̂− q)+ �

2
(S�̂− q)2 (5)

where u denotes the vector collecting the displacements of the
pivot nodes (Lagrange multipliers), and � is a penalty parameter
(Nocedal and Wright, 2006). We remark that the LSDM admits
nonzero nodal forces only in correspondence with pivot nodes
(active nodal forces), and kinematically restrained nodes (support
reactions).

An iterative solution method for the minimum problem of (5) is
as follows

a) given a tentative solution (�̂k, uk, �k), compute �̂k+1 through
the quadratic programming problem:

min
�̂∈Rn

LA(�̂, uk, �k) such that P(�̂) ≤ 0 in ENT elements; (6)

b) update the Lagrange multipliers through

uk+1 = uk − �k(S�̂k+1 − q); (7)

c) update the penalty parameter, by �k+1 > �k, if the norm of the

residual vector conv(�̂0)
+

increases with respect to the previous
step;

d) return to point a) with �̂k ← �̂k+1; uk ← uk+1; �k ← �k+1, until
the norm of the residual vector gets lower than a given tolerance.

A critical point is the solution of problem (6), which could be
affected by lack of feasible solutions, if one does not use appropri-
ate triangulations of the ENT members (Fraternali, 2007). We start
by considering an initial triangulation of the wall and elastic solu-
tions �̂0 in each element, ignoring no-tension constraints. We then
determine the convex-hull conv(�̂0) of �̂0 in the ENT members

(Avis and Fukuda, 1992), and set �̂1 = conv(�̂0)
+

in such elements,

where conv(�̂0)
+

is the concave face of conv(�̂0). We to refer to

conv(�̂0)
+

as the concave hull of �̂0. It is worth noting that the pro-

jection of conv(�̂0)
+

onto the platform defines a new triangulation
of the current ENT element, which is associated with a suitable, stat-
ically admissible, stress function (cf. Angelillo and Rosso, 1995). The
concave hull technique has already been used in Fraternali (2010)
within a purely static context, to determine no-tension thrust net-
works of masonry vaults. The concave-hull driven remeshing of the
ENT members may remove nodes from such elements and, eventu-

ally, create gaps between them and the neighbor elements, as we
shall see in the next section (example 2). In the elastic elements we
simply assume �̂1 = �̂0, without remeshing.

We close the present section by pointing out a key feature of the
LSDM, which we plan to explore in more detail in future studies. We
observe that such a method could be easily coupled with standard
finite element and boundary element models. As a matter of fact,
the LSDM update (7) of the pivot displacements can be rewritten
as

�uk = uk+1 − uk = (Kk)
−1

�qk (8)

where

Kk = diag

{
1
�k

, . . . ,
1
�k

}
; �qk = q− Sĵ

k
(9)

The association of LSDM elements with finite elements and/or
boundary elements simply requires the assembly of the diagonal
matrix Kk into the global stiffness matrix of the overall discrete
model, and the insertion of the load vector �qk into the incremental
load vector, at each update of the nodal displacements. The update
of the stress function vector will be performed locally in the LSDM
elements, via step a). It is worth observing that the LSDM can be
easily applied to 3D structural models made up of walls that react in
their own planes, and offer zero reaction to out-of-plane forces. This
is a commonly accepted assumption for most masonry structures,
and especially for historical buildings, due to the very low tensile
strength of aged masonry (cf., e.g., Heyman, 1995).

4. Numerical results

We present in this section some numerical applications of the
LSDM procedure, which refer to recurrent elements of masonry
structures. The first two examples deal with a masonry beam
clamped at the ends and subject to uniform vertical loading on the
top edge. The two examples differ each other because in the first one
there is no reinforcement of the beam, while in the second one the
beam is strengthened with a steel profile at the bottom edge. The
same examples were analyzed in Fraternali (2007) by means of a
pure LSM approach (no displacement computation). We assume an
orthotropic ENT constitutive model for the masonry characterized
by the following engineering moduli: E1 = 6.07 MPa, E2 = 5.08 MPa,
G12 = 2.73 MPa, 	12 = 0.22. Regarding the steel reinforcement (sec-
ond example), we instead assume an isotropic elastic behavior with
Young modulus E = 206, 000 MPa and Poisson ratio 	 = 0.30. We
show the elastic stress function �̂0 obtained for the first example in
Fig. 2, left (absence of no-tension constraints) and the correspond-

ing set conv(�̂0)
+

in Fig. 2, right. The final LSDM solution obtained
for this example is illustrated in Fig. 3. One immediately recog-
nizes it predicts an “arch-type” load resisting mechanism within
the beam.

The LSDM solution for the second example is illustrated in Fig. 4.
In the present case, the lumped stress network exhibited by the
beam partially interests the lower edge (differently from the first
example, cf. Fig. 3, left), and migrates into the reinforcing steel



Author's personal copy

F. Fraternali / Mechanics Research Communications 38 (2011) 176–180 179

Fig. 3. LSDM solution for a clamped masonry beam. (Left) Lumped stress network. (Right) Deformed shape.

Fig. 4. LSDM solution for a clamped masonry beam strengthened with a steel profile at the bottom edge. (Left) Lumped stress network. (Right) Deformed shape.

Fig. 5. LSDM solution for a shear wall. (Left) Lumped stress network. (Right) Deformed shape.

element towards the edges (Fig. 4, left). The latter is interested
by alternating tensile (red) and compressive (black) stresses, as
expected in a clamped beam that reacts in tension. Concerning the
deformed shape, we observe that the LSDM solution predicts the
debonding of the masonry beam from the steel element nearby the
mid-span (Fig. 4, right). This is due to the fact that the central lower
portion of the masonry beam is essentially under zero stress (Fig. 4,
left), as in the previous example (Fig. 3, left). According to the ENT
model, such a region is expected to be heavily cracked and not con-
tributing to the equilibrium of the remaining portion of the body
(cf. Giaquinta and Giusti, 1989; Del Piero, 1989).

The third and final example considers a shear wall subject to
relative horizontal displacements of the edges. In this case, we mod-
eled the masonry as an isotropic ENT material with zero Poisson
ratio. The LSDM solution for the present problem is illustrated in
Fig. 5. It is worth noting that the lumped stress pattern shown in
Fig. 5,left closely reproduces the distribution of compression rays
obtained in Fortunato (2000) through an analytical approach (cf.
Fig. 7 of Fortunato, 2000). The ENT model predicts that the wall
under consideration can be affected by cracks along such directions
(Giaquinta and Giusti, 1989; Del Piero, 1989; Fortunato, 2000).

5. Concluding remarks

We have presented a mixed lumped stress–displacement
method for the elastic problem of walls that include ENT elements.
The LSDM generalizes the lumped stress approach to no-tension
bodies presented in Fraternali (2007, 2010) and allows the compu-
tation of selected nodal displacements of the overall discrete model,
in association with the nodal values of the Airy stress function. The

selected displacements refer to inter-element and boundary nodes.
Benchmark examples dealing with recurrent structural elements
have shown that such a method is able to predict some essential
features of the actual behavior of masonry walls, like, e.g., arch-
type stress flow, distribution of compression rays and fracture of
the material.

In closing, we point out a number of limitations of the present
study that suggest directions for future work. The literature avail-
able to date includes convergence proofs for LSM-type approaches
(cf. Davini, 2002; Fraternali, 2007) that do not account for uni-
lateral (no-tension/no-compression) constraints, distorted meshes
and mixed displacement–stress approaches. One obvious exten-
sion of the present numerical study therefore regards the inclusion
of such effects, within a comprehensive mathematical analysis of
thrust network approaches to masonry structures. We conjecture
that such a study could lead to prove weak convergence of the
LSM approach under general assumptions, but most of the techni-
cal questions related to the above mentioned points are still open,
and their inclusion in the analysis presented in Davini (2002) and
Fraternali (2007) is still far from being complete. Other challeng-
ing extensions of the present work, which we address to future
work, regard the application of the LSDM to large-scale masonry
structures, and the study of the link between such a procedure and
standard finite element and boundary element approaches.
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