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ABSTRACT: We formulate and discuss the relationship between polyhedral
stress functions and internally self-equilibrated frameworks in 2D, and a two-
mesh technique for the prediction of the stress field associated with such
systems. We generalize classical results concerned with smooth Airy stress
functions to polyhedral functions associated with arbitrary triangulations of a
simply-connected domain. We also formulate a regularization technique that
smoothly projects the stress function corresponding to an unstructured force
network over a structured triangulation. The paper includes numerical
examples dealing with a benchmark problem of plane elasticity, and the stress
fields associated with truss models of a cantilever beam and an elliptical
membrane.
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1. INTRODUCTION
Over recent years, several researchers have focused
their attention on the modeling of continuous media
such as plates, walls, membranes, vaults and domes
with ‘equivalent’ truss structures (refer, e.g., to [1–11,
14, 16, 17], and therein references). Numerous up-to-
date contributions to such a longly debated topic of
structural mechanics deal with ‘non-conforming’ or
‘mixed’ finite element methods, also referred to as
Lumped Stress Methods (LSMs) [2, 3, 9, 10]; the 
so-called Thrust Network Analysis (TNA), reciprocal
force diagrams and limit analysis approaches [1, 6–8,
11–15], as well as Discrete Exterior Calculus (DEC)”
[16, 17]. A common trait of the above methods
consists of looking at the approximating truss
structure as the support of uniaxial singular (or
lumped) stresses, which approximate the stress field
of the background medium. Studies regarding the

convergence of a singular discrete stress network to its
continuum limit have been carried out through
Gamma-Convergence [4], and mixed finite element
methods [18]. Particular attention has been devoted to
masonry structures described through the no-tension
constitutive model [19], since for such structures the
singular stress approach allows one to linearize the no-
tension constraint, and to make use of form-finding
approaches based on convex-hull techniques and
weighted Delaunay triangulations [1, 6, 7, 9–11, 17].
Remarkable is the use of polyhedral Airy stress
functions in 2D elasticity problems, and Pucher’s
approaches to the membrane theory of shells [20],
which leads to an effective characterization of
internally self-equilibrated frameworks associated
with simply connected domains [2, 3, 9, 10, 18].

Force networks are also employed within
‘atomistic’ models and discrete-continuum approaches
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to mechanical systems, to represent the state of stress
of solids, fluids and biomechanical systems. Coupled
discrete-continuum approaches combine force
networks and continuous stress fields (refer, e.g., to
[21] for an extensive review), in order to circumvent
scaling limitations of fully atomistic models, which
are particularly suited to describe small process zones
(interested, e.g., by dislocation and fracture
nucleation, nanoindentation, marked atomic
rearrangements, etc.). Areas of research involving
discrete and mixed discrete-continuum models of
mechanical systems include bio- and nano-structures
[22–29]; tensegrity models of engineering and
biological systems [30–34]; particle simulation of
granular systems [35–37]; structural optimization,
form-finding methods and strain-localization
problems [9, 10, 38–41], and strut and tie models of
discontinuous regions in reinforced-concrete
structures [42], just to name a few examples. Key
aspects of scale-bridging approaches to discrete
systems regard the estimation of the Cauchy stress at
the meso-scale, to be carried out via statistical
mechanics, variational approaches, and/or
homogenization methods. Several discrete (or
‘microscopic’) definitions of the Cauchy stress have
been proposed in the literature, such as, e.g., the virial
stress, the Tsai traction and the Hardy stress (cf.,e.g.,
[43, 44], and therein references). Different studies
have highlighted issues related to the kinetic terms of
such stress definitions [43], and spatial fluctuations of
the discrete stress (cf. Sect. 6 of [44]).

The present work deals with the correspondence
between polyhedral (Airy) stress functions, internally
self-equilibrated force networks, and discrete notions of
the Cauchy stress in two-dimensions. We extend
previous research on such topics [2, 3, 9, 10, 18], on
examining two new subjects: (i) the computation of the
Airy stress function associated with a given, internally
self-equilibrated framework; (ii) the formulation of
convergent estimates of the Cauchy stress associated
with unstructured force networks. Our previous studies
in this field were instead focused on the derivation of
force networks from a given polyhedral stress function
(inverse problem with respect to (i), cf. [2, 3, 9, 10]),
and the convergence of stress measures associated with
structured force networks [3, 18]. By examining a
simply connected domain in two dimensions, we here
develop and discuss an algebraic equation relating
polyhedral stress functions and internally self-
equilibrated frameworks associated with arbitrary
triangulations. Further on, we formulate a regularization
technique that is devoted to generate a convergent

notion of the Cauchy stress of the discrete system in the
continuum limit. The remainder of the paper is
organized as follows. We begin by framing the
correspondence between force networks and polyhedral
stress functions in Sect. 2. Next, we formulate a two-
mesh approach to the Cauchy stress associated with an
unstructured, internally self-equilibrated framework
(Sect. 3). We illustrate the potential of the proposed
approach through a convergence study focused on a
benchmark problem of linear elasticity (Sect. 4.1); and
the state of stress associated with flat and curved truss
structures (Sects. 4.2 and 4.3). We end summarizing the
main results and future directions of the present work in
Sect. 5.

2. INTERNALLY SELF-EQUILIBRATED
FRAMEWORKS AND POLYHEDRAL
STRESS FUNCTIONS
Throughout the paper, we refer to a triangulation Ph of
a polygonal and simply-connected domain Ω of the
two-dimensional Euclidean space, which shows M
non-degenerate triangles Ω1, …, ΩM and features the
following size: h = supm∈{1, ..., M}{diam (Ωm)}. We
name ‘physical’ the edges of Ph that do not belong to
the boundary of Ω.

2.1. Internally self-equilibrated framework
associated with a given polyhedral stress
function
Let us introduce Cartesian coordinates x1 and x2 in the
plane of Ω and the polyhedral function defined as
follows

(1)

where x = [x1, x2]T ; N is the total number of nodes of
the triangulation Ph; ĵn is the value taken by ĵ̂h at the
node xn; and gn is the piecewise linear basis function
associated with such a node (‘umbrella’ basis
function). We agree to denote the coordination
number of xn by Sn, and the edges attached to such a
node by Gn

1, ..., Gn
Sn. The unit vectors perpendicular

and tangent to Gn
1, ..., Gn

Sn will be hereafter indicated
by ĥ1

n, …, ĥn
Sn

, and k̂1
n, …, k̂n

Sn, respectively (Fig. 2).
By interpreting ĵh as a generalized (Airy) stress
function, we associate a set of NG forces with such a
function, where NG indicates the total number of
physical edges of Ph. The generic of such forces is
given by

(2)
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where [[—ĵh]]s
n indicates the jump of the gradient of ĵ̂h

across the edge Gn
s [3, 18]. The gradient —ĵ̂h is

computed as follows over the generic triangle xn, xs
n, xt

n

(refer, e.g., to [45])

(3)

where A is the area of the above triangle, and êa is the
unit vector in the direction of the xa-axis. Equation (2)
shows that the forces Ps

n are associated with the ‘folds’
of the graph of ĵ̂h. In particular, convex folds of ĵ̂h

correspond with tensile forces, while concave folds
correspond with compressive forces (Fig. 1). It is
useful to recast (2) in matrix form, by proceeding as
follows. Let us sort the x1

n, ..., xn
Sn nodes connected to

xn in counterclockwise order, as shown in Fig. 2, and
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denote the values taken by ĵ̂h at such nodes by ĵ̂1
n, ...,

ĵ̂n
Sn, respectively. Said Pn ≤ Sn the number of

physical edges attached to xn, we collect the forces
associated with such a node into the Pn-dimensional
vector Ρ̂n = [P1

n, ..., Pn
P ]T, and the values of ĵ at 

x1
n, ..., xn

Sn and xn into the (Sn′ = Sn + 1)-dimensional
vector ĵn = [ĵ1

n, ..., ĵn
Sn, ĵn]T. Straightforward

calculations show that the substitution of (3) into (2)
leads to the following algebraic equation

(4)

where Ĉn is the Pn × Sn′ matrix defined through

(5)

In (5), ` s
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By using standard matrix assembling techniques,
we finally obtain the following ‘global’ equation
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Figure 1. (Color in the online version). Illustration of a
triangulated force network and the associated polyhedral
stress function ĵh (red: tensile forces, blue: compressive

forces).

Figure 2. Details of an inner node (left) and a boundary node (right) of Πh.



which relates the vector Ρ̂h collecting all the forces Ps
n to

the vector ĵ̂h collecting all the nodal values of ĵ̂h. In (7),
Ĉh is the NG × N matrix obtained by assembling the
nodal matrices (5). It can be shown [17] that the forces
Ρ̂h computed through (7) automatically satisfy the
equilibrium equations of the internal nodes of Ph with
zero external forces, for any given ĵ̂h ∈ RN. This
implies that Ρ̂h and the graph structure associated with
Ph form an internally self-equilibrated framework
[8, 46].

2.2. Polyhedral stress function associated
with a given, internally self-equilibrated
framework
We now pass to examine the problem of finding a
polyhedral stress function ĵ̂h associated with a given,
internally self-equilibrated framework Ρ̂h in two-
dimensions. The latter may arise e.g. from pair-
interactions in a particle system [44], or a lumped
stress approach to the equilibrium problem of a
continuous medium [3, 33]. As anticipated, we assume
that Ρ̂h is associated with the (physical) edges of a
planar (non-degenerate) triangulation Ph of simply-
connected domain Ω. It is clear that the current
problem is related to the inversion of the linear system
of algebraic equations (7). Let us refer to the
illustrative example represented in Fig. 3, which
shows a triangulated force network with a total of 
N = 115 nodes; 77 inner nodes; and 266 physical edges.
We have observed in the previous section that the
forces Ρ̂h computed through (7) satisfy the equilibrium
equations of the inner nodes of Ph (with zero applied
forces), for any given ĵ̂h ∈ RN. This proves that the
rank of Ĉh is equal to 112 (r = rank (Ĉh) = 266 – 2 ×
77 = 112), and that the nullity of the same matrix is
equal to 3 (n = nullity (Ĉh) = 115 – 112 = 3, cf., e.g.,
[47]), in the case under examination. Given an
arbitrary internally self-equilibrated force network 
Ρ̂h ∈ Rr, we therefore conclude the following: (i) the
linear system (7) actually admits solutions ĵ̂h ∈ RN;
(ii) such solutions are determined up to three arbitrary
constants; (iii) two solutions differ by linear functions
associated with zero axial forces along the edges of
Ph. It is not difficult to realize that the above results
(i), (ii) and (iii), which generalize analogous ones
concerned with smooth Airy functions [48], can be
extended to arbitrary triangulations of simply-
connected domains. Consider, e.g., that the insertion of
an additional (inner) node into the triangulation in 
Fig. 3 leads to a new triangulation carrying 116 nodes;
269 forces: and 2 × 28 = 156 equilibrium constraints
(rank (Ĉh) = 269 –156 = 113). It is easily shown that

such an insertion leaves the nullity of Ĉh equal to 3.
The indeterminacy of system (7) can be resolved by
prescribing ĵh at three non-collinear nodes of Ph (e.g.,
prescribing the values of ĵh at the vertices of a given
triangle). A particular solution of (7) is given by

(8)

where Ĉ+
h denotes the Moore-Penrose inverse of Ĉh.

We address the special case of a multiple-connected
domain to the Appendix.

3. STRESS FIELD ASSOCIATED WITH
AN INTERNALLY SELF-EQUILIBRATED
FRAMEWORK
It is not difficult to realize that a scale bridging
approach to the stress field associated with a self-
equilibrated force network Ρ̂h can be obtained by
introducing a suitable regularization of the
corresponding stress function ĵ̂h. Consider, indeed,
that the stress field associated with a smooth Airy
stress function j0 corresponds with the hessian of j0

(under a suitable rotation transformation, see, e.g., [48,
49]), i.e. the second-order tensor with Cartesian
components ∂j0/∂xα∂xβ (α, β = 1, 2). Since the
second-order derivatives of a polyhedral function ĵh

exist only in the distributional sense, the definition of
a stress field associated with ĵh calls for the
introduction of a generalized notion of the hessian of
such a function [4, 18]. A convergent stress measure
has been defined in [18], on considering sequences of
polyhedral stress functions associated with structured
triangulations. The latter match the PΣ property
defined in Sect. 5 of [18], and consist, e.g., of
triangulations associated with rectangular or

ϕ = +C Pˆ ˆ ˆ
h h h
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Figure 3. (Color in the online version). 2D view of the 
force network in Fig. 1 (red: tensile forces, blue: 

compressive forces).
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hexagonal Bravais lattices (cf. Figs. 2 and 3 of [18]).
Let us define a ‘dual mesh’ Π̂h of Ω, which is formed
by polygons connecting the barycenters of the
triangles attached to the generic node xn to the mid-
points of the edges Gn

1, ..., Gn
Sn (‘barycentric’ dual

mesh, cf. Fig. 1). The stress measure defined in [18] is
a piecewise constant stress field T̂h over Π̂h, which
takes the following value in correspondence with the
generic dual cell Ω̂n

(9)

Here, �Ω̂n� denotes the area of Ω̂n, and j� is defined as in
(6). Under the assumption that Ph is a structured
triangulation, it has been shown in [18] that the discrete
stress (9) strongly converges to the stress field
associated with the limiting stress function, as the mesh
size approaches zero (cf. Lemma 2 of [18]). It is worth
observing that T̂h(n) is obtained by looking at the
quantity Ps

n k̂s
n ⊗ k̂s

n as a ‘lumped stress tensor’ acting in
correspondence with the edge Gs

n, and that Eqn. (9)
spatially averages the lumped stress tensors competing
to xn, over the corresponding dual cell Ω̂n (averaging
domain). We also note that the stress measure (9)
corresponds with the virial stress of statistical
mechanics at zero temperature (cf. [44], Sect. 2.2 and
Appendix A). Unfortunately, the error estimate given in
Lemma 2 of [18] does not cover unstructured
triangulations, as we already noticed. We hereafter
handle the case of an unstructured polyhedral stress
function ĵh by employing the regularization procedure
formulated in [50] to predict the curvatures of
polyhedral surfaces. Let us consider an arbitrary vertex
xn of ĵh, and a given set Kn of selected neighbors of xn

(such as, e.g., the nearest neighbors, second nearest
neighbors, etc., cf. Fig. 4). We first construct a smooth
fitting function F̂Kn

(x) of the values taken by ĵh at the
node set Kn. Next, we evaluate F̂Kn

(x) at the vertices xxx̃1,
..., xx̃Ñ of a second, structured triangulation P̃h, which is
built up around xn (Fig. 4). We finally construct the
following ‘regularized’ polyhedral stress function

(10)

where Ñ is the number of nodes of P̃h, and g̃n denotes
the piecewise linear basis function associated with 
xx̃n ∈ P̃h. Useful fitting models are offered by
interpolation polynomials, local maximum entropy
shape function, Moving Least Squares (MLS)
meshfree approximations, and B-Splines, just to name
a few examples (refer, e.g., to [51] for a comparative
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study of such methods). Let us focus now on Eqns. (2)
and (9). The replacements of all the quantities relative
to Ph with the analogous ones referred to P̃h in such
equations, leads us to (structured) ‘regularizations’ P̃h

and T̃h of the force network and stress field associated
with the unstructured mesh Ph, respectively.

4. NUMERICAL RESULTS
The present section provides a collection of numerical
applications of the procedures described in the
sections 2 and 3. We deal with the Flamant solution to
the stress field of a half-plane loaded by a normal
force, and truss models of a cantilever beam and an
elliptical dome. In all the given examples, we analyze
both structured and unstructured force networks
describing the problem under examination, and study
the properties of the associated stress fields. Given a
source triangulation Ps, and a polyhedral function ĵh

associated with Ps, we name smooth projection of ĵh

over a target triangulation Pt the polyhedral function
defined through: (i) the construction a smoothing of ĵh

through local quintic polynomials around each node of
Ps [53]; (ii) the sampling the fitting function F̂ at the
vertices of Pt. We assume that the fitting patch Kn

associated with such a projection coincides with the
entire source mesh Ps (cf. Sect. 3).

4.1. Flamant problem
Let us study the convergence behavior of the
regularized stress measure introduced in Sect. 3 by
considering the well known Flamant solution for the
problem of a half plane loaded by a perpendicular
point load. Such a problem has been analyzed in [3]
through a lumped stress approach based on structured
meshes. We examine the Flamant solution in terms of
the Airy stress function, which reads

(11)ϕ
π

θ θ= −
F

r sin0

Figure 4. Illustration of Kn and Ω̃n.



where r and θ are polar coordinates with origin at the
point of application of the load F (cf., e.g., [3]). 
The above stress function generates the following radial
stress distribution in the loaded half-plane (Fig. 5).

(12)

We consider approximations to j0 associated with
four structured and unstructured triangulations of a 
1.6 × 1.4 rectangular domain placed on one side of the
loading axis (‘simulation region’, cf. Fig. 5). The
analyzed structured triangulations P̃(1), ..., P̃(4) are
supported by hexagonal Bravais lattices, and show
equilateral triangles with the following edge lengths:
h̃1 = 0.20 (mesh # 1): h̃2 = 0.10 (mesh # 2); h̃3 = 0.05
(mesh # 3); and h̃4 = 0.025 (mesh # 4), respectively.
The unstructured triangulations P(1), ..., P(4) are
instead obtained through random perturbations of the
positions of the nodes of P̃(1), ..., P̃(4).

We first examine the projections ĵ(1), ..., ĵ(4) of the
Flamant solution (11) over the unstructured meshes
P(1), ..., P(4). Each of such stress functions generates
an unstructured force network Ρ̂(i) (cf. Sect. 2), and a
piecewise constant approximation T̂rr

(i) to the Flamant
stress field (Sect. 3). Next, we construct a smooth
projection j̃ (i) of the generic ĵ(i) over the structured
triangulation P̃(i) (unstructured to structured
regularization). We let P̃(i) and T̃rr

(i) respectively denote
the force network and the discrete stress field
associated with such a ‘regularized’ stress function.

The accuracy of each examined approximation to
the radial stress field (12) is measured through the
following Root Mean Square Deviation

(13)

where N denotes the total number of nodes of the
current mesh; (T (i)

rr)n denotes the value at node n of T (i)
rr;

θ
π

= −T
F cos

r

2
rr
(0)

∑( )( ) ( )= −
=

T T T Nerr ( ) ( ) /rr
i

rr
i

rr nn

N( ) ( ) (0) 2

1

and (T 0
rr)n denotes the value at the same node of the

exact stress field (12). In (13), we let T (i)
rr denote either

T̂ (i)
rr (unstructured approximation to T (0)

rr ), or T̃ (i)
rr

(structured approximation to T (0)
rr ).

Fig. 6 graphically illustrates the force networks Ρ̂(i)

and P̃ (i) computed for some selected meshes, while
Fig. 7 plots the approximation error (13) against the
mesh size h̃, for each of the analyzed approximation
schemes. Finally, Fig. 8 depicts 3D density plots of T̃ (i)

rr

and T̃ (i)
rr for meshes #3 and #4. As the mesh size h̃

approaches zero, we observe from Fig. 7 that the
approximation errors of the unstructured approxi-
mations to T (0)

rr show rather low reduction rate, while
those of the structured approximations instead feature
slightly super-linear convergence to zero. The results
shown in Fig. 8 confirm the higher degree of accuracy
of the structured approximations T̃ (i)

rr, as compared to
the unstructured approximations T̂ (i)

rr. In this figure, we
marked selected contour lines of the exact radial stress
T (0)

rr by white circles (cf. Fig. 5).

4.2. Cantilever truss
The current example is aimed to show how the
procedures presented in Sects. 2 and 3 can be applied
to determine the Airy stress function and the stress
field associated with two different truss models of a
cantilever beam. We examine a truss structure P̃ that
has the same topology as the minimum volume frames
analyzed in a famous study by A.G.M. Michell [52]
(see also [33], Chap. 4). Such a truss is composed of a
system of orthogonal and equiangular spirals, which
carries a force F at a given point A, and is rigidly
anchored in correspondence with a small circle
centered at the origin B of the spirals (refer to Fig. 9,
and [33, 52, 55]). We assume that the length of the AB
segment is 10; the opening angle of the truss is π; the
radius of the anchoring circle is 2; and it results F = 10
(in abstract units). We complete the Michell truss with
the insertion of diagonal edges connecting the two
orders of spirals, obtaining an enriched truss model
supported by a triangulation with 589 nodes and 1578
physical edges (cf. Fig. 9). We also consider a
perturbed configuration Π of the Michell truss, which
is obtained by randomly moving the inner nodes of the
regular configuration (Fig. 9).

We initially follow Michell’s approach to the
equilibrium problem of P̃, by computing the axial
forces in the spiral members through the nodal
equilibrium equations of the structure (refer to [33],
Chap. 4), and setting the forces in the remaining edges
to zero (‘Michell truss’). Next, we associate an Airy
stress function j̃ to such a force network P̃, through
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Figure 5. Flamant solution for the problem of a half plane
loaded by a perpendicular point load (left), and examined

simulation region (right).
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Figure 6. (Color in the online version). Illustrations of selected unstructured (left) and structured (right) force networks
approximating the Flamant problem in Fig. 5 (blue: compressive forces; red: tensile forces).
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Figure 7. (Color in the online version). Root Mean Square Deviations of the examined approximations 
to the radial stress T (0)

rr of the Flamant problem.

Figure 8. (Color in the online version). Density plots of the examined approximations to the radial stress T (0)
rr

of the Flamant problem for different meshes and interpolation schemes.
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Eqn. (8) of Sect. 2.2 (cf. Fig. 9). On proceeding in
reverse ordered with respect to the previous example,
we then construct a smooth projection ĵ of j̃ over the
perturbed configuration Π, and let Ρ̂ denote the
associated force network (Fig. 9). Let us focus our
attention on the Cartesian components T11 and T12 of
the stress fields associated with P̃ and Ρ̂ (x1 denoting
the longitudinal axis). The results in Fig. 10 highlight
that the ‘structured stress’ T̃ (associated with P̃)
smoothly describes the stress field associated with 
the background domain of the Michell truss, while the
‘unstructured stress’ T̂ (associated with Ρ̂), on the
contrary, provides a fuzzy description of such a stress
field.

A different approach to the truss P̃ is obtained by
looking at the 2D elastic problem of the background
domain W (here supposed to be homogeneous), under
the given boundary conditions. We now interpret
P̃ as a lumped stress model of W, i.e., a non-
conventional elastic truss having the strain energy
computed per nodes (i.e., per dual elements) and not
per elements (‘LSM truss’, cf. [3]). Accordingly, we
determine the forces in its members by solving the
elastic problem presented in Sect. 5 of [3]. As in the
previous case, we also consider the smooth
projection of the Airy function associated with the
regular truss P̃ over the perturbed configuration Π.
We show in Fig. 11 the force networks and the stress

Figure 9. (Color in the online version). Michell truss example. Top: ordered (right) and unstructured (left) configurations. Center:
details of the force networks near the tip (blue: compressive forces; red: tensile forces). Bottom: Airy stress functions associated

with ordered (left) and unstructured (right) force networks.
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Figure 10. (Color in the online version). Density plots of different approximations to the stress components T11 (top:longitudinal
normal stresses) and T12 (bottom:tangential stresses) associated with the Michell truss.

Figure 11. (Color in the online version). LSM truss example. Top: ordered (left) and unstructured (right) force networks 
(blue: compressive forces; red: tensile forces). Center and bottom: ordered and unstructured approximations to the stress 

field of the background domain.
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fields corresponding to the LSM trusses P̃ (Fig. 11,
left), and Π (Fig. 11, right). By comparing the results
in Figs. 9 and 10 with those in Fig. 11, we realize that
the LSM truss P̃ shows non-zero forces in the non-
spiral members, differently from the Michell truss
(Fig. 9, left). The results in Figs. 10 and 11 point out
that averaging techniques based on unstructured
force networks do not generally produce smooth
descriptions of the Cauchy stress field, as we already
observed in Sect. 3.

4.3. Elliptical dome
Our last example is concerned with a truss model of a
membrane shaped as an elliptic paraboloid. The
membrane equilibrium problem of such a structure can
be approached by Pucher’s theory (refer, e.g., to [9, 20,
54]), which introduces a stress function j0 to generate
projected membrane stresses Tαβ (Pucher stresses)
onto the horizontal plane (membrane ‘platform’). We
examine an elliptical dome described by the following
Monge chart

(14)

where x1 and x2 are Cartesian coordinates in the plane
of the platform; x3 is the coordinate orthogonal to such
a plane; h is the maximum rise; and a and b are the
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we generate the following Pucher stresses over the
membrane platform

(16)

Let us assume q = 1, a = 11.26, b = 5.63, h = 10 (in
abstract units). As in the previous example, we study a
structured and an unstructured truss models of the
problem under examination. The structured model 
P̃ is supported by a hexagonal Bravais lattice featuring
953 nodes and 2628 physical edges, while the
unstructured model Π is obtained through random
perturbations of the positions of the nodes of P̃. In
both cases, we approximate the elliptic basis of the
dome by a polygon with 22 edges (cf. Figs. 12 and 13).
In the present example, we first project the stress
function (15) over the unstructured triangulation Π,
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Figure 12. (Color in the online version). Adopted meshes (top); 2D force networks (center); and 3D force networks (bottom) for
a quarter of unstructured (left) and structured (right) truss models of an elliptic dome.
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Figure 13. Density plots of the examined approximations to the Pucher stresses T11
(0) and T12

(0) for the elliptic dome example.

Figure 14. Illustration of a doubly-connected domain Ω.
Figure 15. Subdivision of a a doubly-connected domain Ω

into two simply-connected domains Ω1 and Ω2.
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and denote the corresponding polyhedral function by ĵ.
Next, we construct a smooth projection j̃ of ĵ over the
structured triangulation P̃ (unstructured to structured
regularization). The force networks Ρ̂and P̃, which are
respectively associated with ĵ and j̃ , define
unstructured and a structured truss models of the
platform. We can easily transform such force systems
into 3D force networks N̂ and Ñ, by lifting the vertices
of the meshes Π and P̃ at the height of the surface
(15), respectively (Fig. 12). Let T̂αβ and T̃αβ denote the
unstructured and structured approximations to the
Pucher stresses (17), which correspond to the force
networks  Ρ̂ and P̃, respectively (Sect. 3). The density
plots in Fig. 13 show clear evidence for a close match
between the structured stresses T̃11, T̃12 and the exact
Pucher stresses T (0)

11 , T (0)
12, and the ‘fuzzy’ aspect of the

unstructured stresses T̂11, T̂12.

5. CONCLUDING REMARKS
We have formulated and discussed the relationship
between polyhedral Airy stress function and internally
self-equilibrated frameworks of simply connected
domains in two dimensions, by generalizing classical
results of plane elasticity [48, 49]. We have also
formulated a two-mesh technique for the definition of
the Cauchy stress associated with unstructured force
networks, which handles arbitrary triangulations of
simply-connected domains, and makes use of smooth
projection operators. The results of Sect. 4 highlight
that the smooth projection of an unstructured stress
function over a structured triangulation is able to
generate a convergent discrete notion of the Caucy
stress in the continuum limit. Such a stress measure
can be usefully employed to smoothly predict the
stress field associated with truss and/or tensegrity
models of flat and curved membranes [1–11, 14, 16,
17], and to formulate concurrent discrete-continuum
approaches based on the lumped stress method [2, 3, 9,
10, 18]. Due to its ability in generating unstructured
and structured force networks over a given design
domain, the proposed regularization technique can
also be used in association with structural optimization
procedures and form-finding methods [9, 10, 38–41].

Several aspects of the present work pave the way to
relevant further investigations and generalizations that
we address to future work. First, the inclusion of body
forces calls for specific attention, since network
structures are usually loaded by nonzero forces at all
nodes. Such a generalization of our current results
could be carried out by deriving explicit formulae for
the passage from unstructured to structured force
networks, which do not require polyhedral stress

functions. A second modification of the procedure
described in Sect. 3 relates to the use of mesh-free
interpolation schemes, such as, e.g., the local
maximum-entropy approach presented in [27]. Finally,
another relevant generalization of the present research
regards the prediction of the stress fields associated
with fully 3D force networks. In principle, such a
challenging extension might be accomplished by
making use of Maxwell or Morera stress functions
[56], and applying the present procedures in
correspondence with three different planes. However,
the application of this approach to the development of
provably convergent numerical schemes for 3D stress
field remains at present an open question, which we
look forward to analyze in future studies.
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APPENDIX. MULTIPLE CONNECTED
DOMAINS
We examine in the present Appendix the case of a force
network defined over a triangulation of a multiple-
connected domain. Without loss of generality, we focus
our attention on the illustrative example shown in 
Fig. 14, which deals with a doubly-connected domain
W. The generalization of the arguments presented in
Sects. 2 and 3 to such a domain is pretty straight-
forward, when W is suitably discretized into a
collection of simply-connected domains. Fig. 15
illustrates a subdivision of the current domain into two
simply-connected subdomains W1 and W2. Let us apply

the approximations schemes formulated in Sects. 2 and
3 to each of such subdomains, on introducing two
different stress functions ĵ(1)

h and ĵ(2)
h ; two force

networks Ρ̂(1)
h and Ρ̂(2)

h; and two piecewise constant
stress fields T̃(1)

h and T̃(2)
h . We obtain an overall

approximation of the Airy stress function that is
doubly-valued in correspondence with the separation
between W1 and W2. Such an indeterminacy in terms of
the Airy stress function does not affect the overall
prediction of the Cauchy stress of W, since the stress
fields T̃ (1)

h and T̃ (2)
h pertain to complementary

tessellations W1 and W2 of W, which have null
intersection and are such that W = W1 ∪ W2 (Fig. 15).




