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a b s t r a c t

The dynamic analysis of two-dimensional (2D) periodic material structures is proposed via a novel
mechanical approach. General assumptions include: i) the representative unit cell of the square lattice
can be modeled by means of a defined number of straight micro-beams; ii) both shear/flexural and axial
strains are locally accounted for; iii) a microstructure-dependent scale length is introduced as an intrinsic
parameter of the micro-beams, with possible different scale lengths for different considered beams. All
these features allow to detect the influence of the characteristics of the lattice at the local scale on the
global dynamic behavior. Moreover, the existence of frequency band gaps is also predicted.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The research and development of micro-structured periodic
materials have revealed a great appeal over the last years, in view of
the numerous advantages related to them. The enhanced structural
performances, in fact, include the high strength to weight and
stiffness to weight ratios as well as specific dynamic properties
[1e6]. Photonic and phononic crystals, energy absorption devices,
noise and vibration controllers as well as advanced strategies for
the seismic isolation, in fact, are fields of investigation open to new
contributions [7e12]. Within this context, a relevant position is
taken by 2D lattice materials.

As discussed bymany authors, the dynamic behavior of a square
lattice material is strongly affected by the underlying microstruc-
ture. Where changes in stresses and strains can no longer be
considered as uniform at the local scale, the importance of
considering a microstructure-dependent parameter becomes
imperative [13e16]. A similar situation deals, for example, with thin
films, adhesive interfaces, notches, crack tips, localized
deformations.

Several simplifications are usually introduced when studying
the dynamic response of periodic materials. First of all, the spatial
periodicity (i.e. the hypothesis of infinite lattice points) allows to
reduce the analysis to the representative unit cell (RUC), by means
of the Bloch theorem. An example of a simple two-dimensional
square lattice material and the corresponding unit cell is depicted
in Fig. 1, where a1 and a2 are the unit vectors along the directions of
spatial periodicity. The square topology implies, in this case, that a1
and a2 are normal to each other.

According to the Bloch theorem, if a plane elastic wave propa-
gates in the lattice material (Fig. 1), the displacement of an arbitrary
point P is given by:

uðrÞ ¼ ukðrÞexpð�iut þ k,rÞ (1)

with the symbol r indicating the position of the point P, k denoting
the Bloch wave vector, u the angular frequency and the amplitude
ukðrÞ being characterized by the same spatial periodicity as the
point lattice. By virtue of this, the position of an arbitrary point P at
a fixed time t is a function of the position of the corresponding
point O, which is located in a reference unit cell. Once the reference
cell has been fixed (see Fig. 1), it results: r ¼ r0 þ n1a1 þ n2a2
where ðn1;n2Þ is an integer pair, a1 and a2 the generating vectors
and r0 is the position vector of O. Equation (1) becomes:

uðrÞ ¼ uðr0Þexpðn1k,a1 þ n2k,a2Þ (2)

By other words, it is possible to restrict the study of an infinite
lattice system to the analysis of the reference unit cell, which is also
called representative unit cell (RUC).

It is easy to verify that the reciprocal unit vectors b1 and b2
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Notation

U global reference system (origin)
e1; e2; e3 global reference system (unit vectors)
a lattice constant
a1; a2 generating vectors (ai ¼ aei with i ¼ 1, 2)
b1;b2 reciprocal unit vectors
i1, i2, i3 local reference system (unit vectors) - i1 aligned with

the beam axis
k Bloch wave vector
E symmetric part of the displacement gradient
k symmetric part of the curvature tensor
S Cauchy stress tensor
M couple stress tensor
m deviatoric part of M

l1 length of the primary micro-beams ðl1 ¼ a=2Þ
l2 length of the auxiliary micro-beams ðl2 � a

ffiffiffi
2

p
=2Þ

A cross-section area (per unit length along e3)
As cross-section shear area (per unit length along e3)
I flexural inertia (per unit length along e3)
E longitudinal normal modulus
G shear modulus
n Poisson ratio
l microscale characteristic length
r mass density
N axial force
M bending moment
Y additional bending moment depending on the size

effect
V shear force
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assume the following form:

b1 ¼ 2p
a2 � e3

a1,ða2 � e3Þ
¼ 2p

a
e1 (3.1)

b2 ¼ 2p
e3 � a1

a1,ða2 � e3Þ
¼ 2p

a
e2 (3.2)

where e3 is the unit vector normal to the e1 � e2 plane (Fig. 1).
Finally, the periodic boundary condition for the dynamic anal-

ysis of the unit cell assumes the following form:

uðrÞ ¼ uðr0Þexp½2pðn1k1 þ n2k2Þ� (4)

under the hypothesis the Bloch wave vector is expressed in the
reciprocal space:

k ¼ k1b1 þ k2b2 (5)
2. Mechanical approach

The mechanical model proposed for the dynamic analysis of a
2D lattice material is discussed in this section. The following as-
sumptions are made:

i) The spatial periodicity directions a1 and a2 are orthogonal to
each other;
Fig. 1. Two-dimensional square
ii) The representative unit cell can be simulated by inter-
connecting straight micro-beams (Fig. 2);

iii) The primary microstructure is made of four micro-beams,
which are always present. Auxiliary micro-beams can be
present depending on the designed topology;

iv) Rigid internal connections are considered;
v) An appropriate micro-scale parameter is introduced in order

to simulate the local behavior of a generic micro-beam, thus
accounting for the so-called size effect [17e19].

Examples of RUCs are shown in Fig. 2. The first example (left
side) shows the presence of the main micro-structures, made of
four primary micro-beams only. The second example (right side)
indicates that auxiliary micro-beams can be present in addition to
the main micro-structures. It is worth noting auxiliary micro-
beams are directly related to the resonance properties at the local
scale of the periodic material.

In order to account for the micro-beams local behavior, couple
stresses are considered in addition to classical Cauchy stresses. The
deformation energy density, w, has been thereby assumed as fol-
lows, in accordance with [17,18]:

w ¼ 1
2
lðtrEÞ2 þ m

�
E,Eþ l2k,k

�
(6)

where l and m denote the Lame's constants, while l is a micro-
structure length scale parameter. With usual notation, E and k

indicate, respectively, the symmetric part of the displacement
gradient and the symmetric part of the curvature tensor:
lattice material (example).



Fig. 2. Examples of RUCs of a 2D square lattice material (a being the lattice constant).
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Eij ¼ 1=2
�
vui
�
vxj þ vuj

�
vxi
�

(7.1)

kij ¼ 1=2
�
vqi
�
vxj þ vqj

�
vxi
	

(7.2)

It is important to remark that the strain tensor E is conjugated
with the Cauchy stresses, S, while k is conjugated with the devia-
toric part, m, of the couple stress tensor M. It is also important to
underline that couple stresses are considered in a simplified
manner, according to the so-called Modified Couple Stress Theory
[17,18], which, as demonstrated in Ref. [20], has been built up on the
assumption that only the symmetric part of the rotation gradient
contributes to the strain energy density, while the skew-symmetric
part does not influence the behavior of the beam.
Table 1
Geometry and mechanical parameters (I/II indicates the considered topology of the RUC

# RUC a½mm� l1½mm� A½mm2=mm� As½mm2=mm� I½mm

1 I 1.0 � 10�1 5.0 � 10�2 5.0 � 10�3 4.17 � 10�3 1.04
2 II 1.0 � 10�1 5.0 � 10�2 5.0 � 10�3 4.17 � 10�3 1.04
3 I 1.0 � 10�1 5.0 � 10�2 1.0 � 10�2 8.33 � 10�3 8.33
4 II 1.0 � 10�1 5.0 � 10�2 1.0 � 10�2 8.33 � 10�3 8.33
5 I 1.0 � 10�1 5.0 � 10�2 2.0 � 10�2 1.67 � 10�2 6.67
6 II 1.0 � 10�1 5.0 � 10�2 2.0 � 10�2 1.67 � 10�2 6.67

Table 2
First natural frequencies u1 at points O, A, B (1.a, 1.b, 2.a, 2.b and 2.c).

1 2 3 4

1.a O 0.0 0.0 4.2 4.2
A 0.8 2.4 3.3 7.0
B 1.7 2.2 8.9 11.6

1.b O 0.0 0.0 10.8 10.8
A 2.0 6.6 7.5 15.9
B 4.2 5.7 14.1 14.1

2.a O 0.0 0.0 2.6 3.7
A 0.6 2.2 3.0 3.3
B 1.5 2.2 3.0 4.2

2.b O 0.0 0.0 2.9 3.8
A 0.6 2.2 3.3 3.5
B 1.5 2.2 3.5 8.2

2.c O 0.0 0.0 7.0 9.6
A 1.5 6.0 6.8 8.0
B 3.7 5.7 7.7 8.8
With reference to a generic micro-beam of the RUC, the
displacement field can be assumed as follows:

u1 ¼ uðxÞ � 4ðxÞy; (8.1)

u2 ¼ vðxÞ; (8.2)

u3 ¼ 0: (8.3)

where u1, u2 and u3 are the displacement field components along
the local axes ði1; i2; i3Þ with i1 coinciding with the axis of the
beam; x and y denoting the rectangular coordinates referred to i1
and i2, respectively; uðxÞ and vðxÞ being the translational compo-
nents of the cross-section displacement while 4ðxÞ ¼ q3ðxÞ the
as in Fig. 2).

4=mm� l2½mm� E½N=mm2� n G½N=mm2� r½kg=mm3�
� 10�8 0.00 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

� 10�8 3.54 � 10�2 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

� 10�8 0.00 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

� 10�8 3.54 � 10�2 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

� 10�7 0.00 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

� 10�7 3.54 � 10�2 9.0 � 104 0.23 3.66 � 104 2.70 � 10�6

5 6 7 8 9 10

6.1 9.3 18.8 18.8 23.9 29.4
11.5 13.2 14.5 20.0 25.5 32.9
11.6 12.7 17.0 17.0 28.9 34.7

15.9 21.7 37.1 37.1 52.1 56.4
17.8 25.7 30.4 36.6 51.6 53.2
22.1 27.4 30.6 30.9 48.2 48.3

4.0 4.3 4.3 4.8 7.9 9.3
4.2 4.3 4.3 8.4 10.3 11.9
4.3 4.3 9.7 9.8 10.7 12.7

4.0 9.3 9.6 11.4 11.4 12.4
8.4 9.5 11.4 11.4 12.7 13.5
9.8 11.4 11.4 12.6 12.7 12.7

10.2 11.4 11.4 12.7 19.5 21.7
10.1 11.4 11.4 14.5 20.4 26.4
11.4 11.4 11.5 13.8 25.0 27.3



Table 3
First natural frequencies u1 at points O, A, B (3.a, 3.b, 4.a, 4.b and 4.c).

1 2 3 4 5 6 7 8 9 10

3.a O 0.0 0.0 4.0 4.0 5.8 8.3 15.4 15.4 20.4 23.3
A 0.7 2.4 3.0 6.6 7.3 10.1 12.2 15.5 21.3 24.1
B 1.6 2.1 6.7 6.7 8.2 10.9 12.6 12.6 22.6 22.7

3.b O 0.0 0.0 6.0 6.0 8.9 11.7 19.4 19.4 27.7 29.4
A 1.2 3.7 4.0 8.3 9.9 13.7 16.0 19.0 26.4 27.5
B 2.3 3.2 7.2 7.2 12.1 14.5 16.0 16.2 24.5 24.5

4.a O 0.0 0.0 2.5 3.5 3.8 4.1 4.1 4.6 7.3 8.3
A 0.5 2.2 2.9 2.9 3.8 4.1 4.1 6.0 7.7 10.4
B 1.4 2.1 2.8 3.7 4.1 4.1 5.3 5.7 9.6 10.9

4.b O 0.0 0.2 2.7 3.6 3.8 6.4 6.4 7.0 8.1 8.3
A 0.5 2.2 2.9 3.2 4.7 6.4 6.4 7.6 8.2 10.7
B 1.4 2.1 3.1 4.4 5.4 6.4 6.4 7.4 10.4 10.9

4.c O 0.0 0.2 4.0 5.3 5.7 6.4 6.4 7.1 10.7 11.7
A 0.9 3.4 3.5 4.5 5.6 6.4 6.4 7.9 11.1 14.1
B 2.0 3.2 4.3 4.7 6.0 6.4 6.4 7.5 13.5 14.5

Table 4
First natural frequencies u1 at points O, A, B (5.a, 5.b, 6.a, 6.b and 6.c).

1 2 3 4 5 6 7 8 9 10

5.a O 0.0 0.0 3.4 3.4 5.0 6.3 10.0 10.0 14.4 15.1
A 0.7 2.1 2.1 4.3 5.4 7.2 8.2 9.7 13.4 13.9
B 1.3 1.8 3.7 3.7 6.5 7.6 8.2 8.2 12.3 12.3

5.b O 0.0 0.0 3.8 3.8 5.6 6.8 10.5 10.5 15.5 15.9
A 0.8 2.2 2.4 4.6 6.1 7.7 8.7 10.1 13.8 14.4
B 1.4 2.1 3.8 3.8 7.1 8.0 8.7 8.7 12.7 12.7

6.a O 0.0 0.0 2.2 3.0 3.2 3.5 3.5 3.9 5.8 6.3
A 0.5 1.8 1.9 2.5 3.1 3.5 3.5 4.3 6.0 7.4
B 1.1 1.7 2.4 2.5 3.1 3.5 3.5 4.1 7.1 7.6

6.b O 0.0 0.0 2.3 3.0 3.2 4.0 4.0 4.4 5.9 6.3
A 0.5 1.8 1.9 2.6 3.2 4.0 4.0 4.7 6.1 7.4
B 1.1 1.7 2.4 2.5 3.2 4.0 4.0 4.6 7.2 1.1

6.c O 0.0 0.0 2.6 3.3 3.6 4.0 4.0 4.5 6.4 6.8
A 0.6 1.9 2.2 2.9 3.5 4.0 4.0 4.8 6.6 7.9
B 1.2 1.9 2.6 2.7 3.4 4.0 4.0 4.6 7.7 8.0
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rotation referred to the i3 ¼ e3 axis. For the considered problem (i.e.
plane problem) the only non-trivial strain and curvature compo-
nents are the following:

E11 ¼ vu
vx

� y
v4

vx
; (9.1)

E12 ¼ E21 ¼ 1
2



vv

vx
� 4

�
; (9.2)
Fig. 3. Irreducible part of the first Brillouin zone.
k13 ¼ k31 ¼ 1
4

 
v2v

vx2
þ v4

vx

!
: (9.3)

The generalized stresses of this beam model include the axial
force (N), the bending moment (M), the additional bending
moment related to the size-effect (Y) and the shear force (V).
Finally, the following constitutive relationships exist:

½N; M; Y ; V �T ¼ C

"
vu
vx

;
v4

vx
;

1
2

 
v4

vx
þ v2v

vx2

!
;



� 4þ vv

vx

�#T

(10)

where C denotes the following matrix:

C ¼ diagðC11;C22;C33;C44Þ (11)

with:

C11 ¼ Eð1� nÞA
ð1þ nÞð1� 2nÞ (12.1)



Fig. 4. Frequency band structures (not dimensional) (abscissa lying on the boundary OABO of the irreducible part of the first Brillouin zone).
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C22 ¼ Eð1� nÞI
ð1þ nÞð1� 2nÞ (12.2)

C33 ¼ GAl2 (12.3)

C44 ¼ GAs (12.4)

In previous eqs. (12.1,12.2,12.3,12.4) the symbols A, As and I
denote the cross-section area, the cross-section area for shear and
the flexural inertia (per unit length), while the symbols E, G and n

denote the Young modulus, the shear modulus and the Poisson
coefficient. Moreover, the symbol l indicates a characteristic length
which is able to simulate the size effect. This length has been dis-
cussed from a mechanical point of view in great detail in Ref. [13].

3. Numerical approximation

The numerical approach already proposed in Ref. [19], has been
appropriately extended in order to incorporate an individual
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microstructural parameter for any micro-beam considered for the
RUC. This new feature allows to identify the separate microscale
contribution of the micro-beams to the dynamic behavior, thus
facilitating the optimal design of the square lattice topology. For
this purpose a refined finite element has been proposed in Ref. [19].

By standard procedures, the equations of motion of the RUC
assume the following matrix form:

Mg €Ug þ KgUg ¼ F (13)

withMg andKg indicating the overall mass and stiffness matrices of
the unit cell whileUg ¼ ½U1;U2;U3;U4;U5; …; UN�T and F denoting
the nodal displacements and external forces vectors in the global
reference system (U, e1, e2), N being the number of nodes over the
unit cell.

The enhanced finite element proposed in Ref. [19] is able to
account for shear strains and is locking-free. These features, as it is
well-known, are essential for short transient and wave propagation
analysis. It is also useful to underline that the degrees of freedom
Ui ¼ ½Ui;Vi;Fi�T of the generic i-node in the global system
ðe1; e2; e3 ¼ i3Þ are related to the corresponding degrees of
freedom ui ¼ ½ðui;vi;4iÞ�T in the local co-ordinates system
ði1; i2; i3Þ by means of an appropriate rotation due to the orien-
tation of the finite element.

In view of analyzing the propagation of a plane elastic wave,
Equation (13) can be rewritten as follows:

�
� u2Mg þ Kg

�
Ug ¼ F (14)

with u indicating the angular frequency. The periodic boundary
conditions given by Equation (4) assume the new form:

U1 ¼ U3 expð2pk1Þ (15.1)

U2 ¼ U4 expð2pk2Þ (15.2)

whereU1, U2, U3 and U4 are the nodal unknowns relative to node 1
to 4, indicated in Fig. 2, which represent the connections of the RUC
with the four adjacent cells and deal with the main microstructure.
As a consequence, the number of degrees of freedom of the discrete
model is equal to Ndof ¼ 3� ðN � 2Þ. The global displacements
vector Ug ¼ ½U1;U2;U3;U4;U5; …; UN �T, in fact, can be expressed
as a function of a reduced displacements vector
Ur ¼ ½U3;U4;U5; …; UN �T, according to the following relationship:
Table 5
Position and width for low frequency band gaps (1.a, 1.b, 2.a, 2.b and 2.c).

1 2 3 4

Position 3.300 13.860 21.936 29.166
Gap 1.a 0.046 1.347 3.856 0.472
Lower band 2 6 8 9

Position 7.263 15.914 28.868 42.659
Gap 1.b 0.280 0.044 2.999 11.055
Lower band 2 4 6 8

Position 3.184 13.449 20.105 24.745
Gap 2.a 0.115 1.439 2.704 3.840
Lower band 3 10 12 13

Position 13.871 23.672 35.117 45.266
Gap 2.b 0.686 9.455 0.853 3.169
Lower band 10 12 14 18

Position 6.551 7.743 12.121 17.030
Gap 2.c 0.139 0.085 1.228 5.022
Lower band 2 3 7 8
Ug ¼ HUr (16)

where H works as a transfer operator:

H ¼

2
66666666664

c1I 0 0 0 / 0
0 c2I 0 0 / 0
I 0 0 0 / 0
0 I 0 0 / 0
0 0 I 0 / 0
0 0 0 1 1 «
« « « 1 I 0
0 0 0 / 0 I

3
77777777775
; (17)

with I ¼ diagð1;1;1Þ, 0 ¼ diagð0;0;0Þ, c1 ¼ expð2pk1Þ and
c2 ¼ expð2pk2Þ.

The final form of the equations of motion of the RUC are:�
� u2HTMgHþHTKgH

�
Ur ¼ HTF (18)

which indicates that the study of the wave transmission within the
periodic square lattice material reduces to an eigenvalue problem.
For fixed values of k1 and k2, to be expressed in the reciprocal space
(b1, b2) according to Equation (5), the frequencies of the free wave
propagation ðF ¼ 0Þ come from the eigenvalues of the problem
formulated in Equation (18). Moreover, with k1 and k2 lying on the
boundary of the irreducible part of the first Brillouin zone, the band
structure of the lattice material emerges.
4. Results and discussion

A parametric analysis has been carried out in order to identify
the main factors affecting the microstructural behavior of a square
2D lattice. Geometric information and the mechanical character-
istics of the reference unit cell are summarized in Table 1.

More in detail, the value of the lattice constant has been
considered fixed (a ¼ 0.10 mm). Three slenderness conditions have
been assumed for themicro-beams. Possible auxiliarymicro-beams
can be present over a reduced length ðl2Þ along the two diagonals of
the reference unit cell, according to the pattern indicated Fig. 2. II.
Moreover, auxiliary micro-beams are supposed of the same mate-
rial of the primary microstructure (aluminum), with the same
cross-section.

Numerical analyses have been carried out with three different
assumptions: a) the microscale characteristic length is zero (i.e. the
5 6 7 8 9 10

35.260 45.858 66.796 74.461 89.245 105.955
1.133 7.388 1.283 0.672 5.260 0.910
10 12 16 18 20 22

64.808 74.250 91.520 104.320 118.630 156.655
5.240 3.774 7.614 8.200 8.280 10.170
12 14 16 18 20 26

26.916 28.006 35.162 45.711 51.342 67.185
0.501 1.205 0.942 3.948 7.314 0.505
15 16 18 22 24 28

47.436 49.368 51.656 55.370 77.055 92.386
0.499 3.366 0.999 6.430 3.015 10.296
19 21 22 24 30 32

28.808 36.918 44.041 47.837 49.800 51.654
3.019 0.571 7.288 0.303 2.460 1.002
10 12 14 16 17 18



Table 6
Position and width for low frequency band gaps (3.a, 3.b, 4.a, 4.b and 4.c).

1 2 3 4 5 6 7 8 9 10

Position 2.857 8.280 11.555 17.961 28.563 33.799 46.465 55.418 67.474 73.009
Gap 3.a 0.111 0.136 1.255 4.842 2.050 0.162 2.845 6.006 1.592 1.699
Lower band 2 5 6 8 12 14 18 20 24 26

Position 3.929 8.603 15.246 21.933 32.922 37.802 46.771 52.732 59.765 78.084
Gap 3.b 0.040 0.637 1.494 5.063 1.592 2.106 4.650 4.031 3.723 4.523
Lower band 2 4 6 8 12 14 16 18 20 26

Position 6.664 11.465 16.660 18.132 19.258 20.364 21.083 22.083 26.502 31.221
Gap 4.a 1.319 1.082 2.434 0.167 0.462 0.887 0.551 1.176 1.354 0.429
Lower band 8 10 12 13 14 15 17 18 22 24

Position 2.627 5.868 6.658 7.827 11.467 16.948 20.694 25.786 26.357 27.088
Gap 4.b 0.207 0.976 0.605 0.538 1.086 2.990 2.465 0.175 0.556 0.906
Lower band 2 5 7 8 10 12 14 19 20 22

Position 3.491 4.343 6.180 6.735 9.296 15.239 18.721 22.359 24.429 25.520
Gap 4.c 0.111 0.133 0.352 0.759 2.839 1.544 0.005 2.966 1.174 0.760
Lower band 2 3 5 7 8 10 12 14 16 17
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size effect is discarded); b) the size effect is modeled for the
auxiliary beams of the RUC; c) the size effect is modeled for both
primary and auxiliary beams of the RUC. It is worth remarking that
if the size effect is considered, the microscale characteristic length
is assumed equal to 6.58 mm [20].

The numerical simulations have been performed by means of
the FE model proposed in Ref. [19]. The mesh employed has been
obtained by dividing the four micro-beams of the main micro-
structure, shown in Fig. 2, by 10 finite elements each one. If an
auxiliary micro-beam is present, the mesh covering its axis is
composed of an identical number of finite element (10). Many tests
have been carried out in order to check the convergence rate and to
assess the accuracy of the numerical solution.

The frequency values are identified from the eigenvalues and
represented in a dimensionless form ~u by means of:

~u ¼ u=u1 (19)

where u1 denotes the first bending resonance frequency of a
pinned-pinned beam with the same properties given in Table 1, its
length being equal to the lattice constant a:

u1 ¼ p2

a2

ffiffiffiffiffiffi
EI
rA

s
: (20)

In Tables 2, 3 and 4 the main results concerning the lowest
Table 7
Position and width for low frequency band gaps (5.a, 5.b, 6.a, 6.b and 6.c).

1 2 3 4

Position 2.116 4.647 7.894 11.170
Gap 5.a 0.046 0.606 0.593 2.311
Lower band 2 4 6 8

Position 2.327 5.127 8.345 11.578
Gap 5.b 0.160 0.996 0.643 2.168
Lower band 2 4 6 8

Position 1.875 2.431 3.360 3.732
Gap 6.a 0.091 0.067 0.345 0.399
Lower band 2 3 5 7

Position 1.879 2.494 3.619 4.220
Gap 6.b 0.084 0.024 0.799 0.404
Lower band 2 3 5 7

Position 2.057 3.799 4.241 5.580
Gap 6.c 0.308 0.437 0.446 1.654
Lower band 2 5 7 8
natural frequencies (not dimensional) are presented. They refer to
the relevant points O, A and B of the boundary of the irreducible
part of the first Brillouin zone indicated in Fig. 3.

In the following Fig. 4 the frequency bands are plotted for the
first natural modes.

In Tables 5, 6 and 7 the position and the width of the first band
gaps are presented. It is also indicated the number of the lower
band which bound it from below.

Many considerations are appropriate.
As an initial goal, it is relevant to make comments about the

analysis concerning the configuration of the RUC when only the
primary micro-beams are present (cases 1, 3 and 5). The position of
the lower band gaps is mostly sensitive to the micro-scale param-
eter with a relevant shift (forward shift) if the size effect is
considered. This influence, which can be very high (see comparison
1.a/1.b), vanishes as the stiffness of the micro-beams increases (see
comparisons 3.a/3.b and 5.a/5.b).

A similar behavior concerns the configuration composed of
auxiliary micro-beams in addition to the primary microstructure.
From this point of view the results indicate that a partial modeling
of the size effect for the auxiliary microstructure only allow to
capture the major shift effects of the lower gaps when the stiffness
of the micro-beams is low (see comparison 2.a/2.b/2.c).

When an auxiliary microstructure is present, flat bands also
appear in the low frequency region.

Finally, the cumulative gaps are presented in Fig. 5. No effect
5 6 7 8 9 10

16.518 18.921 23.722 25.384 27.035 29.819
0.682 0.807 2.600 0.093 0.328 0.279
12 14 16 19 20 22

19.525 23.942 25.736 27.796 30.352 35.435
1.124 2.161 0.453 0.641 0.159 0.132
14 16 17 20 22 27

5.036 7.893 11.344 12.148 12.486 12.704
1.556 0.604 1.155 0.454 0.197 0.196
8 10 14 16 17 18

5.314 7.894 11.351 12.564 13.548 14.278
1.266 0.605 1.141 1.286 0.419 1.041
8 10 14 16 18 20

8.346 9.574 11.627 12.572 13.556 14.605
0.656 0.055 0.589 1.302 0.403 1.696
10 12 14 16 18 20



Fig. 5. Cumulative band gaps (for u1 < 15).
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depending on the topology nor on the microscale length for higher
stiffness condition (cases 5 and 6) emerges. The approach based on
the consideration of the micro-scale characteristic length indicates
a lower cumulative gap in the low frequencies range.

5. Final comments

A microstructure-dependent scale length is introduced as an
intrinsic parameter of the micro-beams of the representative unit
cell. By means of an appropriate numerical approach, it is possible
to detect the influence of the characteristics of the lattice at the
local scale on the global dynamic behavior. Comparisons in terms of
the position and width of the frequency band gaps indicate the
importance of considering the microstructure-dependent scale
length for both the primary and the auxiliary microstructure.
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