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a b s t r a c t

We analyze the flexural reinforcement of a high-strength cement mortar using metallic fibers obtained
via additive manufacturing of a powder of the titanium alloy Ti-6Al-4V. The analyzed fibers feature either
macroscopic or microscopic surface roughness. Their surface morphology is characterized via optical and
scanning electron microscopy. The results highlight that the flexural strength and fracture toughness of
the examined mortar depend on the scale of the surface roughness of the reinforcing fibers. Specimens
reinforced with fibers exhibiting microscopic surface roughness exhibit a pull through bonding mech-
anism between fiber and matrix, which causes limited matrix damage and a diffuse friction contribution
to energy dissipation. Specimens reinforced with fibers exhibiting microscopic surface roughness,
however, feature a pull through bonding mechanism that causes remarkable matrix damage. Compari-
sons with previous results relative to the reinforcement of a different cement mortar by the same fibers
are established.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Multiscale additive manufacturing (AM) technologies are
advancing extremely quickly, for both the fabrication of materials
and the diverse micro rapid prototyping of nozzles, micro filters,
composite materials, and multiple integration for photonic circuits
ormicrofluidic systems. The use of innovativematerials in full-scale
production is imminent, drawing on the continuous evolution of
AM methods, the widening of material portfolios, and the pro-
gressive reduction of fabrication costs [1]. The use of AM technol-
ogies for the development of innovative composite materials is
reviewed in Ref. [2], with special focus on carbon fiber reinforced
thermoplastic composites. Nowadays, the most commonly
employed AM techniques are the stereolithography (SLA) of liquid
photopolymers, the fused deposition modeling (FDM) of plastic
filaments, and the selective laser sintering (SLS) of metallic pow-
ders [1,2]. Effective composite filaments for FDM are produced by
reinforcing thermoplastic materials with carbon fibers, glass fibers,
and/or carbon nanotubes [2,3]. A matrix material for the rapid
prototyping of electrically conductive elements was manufactured
in Ref. [4], using a plaster-based powder, deposited layer-by-layer,
and an inkjet printed liquid binder. Blends of thermoplastic
starches (TPS), acrylonitrile-butadiene-styrene copolymers (ABS),
compatibilizers, impact modifiers, and pigments were used in
Ref. [5] for the manufacturing of eco-friendly FDM filaments
featuring good mechanical properties, excellent workability and
high thermal stability. The use of ultrasonic additive manufacturing
(UAM) for creating metal-matrix composites is described in
Refs. [6,7], which deal with the formulation and analysis of an
innovative composite obtained by reinforcing an aluminum matrix
with prestrained shape memory alloy fibers. These studies specif-
ically investigate the strength of the fiberematrix interface, which
significantly characterizes the overall properties of UAM compos-
ites, through pullout tests, differential scanning calorimetry, and
finite-element simulations.

A recent work has explored the use of additively manufactured
reinforcing fibers of cement mortars [8] for use, e.g., in the struc-
tural retrofitting of existing buildings and historical constructions
[9e11]. The reinforcing elements analyzed in Ref. [8] consist of fi-
bers with a structural hierarchy manufactured from computer-
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aided design (CAD) data, employing additive manufacturing tech-
niques based either on photopolymers (SLA) or the electron beam
melting (EBM) of a powder of the titanium alloy Ti-6Al-4V [12e15].
EBM is a SLS technology that allows the manufacture of features
with sizes as low as 0.4 mm by progressively depositing, heating
and melting layers of metallic powders, with the melted regions in
each layer defined according to a CAD model of the specimen to be
manufactured [14,15]. The study presented in Ref. [8] is aimed at
exploring the potential of AM technologies to replicate surface
treatments of reinforcing bars such as, e.g., sand-coating [16] and
carbon nanotube enrichment [17,18], for use in the optimal tensile
strengthening of cementitious materials.

The present work expands upon existing research by examining
the reinforcement of a high-strength cement mortar [9] using the
same Ti-6Al-4V fibers studied in Ref. [8]. We begin in Sec. 2 by
describing the preparation of the analyzed mortar and fibers. We
then pass to an analysis of the results of short-beam shear tests
aimed at determining the first-crack strength and toughness of the
current fiber-reinforced mortar, while establishing comparisons
with the results presented in Ref. [8] (Sec. 3). Next, we focus our
attention on the microscopy characterization of the surface mor-
phologies of the Ti-6Al-4 fibers (Sec. 4). By comparing the results of
the present study with those available in Ref. [8], we are able to
draw some conclusions about the influence of the surface rough-
ness scale effects of the reinforcing fibers (microscopic or macro-
scopic roughness) on themechanical response of high-strength and
low-strength cement mortars. We end in Sec. 5 with concluding
remarks and suggestions for future research.
2. Materials

We analyze the Disbocret Unitech R4mortar produced by Italian
Caparol GmbH & Co e a commercial mortar reinforced with PVC
micrometric fibers (~50 mm diameter, ~1 mm length) used for
repairing damaged concrete (see Table 1 for the producer datasheet
giving mechanical properties). This mortar is reinforced with two
different cylindrical fibers (or bars) made of the titanium alloy Ti-
6Al-4V (hereafter, Ti6Al4V) [8], comprising both macroscopically
smooth fibers with 7.5 mm diameter (“Ti_S” fibers, see Fig. 1 a,b),
and macroscopically rough fibers with 7.0 mm diameter and coated
with a 0.75 mm � 0.75 mm grid of cylindrical embossments. The
latter exhibit 0.20 mm diameter and 0.50 mm length (“Ti_R” fibers,
cf. Fig. 1 c,d).

The special nature of the reinforcing elements illustrated in
Fig. 1 is explained by our future intention to examine the rein-
forcement of concretes with metallic bars obtained through AM
technologies. Due to current limitations of the EBM technology in
manufacturing objects with a maximum build size greater than
200 mm, we decided to employ these elements for the reinforce-
ment of a cement mortar instead of a concrete with reduced scale
aggregates.

The manufacturing process of the fibers/rebars in Fig. 1 starts
Table 1
Mechanical properties of analyzed mortar and fibers.

Disbocret Unitech R4 mortar

Compressive strength �45 MPa (class R4 - EN 1504)
Bond to existing concrete � 2 MPa (EN 1542)
Young’s modulus � 20 GPa (EN 13412)

Ti6Al4V titanium alloy

Mass density 4430 kg/m3

Tensile strength 950 MPa
Young’s modulus 120 GPa
with the progressive deposition, heating and melting of layers of a
Ti4Al6V powder. A sliced version of the CAD model of the fibers is
then processed via the EBM facility Arcam S12 [8]. The Ti4Al6V
powder consists of spherical particles with 45e100 mm diameter.
The raw material is ASTM Grade 5 (6al-4V) [12]. The melting phase
is preceded by a preheating stage, during which the powder is
sintered by rapidly scanning the beam (using standard Arcam pa-
rameters), in order to maintain the target build temperature of
730 �C. The subsequent melting stage makes use of the three-beam
rastering strategies diffusely illustrated in Ref. [19], a beam current
of 1.7 mA, and a beam speed of 200 mm/s. The voltage is kept
constant at 60 kV. Once manufactured, all remnants of unmelted
powder are removed using compressed air.

The above mentioned dimensions of the Ti6Al4V fibers refer to
the CADmodels, and do not correspond perfectly to the built object,
since the beam scan strategies of the EBM process and the surface
roughness generally result in larger (in diameter) printed members
[10e12] (cf. Sec. 4). The main properties of the fully dense Ti6Al4V
alloy are given in Table 1 [13]. Recent investigations on porosity in
EBM titanium parts made with the same conditions used for the
current material [12] have shown that the internal porosity is of the
order of 0.2% or less. For this reason, we hereafter assume that the
Young modulus of the porous material is approximately equal to
that of the fully dense Ti6Al4V alloy [13,20].

Prismatic 40 mm � 40 mm � 160 mm specimens of the Dis-
bocret Unitech R4mortar were reinforced with Ti_S and Ti_R fibers,
using a mortar cover of 7 mm (effective depth equal to 33mm). The
remainder of the paper makes use of the labels Ti_R, and Ti_S to
denote the mortar specimens reinforced with the corresponding
Ti6Al4V fibers, and the label UNR to denote unreinforced mortar
specimens. We manufactured three Ti_R specimens, two Ti_S
specimens, and two UNR specimens.
3. Short-beam shear tests

We studied the mechanical response of fiber-reinforced mortar
specimens by carrying out short-beam shear (SBS) tests in dis-
placements control with a 0.50 mm/min loading rate, after 28 days
of curing. These tests consist of three-point bending tests per-
formed on a clear length L ¼ 100 mm of the mortar specimens
described in Sec. 1 (Fig. 2).

The applied load (F) versus mid-span deflection (d) curves ob-
tained for the analyzed specimens under the SBS tests are shown in
Fig. 3. Figs. 4 and 5 illustrate frames taken from in-situ videos of the
SBS tests performed on the specimens Ti_S_1 and Ti_R_1, respec-
tively. Finally, Fig. 6 provides pictures of the configurations after
SBS testing of selected specimens.
3.1. First crack strength and fracture toughness

Following [8] (see also ASTM C1018 [21]), we characterize the
fracture toughness of the fiber-reinforced mortar via the index:



Fig. 1. Full size views and cut parts of Ti_S (a,b) and Ti_R (c,d) fibers.

Fig. 2. Setup of short-beam shear tests.

Fig. 3. Force vs. deflection curves of Ti_S, Ti_R and UNR specimens.
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I ¼
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Here, d is the mid-span deflection at the first crack load; Aðd ¼ 3dÞ is
the area under the load-deflection curve from the origin up to
d ¼ 3d; and AUNRðdÞ is the mean value of the area under the load-
deflection curve of UNR specimens up to crack opening. We also
investigate the first crack strength by computing the maximum
tensile stress fcr carried by the material in correspondence with the
first crack load Fcr, assuming linear elastic behavior up to crack
initiation, the material properties in Prismatic
40 mm � 40 mm � 160 mm specimens of the Disbocret Unitech R4
mortar were reinforced with Ti_S and Ti_R fibers, using a mortar
cover of 7 mm (effective depth equal to 33 mm). The remainder of
the paper makes use of the labels Ti_R, and Ti_S to denote the
mortar specimens reinforced with the corresponding Ti6Al4V
fibers, and the label UNR to denote unreinforcedmortar specimens.
We manufactured three Ti_R specimens, two Ti_S specimens, and
two UNR specimens.

Table 1, and homogenized properties for the fiber-reinforced
cross-section [22]. Table 2 gives the first crack strength fcr and the
toughness index I of the tested specimens, together with the mean
values of these quantities for each examined material (denoted by
f cr and I, respectively).

The results presented in Figs. 3e6 and Table 2 highlight the fact
that the reinforcement of the examined mortar with Ti_R fibers
greatly enhances the first-crack strength (f cr ¼ 19:45 MPa) and
fracture toughness (I ¼ 39:40), compared with the case of the un-
reinforced material (which exhibits f cr ¼ 8:67 MPa and brittle
response after crack onset, despite the presence of PVCmicrometric
fibers, cf. Fig. 3). Reinforcement with Ti_S fibers also produces
remarkable increases in the above quantities compared with the
UNR caseðf cr ¼ 17:48 MPa; I ¼ 36:09), even though the value of f cr
for Ti_S specimens is appreciably smaller than for Ti_R specimens.
It is worth noting, however, that reinforcement with Ti_S fibers
may lead to a residual load-carrying capacity of the fractured ma-
terial (after crack onset), which is almost equal to or even slightly
greater than that resulting from reinforcement with Ti_R fibers.
This effect is clearly visible in Fig. 7, which shows a comparison
between the load-deflection curves of specimens made from the
mortar examined in the present study (“a” specimens) and the low-
strength mortar examined in Ref. [8] (“b” specimens).

The results in Fig. 7 and Table 2 highlight the fact that the re-
sidual load-carrying capacity (after crack onset) and the toughness
index I of the Ti_S_1a specimen are greater than the analogous
quantities of the Ti_R1a specimen. On average, the toughness index
of Ti_R_a specimens is only 9% greater than that of Ti_S_a speci-
mens (cf. Table 2). This beneficial effect of Ti_S fibers is less pro-
nounced in the case of “b” specimens (weak mortar). The I index of
the Ti_S_b specimens is significantly (23%) smaller than that of the
Ti_S_b specimens (cf. Table 2 of Ref. [8]). It can be argued that the
macroscopic roughness of the Ti_R fibers may induce a pull-
through bond failure mode, which increases the first-crack
strength, but may partially compromise the energy absorption ca-
pacity of the material (cf. Sec. 4).

Concerning the failure mechanism under SBS tests, the images
in Figs. 4e6 show a shear-type failure affected by diagonal cracks in
the Ti_S and Ti_R specimens. UNR specimens, however, exhibit
flexural-type failure due to the vertical (or sub-vertical) propaga-
tion of the central crack up to failure (cf. Fig. 6).
3.2. Shear capacity

Having denoted the fiber cross-sectional area by As and the
effective depth of the cross section by d, we now compare the
experimental results in Fig. 3 with the following predictions of the
shear capacity of the examined materials, which are respectively
provided by the international standards EC2 [22], ACI 318 [23] and
BS 8110-1 [24].



d

Fig. 4. Frames from an in-situ video of the SBS test on the Ti_S_1 specimen.

Fig. 5. Frames from an in-situ video of the SBS test on the Ti_R_1 specimen.

Fig. 6. Pictures of different specimens taken after the completion of SBS tests.
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Here,fck denotes the characteristic compressive strength of the
mortar (fck ¼ 45 MPa, cf. Table 1); and we set: gM ¼ 1.25, fc ¼ 0.85,
gc ¼ 1.5.

Table 3 compares the predictions of the shear capacities of the
examined materials with the experimental capacities Vexp



Table 2
First crack strength fcr and toughness index I of the materials examined in the present study.

Specimen fcr (MPa) Mean value f cr (MPa) Specimen I Mean value I

Ti_S_1 14.85 17.48 Ti_S_1 31.90 36.09
Ti_S_2 20.11 Ti_S_2 40.28
Ti_R_1 21.12 19.45 Ti_R_1 30.31 39.40
Ti_R_2 19.15 Ti_R_2 52.75
Ti_R_3 18.08 Ti_R_3 35.12
UNR_1 9.16 8.67
UNR_2 8.18

Fig. 7. Comparison of force vs. deflection curves of specimens made of the high-
strength mortar analyzed in the present study (“a” specimens) and the low-strength
mortar analyzed in Ref. [8] (“b” specimens). Fcr,0 denotes the first crack load of the
unreinforced material.

Table 3
Comparison between experimental and theoretical predictions of the shear capacity
of Ti_R and Ti_S specimens.

Specimen d (mm) As (mms) Vexp (kN) VBS
Rd (kN) VACI

Rd (kN) VEC2
Rd (kN)

Ti_R 33 38.48 4.71 2.39 1.28 2.00
Ti_S 33 38.48 5.24 2.39 1.28 2.00
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corresponding to half of the peak loads observed in Fig. 3 (averaged
among all specimens). This comparison reveals that all the exam-
ined standards significantly underestimate the shear capacities of
the Ti_R and Ti_S specimens in the present work (as opposed to
those observed in Ref. [8]), completely ignoring the role played by
the surface microstructure of the reinforcing elements with respect
to the shear response of the composite material.

4. Microscopy characterization of the fiber roughness

We first investigated the surface roughness of Ti_S and Ti_R fi-
bers using the “crack width” optical microscope by Controls® to
take images of the surface of the fibers with 40 � magnification
(Fig. 8). The images in Fig. 8 show a clear difference in the rough-
ness of the fibers. It is seen that the outer surface of Ti_S fibers
features “microscopic” asperities (size: ~0.05 mm), which are
characteristic of EBM manufactured parts [12e15]. Conversely, the
outer surface of Ti_R fibers shows “macroscopic” asperities
(~0.50 mm).

The surface morphology of Ti_S and Ti_R fibers was also char-
acterized using the Phenom ProX Scanning Electron Microscopy
(SEM) apparatus (Figs. 9 and 10). The SEM investigation targeted
the interfacial transition zone (ITZ) between the cement paste and
the fibers, as well as the ITZ for aggregates, as the morphology of
such regions is of fundamental importance for the mechanical and
physical properties of cement mortars [25e27]. SEM images were
taken of 0.5 cm length parts cut from the 3D printed fibers (Fig. 1
b,d) using different magnification factors. The images in Fig. 9
confirm that the surface of the Ti_S fibers is not actually smooth,
being affected bymicroscopic asperities and appreciable porosity. It
is also worth noting that the smooth areas of Ti_S fibers (white
regions in Fig. 9) do not hold mortar pieces after the fiber pullout,
while mortar particles are attached to the depressed regions of the
outer surface of the fibers.

The SEM characterization of the morphology of the Ti_R fibers
reveals that the built size of the macroscopic embossments of these
fibers does not correspond to the CAD size, as previously observed
[13e15] (cf. Fig. 10). The macroscopic roughness of Ti_R fibers re-
sults in remarkable matrix damage after pullout, as confirmed by
the presence of mortar particles attached to both valleys and crests
of the pulled-out fibers (Fig. 10).

The results of the SBS tests presented in Sec. 3, and the mor-
phologies of the Ti_S and Ti_R fibers after pullout, indicate that Ti_S
specimens are affected by a weaker fiber matrix bond compared to
Ti_R specimens. Nevertheless, Ti_S specimens exhibit a very
effective pull-through bonding mechanism between fiber and
matrix, which causes limited matrix damage and a diffuse friction
contribution to energy dissipation (cf. Fig. 9) [28]. This is essentially
due to the role played by the transverse pressure on the stress vs.
slip response of the fiber-matrix interface [17]. Ti_R specimens
instead feature a less effective pull through bonding mechanism
that causes marked matrix damage (Fig. 10). The presence of large
matrix debris between the protrusions of the Ti_R fibers indicates
interfacial failure caused by the matrix crushing against the pullout
[17].
5. Concluding remarks

We investigated the reinforcement of a high-strength cement
mortar using 3D printed fibers made of the Ti6Al4V titanium alloy,
which were additively manufactured via electron beam melting.
Short-beam shear tests in displacements control have shown high
enhancements in the first-crack strength and fracture toughness of
the analyzed mortar, both in the presence of reinforcing fibers with
microscopic roughness (Ti_S fibers), and in the case of reinforcing
fibers with macroscopic roughness (Ti_R fibers).

Mortar reinforcement with Ti_R fibers proved to be the most
effective in terms of first-crack strength enhancement over the
unreinforcedmaterial. We also noticed that the reinforcement with
Ti_S fibers led to a residual load-carrying capacity of the cracked
mortar that is almost equal to or even slightly greater than that of
the mortar reinforced with Ti_R fibers. This beneficial effect of Ti_S
fibers was less pronounced in the case of the fiber reinforcement of
low-strength cement mortar analyzed in Ref. [8] (cf. Sec. 3). SEM
and optical microscope analyses of the morphology of Ti_S and Ti_R
fibers after pullout from the matrix revealed a pull-through bond
failure mode in all the fiber-reinforced mortar specimens studied
here (Sec. 4). The bonding mechanisms between fiber and matrix
caused limited matrix damage and a diffuse friction contribution to



Fig. 8. Optical microscope images (40 � magnification) of Ti_S and Ti_R fibers.

Fig. 9. SEM images with different magnifications of Ti_S fibers after pullout.

Fig. 10. SEM images with different magnifications of Ti_R fibers after pullout.
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energy dissipation in the case of Ti_S fibers, and marked matrix
damage in the case of Ti_R fibers.

The outcomes of the present study highlight that the
morphology of the reinforcing fibers plays an important role in the
energy absorption capacity and first-crack strength of cement
mortars. We observed that an optimized design of the fiber surface
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morphology may lead to increases or decreases in target mechan-
ical parameters (such as, e.g, flexural strength and fracture tough-
ness), depending on the nature of the matrix material.

The present study represents a first step towards studying
concrete reinforcement with additively manufactured rebars in
metallic materials, taking into account the different possible sur-
face textures of these elements. The results presented in Secs. 3 and
4 prove that the international standards for the shear capacity of
building materials not equipped with transverse shear re-
inforcements should be adequately generalized, in order to account
for the actual nature and scale of the microstructure of longitudinal
reinforcements.

It is worth noting that the reinforcement of composite materials
through reinforcing fibers with nano-, micro- and macro-scale
features can be investigated through an integrated approach that
includes computational design and the additive manufacturing of
physical models via innovative material deposition techniques
[1e4,8]. With mechanical metamaterials’ properties being depen-
dent on the geometry of the microstructure, it makes no sense to
carry out material development without design input; similarly, as
material properties are dependent on processing conditions that
remain poorly understood for many AM approaches, design in
isolation from material understanding would not be effective.

In future work, we intend to carry out a micromechanics study
into the bonding mechanisms between the fibers in the present
study and cementmortars. Additional directions for future research
include the computational modeling of the fiber-matrix bond
mechanism [29,30], and engineering applications of innovative,
fiber-reinforcedmortars for the structural strengthening of existing
constructions [10,11].
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