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a b s t r a c t

Friction stir welding (FSW) is one of the established processes for joining of polymers, metals and alloys.
In the recent past many applications of this process have been explored. But hitherto very less has been
reported on the friction stir welded joints with dissimilar polymer/plastic (DP) materials (with metal
powder reinforcement). In the present work investigations have been made to perform FSW of two DP
materials namely: low density polyethylene (LDPE) and high density polyethylene (HDPE). The present
study of FSW for DP (LDPE and HDPE) has been performed on vertical milling machine. The effect of FSW
process parameters on mechanical and metallurgical properties (such as: Shore D hardness, tensile
strength and porosity of weld joint) has been investigated for structural engineering applications. The
results are supported by photomicrographs.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Joining of dissimilar material is needed in many engineering
applications and conventional fusionwelding of dissimilar material
often results in defective welds. FSW has paved way for joining
dissimilar materials. Defect free joints have been obtained for a
number of dissimilar material combinations in case of metals and
alloys [1]. In case if finished assembly is too complex or large, it is
necessary to join same or different parts. FSW was invented as a
novel joining technique in 1991 at The Welding Institute, Cam-
bridge, United Kingdom [2]. This process was used to join Al alloys.
In automobile and manufacturing industries, FSW is preferred to
join dissimilar metals combinations. FSW enhance the mechanical
properties of welded joints [3]. In many commercial applications,
where industries needed panels for decks, sides etc. FSW is appli-
cable in such industries to weld the sheets in one long run. The
problem of welding similar as well as dissimilar metals, non-metals
and alloys can be easily resolved by FSW on vertical milling ma-
chine setup. To produce quality products of plastic at large volumes,
many techniques have been developed to join plastic based mate-
rial. Due to less surface energy, presence of release agents from last
processing steps and poor weldability, it is difficult to join polymers
or plastic based materials. By using some reinforcement techniques
in parent material welding of plastic based materials can be done
successfully [4]. Miscibility of plastic based materials is studied
carefully before joining DP materials. Thermodynamically, most of
the DP is immiscible in nature [5]. In past FSW of polyethylene was
performed on milling setup to investigate the effects on morpho-
logical properties on welds [6].

The literature review reveals that FSWof LDPE and HDPE (which
is available in large quantity as waste and posing threat for envi-
ronment) after reinforcement of Fe metal powder has not been
investigated so far. In order to check whether these two DP can be
welded to give good mechanical and metallurgical properties, the
present study has been conducted. It should be noted that the glass
transition temperature and melt flow index (MFI) type rheological
properties of polymeric materials can be improved by reinforce-
ment of different metal powders, which will increase the applica-
tion domain of these polymeric materials [7e11].

Till now many applications of FSW process in industries have
been investigated [12e17]. Sheets of virgin polyethylene such as
HDPE, ABS were welded; their mechanical properties were exam-
ined and a novel approach for production of nano-composite
polymer had been proposed [18e22]. The strength and weakness
of FSW based polymer materials (polypropylene) and Al was
checked. Metallurgical properties of joints made by FSW have been
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analyzed [23e30]. Along with morphology, tool profile and shoul-
der design properties were also checked for similar as well as dis-
similar materials in order to optimize FSW process parameters
[31e36]. Many properties like grain growth, heat transfer, tool
forces and effect of threaded pin has been studied for FSW of
thermoplastics [37e42].

In the present study, investigations have been made for FSW of
recycled LDPE and HDPE with reinforcement of Fe powder for
different structural applications.
Table 2
Parameters selected for experimentation Based on Taguchi L9 orthogonal
array.

Levels (A)
Specimen
thickness (mm)

(B)
Feed rate
(mm/rev)

(C)
Rotational
speed (rpm)

1 6 300 1750
2 8 325 1800
3 10 350 1850
2. Experimentation

During pilot experimentation, cylindrical shaped specimens
were prepared on specimen hot mounting press by applying
concept of pressure moulding. Cylindrical specimens were cut
mechanically into semi-circular pieces. FSW process was carried on
vertical milling machine at 1750, 1800 and 1850 RPM. Welding was
unsuccessful because LDPE and HDPE do not have similar proper-
ties like molecular structure, carbon chain, glass transition tem-
perature, intermolecular bonding and melt flow index etc. After
this 10% (by weight) Fe powder reinforcement was made in HDPE
and reinforcement of 10% Fe powder in LDPE pieces and FSW was
performed on such samples. The reinforcement based FSW process
was successful due to better metallic bonding obtained by rein-
forcement of Femetal powder and appropriate melting of LDPE and
HDPE at high temperature produced by stirring. So by applying
concept of reinforcement for better bonding characteristics at weld
joint interfaces, FSW was performed. Finally good quality of
welding joint was obtained. This process of welding was successful
may be the reason behind it was the bonding of Fe particles present
in two specimens. Fig. 1 shows the joint prepared with 10% Fe
powder reinforcement in LDPE and HDPE.

The joining of LDPE and HDPE proves that the FSW of DP ma-
terial is possible if Fe powder is reinforced. It should be noted that
the reinforcement increases the melt flow index (MFI) of the
polymers. The aim of this pilot study was to check whether the
welding of LDPE and HDPE is useful for engineering applications. To
make the welding of DP possible, MFI needs to be investigated.
Therefore an experiment was conducted to test MFI of LDPE and
HDPE when Fe powder was reinforced.

The MFI of plastic based materials was calculated and a tabular
Fig. 1. Pilot experimentation of LDPE and HDPE friction stir welding.

Table 1
MFI with Fe powder reinforcement.

Wt. % of Al MFI of LDPE (230 �C,3.8 kg lo

0 2.37
10 2.69
20 3.07
30 3.01
40 2.85
data was generated. The Fe metal powder (available as a scrap from
machining industry) of 53e60 mm was mixed at varying pro-
portions with LDPE. MFI was measured at 230 �C temperature by
applying 3.8 kg standardweight on piston rod. The same operations
were carried to calculate the MFI of HDPE with reinforcement of Fe
metal powder. The pilot experiment data stated in Table 1 shows
that these materials don't have similar range of MFI.

Meltflow tester was used as per ASTM D 1238 standard to find
MFI of LDPE and HDPE after Fe powder reinforcement. It is clear
fromMFI pilot study that Fe powder increases the MFI of LDPE and
HDPE. So, there was a need to fix the proportion of reinforcement
powder to perform FSW. At first stage FSW of reinforced LDPE with
10% Fe and HDPE with 10%Fe specimens was performed. This trial
was successful as strong and hard weld joint surface was obtained.
This successful welding showed that Fe metal powders may have
formed metallic bonding to weld LDPE and HDPE.

After successful pilot experiment, this combination of compo-
sition/proportion of metal powder with polymer matrix have been
selected for further investigations, with design of experimentation
based on Taguchi L9 orthogonal array as listed in Table 2.

Based upon Table 2 and 3 shows control log of experimentation.
The output parameters for the present study are tensile

strength, Shore D hardness and porosity at joint. These parameters
have been selected to ascertain the functional ability of the welded
joints.
3. Result and discussion

After 03 successful batch runs for each combination of metal
powder reinforcement according to Taguchi L9 orthogonal array,
ad) MFI of HDPE(230 �C,3.8 kg load)

17
23.64
22.86
24.64
26.98

Table 3
Control log of experimentation.

Parametric conditions A
(mm)

B
(mm/rev)

C
(rpm)

1 6 300 1750
2 6 325 1800
3 6 350 1850
4 8 300 1800
5 8 325 1850
6 8 350 1750
7 10 300 1850
8 10 325 1750
9 10 350 1800



Table 5
Analysis of variance for SN ratios.

Source DF Seq SS Adj SS Adj MS F P %Age
contribution

A 2 1.6065 1.6065 0.8033 4.44 0.184 37.22
B 2 0.9533 0.9533 0.4767 2.64 0.275 22.09
C 2 1.3936 1.3936 0.6968 3.85 0.206 32.29
Residual

Error
2 0.3618 0.3618 0.1809 8.38

Total 8 4.3153

Table 6
Response table for signal to noise ratios (Larger is better).

Level A B C

1 32.86 33.91 33.79
2 33.66 33.18 33.67
3 33.84 33.27 32.90
Delta 0.97 0.73 0.89
Rank 1 3 2
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the results for different output parameters like Shore D hardness,
tensile strength and porosity at weld joint have been calculated.

3.1. Shore D hardness at interface

The observation of Shore D (Durometer) hardness of the welded
joint is recorded in Table 4 as shown below.

The output obtained for Shore D hardness of welded specimens
were analyzed on Minitab software under the condition that larger
is better (see Fig. 2). It shows that specimen thickness 8mm, supply
rate 300 mm/min and rotational speed of 1800 rpm are best pa-
rameters for maximum hardness. It is because friction at high rpm
generates more heat. Smaller the feed, better the intermolecular
diffusion obtained at joint. Fe powder diffused very well for less
supply rate. Increase in feed rate leads to reduction in hardness
because Fe powder spill out at high feed. It means medium spec-
imen thickness, lesser feed rate and high rotational speed gave best
property of hardness, but least specimen thickness 6 mm, high feed
rate 350 mm/min and high rotational speed of 1850 rpm for
welding resulted in lowest hardness value.

Tables 5 and 6 shows the analysis of variance and ranking of
input parameters (based on SN ratio) respectively.

The formula based upon Taguchi design has been used for
optimization of process parameters that gave optimum hardness
value of weld.

hopt ¼ xþ (xA3ex)þ (xB1ex)þ (xC1ex)

Where, hoptis the optimum value of SN ratio obtained for the
Shore D hardness of Fe metal powder reinforcement smaples, ‘x’ is
the overall mean of S/N data, xA3 is the mean of S/N data for
x

Table 4
Shore D hardness value at obtained weld interface (Fe metal powder
reinforced).

Experimental
conditions

Set of experiment
1

Set of experiment
2

Set of experiment
3

1 54 41.5 51
2 52 40 45.5
3 38 43.5 37.5
4 50.5 54.5 48
5 47.5 40.5 43.5
6 48 51.5 52.5
7 49 56.5 46.5
8 48 47.5 49.5
9 47.5 48.5 51.5

Fig. 2. Main effects plot for SN
specimen thickness at level 3 and xB1 is the mean of S/N data for
factor feed rate at level 1 and xC1 is the mean of S/N data for factor
rpm for welding at level 1.

y2opt ¼ ð1=10Þhopt=10 for properties where less is better

y2opt ¼ ð1=10Þhopt=10 for properties where more is better

Calculation,

Overall mean of SN ratio ðmÞwas taken from Minitab software

¼ 33:4521dB

Now from response table of signal to noise ratio, xA3¼ 33.840,
xB1 ¼ 33.910 and xC1 ¼ 33.790

From here, hopt ¼ 33.452þ (33.840e33.452) þ (33.910e33.452)
þ (33.790e33.452)

hopt ¼ 34.636 dB
Now, to optimize yopt2 ¼ (10)hopt/10

yopt2 ¼ (10)34.636/10
ratios of shore D hardness.



Table 8
Analysis of variance for SN ratios.

Source DF Seq SS Adj SS Adj MS F P %Age
contribution

A 2 68.524 68.524 34.262 13.35 0.070 82.63
B 2 7.175 7.175 3.587 1.40 0.417 8.65
C 2 2.089 2.089 1.045 0.41 0.711 2.51
Residual

Error
2 5.132 5.132 2.566 6.18

Total 8 82.920

Table 9
Response table for signal to noise ratios (Larger is better).

Level A B C

1 16.55 18.56 19.09
2 19.30 19.81 19.75
3 23.27 20.74 20.27
Delta 6.72 2.18 1.18
Rank 1 2 3
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yopt ¼ 53.92

So, Optimum Shore D hardness ¼ 53.92 shore D.

3.2. Tensile strength of weld pieces at joint interface

Table 7 shows the values of tensile strength obtained for Fe
metal powder reinforced welded samples; tensile test was carried
on universal tensile tester to generate the tabulated results of
tensile strength of weld joints. To check the variations in tensile
strength, the experiment was carried for 3 separate batch runs to
study the role of process parameters in improving joint strength.
Fig. 3 gives plot for SN ratio main effect of tensile strength. It shows
that highest tensile strength for specimen thickness 10 mm, feed
rate 300mm/min and rotational speed of 1850 rpm is providing the
best results. The reason is that high rpm generate more heat by
friction. Due to lesser feed rate, effective intermolecular dispersion
occurs at joint interface. There is appreciable diffusion of Fe powder
in polymer matrix but decrease in rpm created problem of
improper matrix formation of metal powder with polymer.
Therefore, the tensile strength decreases. For more specimen
thickness, low feed rate and high rotational speed tensile properties
are quite high. On the other hand low specimen thickness of 6 mm,
low feed rate 300 mm/min and rotational speed of 1750 rpm for
welding resulted in lowest tensile strength.

Table 8 shows the ANOVA for SN ratios of tensile strength. 6.18%
residual error was obtained. It means the predictedmodel has good
accuracy for tensile strength than the model predicted for Shore D
hardness.

Table 9 gives the response table for SN ratios of tensile strength.
As observed from the table, specimen thickness given most attri-
bute to the SN ratios and rotational speed given least attributes to
Table 7
Tensile strength (MPa) of welded joint (Fe metal powder reinforced).

Experimental
conditions

Set of experiment 1 Set of experiment 2 Set of experiment 3

1 4.975 4.638 5.012
2 7.627 7.482 7.110
3 8.405 8.609 8.287
4 8.499 8.286 8.641
5 8.951 8.921 8.624
6 10.463 11.239 9.879
7 14.875 15.194 14.258
8 14.177 14.782 14.081
9 14.653 15.025 14.201

Fig. 3. Main effects plot for SN
the SN ratios for Fe metal powder reinforced FSW specimens.

Optimization for tensile strength (Fe metal powder
reinforcement)

As optimization was done for Shore D hardness value, in case of
tensile strength same procedure were followed for optimization
and it was calculated as 14.52 MPa for Fe metal powder reinforced
FSW samples. It is calculated as per following procedure:

hopt ¼ xþ (xA3ex)þ (xB3ex)þ (xC3ex)

where, hoptis the optimumvalue of SN ratio obtained for the Tensile
strength of Fe metal powder reinforcement samples.‘x’ is the
overall mean of S/N data, xA3 S/N mean data for specimen thickness
at level 3 and xB3 is the mean of S/N data for factor feed rate at level
3 and xC3 is the mean of S/N data for factor rpm for welding at level
3.

y2opt ¼ ð1=10Þhopt=10 property in which lower is better

y2opt ¼ ð1=10Þhopt=10 property in which higher is better

Calculation,
ratios of tensile strength.



Table 11
Analysis of variance for SN ratios.

Source DF Seq SS Adj SS Adj MS F P %Age
contribution

A 2 5.323 5.323 2.661 2.36 0.297 12.70
B 2 4.002 4.002 2.001 1.78 0.360 9.55
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On the whole mean of SN ratio ðxÞ
was taken from Minitab software x ¼ 19:703dB

Now from response table of signal to noise ratio, xA3¼ 23.270,
xB3 ¼ 20.740 and xC3 ¼ 20.270

From here, hopt ¼
19.703þ (23.270e19.703)þ (20.740e19.703)þ (20.270e19.703)

hopt ¼ 24.874 dB
Now, to optimize yopt2 ¼ (10)hopt/10

yopt2 ¼ (10)24.874/10

yopt ¼ 14.52

So, Optimum Tensile strength for Fe powder reinforced
specimens ¼ 14.52 MPa.

3.3. Porosity percentage at joint interface

Table 10 shown the values obtained for the samples whose %age
porosity is listed after Fe metal powder reinforced specimen was
joined. The data in the table is output of optical micrographs test
conducted by using MIAS software for the process parameters
selected as per Table 3. Fig. 4 is shows SN ratio main effect for %age
porosity at joint. As observed from Fig. 4 for good porosity spec-
imen thickness 6 mm, feed rate 350 mm/min and rotational speed
of 1850 rpm are providing the best results. Good result obtained
due to formation of better metal polymer matrix and lesser heat
formation, the 350 mm/min of feed rate given less porous joint
because metal polymer matrix formation occur at such stages. The
Table 10
%Age Porosity obtained at weld joint (Fe metal powder reinforced).

Experimental
conditions

Set of experiment
1

Set of experiment
2

Set of experiment
3

1 26.13 26.57 25.81
2 16.06 16.79 15.68
3 11.41 12.01 12.84
4 18.82 19.85 20.25
5 14.84 16.98 15.56
6 27.26 27.67 26.31
7 18.13 19.86 21.77
8 23.75 25.58 24.37
9 17.09 19.87 20.64

Fig. 4. Main effects p
low specimen thickness of 6 mm at high feed produced effective
diffusion of Fe powder in polymer matrix. As low specimen thick-
ness, high feed rate and high rotational speed are responsible for
the better porosity of welds. In the same way combination of
specimen thickness 8 mm, feed rate 350 mm/min and rotational
speed of 1750 rpm for welding results in poorest porosity at joint
interface.

Table 11 shows tabular data obtained for porosity percentage at
joint interface of weld. It gives the value of analysis of variance for
SN ratios obtained for porosity at joint. Output of 5.37% residual
error reveals that high accuracy has been achieved for porosity in
the proposed model when FSW is performed with reinforced Fe
metal powder in dissimilar plastic based material.

Table 12 represents obtained values of the porosity %age at joint
interface for the response table of SN ratios. According to the delta
and rank values of table, topmost attribute is given to the SN ratios
of tool rpm and least rank is allotted to feed rate SN ratio.

Optimization for porosity percentage (Fe metal powder
reinforcement)

As optimization was carried out for Shore D hardness value, in
case of %age porosity at joint interface, same procedure were fol-
lowed for optimization of Fe metal powder reinforcement samples.
It is calculated as per following procedure:
lot for SN ratio.

C 2 30.305 30.305 15.153 13.45 0.069 72.35
Residual

Error
2 2.253 2.253 1.127 5.37

Total 8 41.882

Table 12
Response table for signal to noise ratios (Smaller is better).

Level A B C

1 �24.73 �26.74 �28.27
2 �26.17 �25.33 �25.25
3 �26.50 �25.33 �23.88
Delta 1.77 1.42 4.39
Rank 2 3 1
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hopt ¼ xþ (xA3ex)þ (xB1ex)þ (xC1ex)

Where, hoptis the optimum value of SN ratio obtained for the
Porosity of Femetal powder reinforcement smaples.‘x’ is the overall
mean of S/N data, xA3 is the mean of S/N data for specimen thick-
ness at level 3 and x B1 is the mean of S/N data for factor feed rate at
level 1 and xC1 is the mean of S/N data for factor rpm for welding at
level 1.

y2opt ¼ ð1=10Þhopt=10 properties in which lower is better

y2opt ¼ ð1=10Þhopt=10 properties in which higher is better

Calculation,

Overall mean of SN ratio ðxÞwas taken from Minitab software

¼ �25:801dB

Now from response table of signal to noise ratio, xA3¼�26.50,
xB1 ¼ -26.74 and xC1 ¼ �28.27
Fig. 5. Optical micrographs for reinforced Fe p
From here, hopt ¼ �25.801 þ (�26.50�(�25.801))
þ (�26.74�(�25.801)) þ (�28.27�(�25.801))

hopt ¼ �29.08 dB
Now, to optimize yopt2 ¼ (1/10) h opt/10

yopt2 ¼ (0.1)�29.08/10

y opt ¼ 18.26

The optimum porosity for Fe powder reinforced
sample ¼ 18.26%.

Fig. 5 shows photo micrographs observed for welded samples
according to the different set of parameters selected as per the
control log of experimentation given in Table 3.

As observed from Fig. 5, friction stir welded LDPE and HDPE
joint produced (after reinforcement of Fe powder) has more uni-
form dispersion of Fe particles which resulted into better me-
chanical properties thus making it useful for many structural
applications. Themicrograph was examined at 100�magnification.
The results of porosity obtained in Table 10 are supported by the
images shown in Fig. 5. For experimental setup 3, minimum
porosity is observed when specimen thickness was 6 mm, 350mm/
owder joints (at magnification of 100�).
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rev was the feed rate and rotational speed was 1850RPM which
shows better dispersion of Fe particles.

4. Conclusions

▪ It is observed that recycled LDPE and HDPE polymers can be
welded by FSW Process.

▪ The reinforcement of Fe metal powder produced a metallic
bonding at joint interface of LDPE and HDPE that provided a
good joint strength.

▪ It is necessary to establish a range of melt flow index (MFI) for
friction welding of plastic materials. But, in friction stir welding
process, plastic materials can be welded by coalescence caused
due to stirring of material since rotary and traverse motion of
tool increases the temperature and melts the work pieces.

▪ The mechanical properties obtained of the weld after reinforc-
ing Fe powder are more than the mechanical properties of the
parent material.

▪ Themaximum53.92 Shore D hardness is obtained in experiment
no. 4 where 8 mm specimen thickness, 300 mm/min feed rate
and 1800 rpm of tool were the parametric combination. This
hardness obtained because of better intermolecular diffusion of
metal and plastic material where feed rate conditions were low.

▪ The highest14.52 MPa tensile strength in experiment no. 9 has
been obtained in which 10 mm specimen thickness, 350 mm/
min feed rate and 1800 rpm of tool were selected parameters.
The formation of better metal polymer matrix resulted in better
tensile strength at peak under the low feed rate conditions.

▪ The minimum porosity of 11.41% is obtained in experiment no. 3
in which 6 mm specimen thickness, 350 mm/min feed rate and
1850 rpm of tool were the parametric combinations. The
observation was due to the fact that few spaces formed at
interface of the joint after attaining high feed rate and high tool
rpm situation.

Future directions of the present researchmight regard the use of
FSW for the manufacturing of high-performance reinforcements of
composite materials [43e51], and novel mechanical metamaterials
[52e55].
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