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a b s t r a c t

We present a meshfree method for the curvature estimation of membrane networks based
on the local maximum entropy approach recently presented in [1]. A continuum regulari-
zation of the network is carried out by balancing the maximization of the information
entropy corresponding to the nodal data, with the minimization of the total width of the
shape functions. The accuracy and convergence properties of the given curvature predic-
tion procedure are assessed through numerical applications to benchmark problems,
which include coarse grained molecular dynamics simulations of the fluctuations of red
blood cell membranes [2,3]. We also provide an energetic discrete-to-continuum approach
to the prediction of the zero-temperature bending rigidity of membrane networks, which is
based on the integration of the local curvature estimates. The local maximum entropy
approach is easily applicable to the continuum regularization of fluctuating membranes,
and the prediction of membrane and bending elasticities of molecular dynamics models.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The estimation of the curvature tensor of membrane networks embedded in the 3D Euclidean space plays a key role in
many relevant problems of differential geometry, solid mechanics, biomechanics, biophysics and computer vision. Particu-
larly important is the curvature estimation of fluctuating bio-membranes, which are often modeled as particle networks, via
molecular dynamics (MD) and/or coarse grained molecular dynamics (CGMD) approaches. The plasticity of cellular mem-
branes is dependent on accurately selected mechanisms for sensing curvature and adopt different responses according to
the particular membrane curvature. These mechanisms depend on the interplay between proteins and lipids and can be
modulated by changes in lipid composition [4], membrane fusion [5], formation of raft-like domains, oligomerization of scaf-
folding proteins and/or insertion of wedge proteins into membranes. The dynamical changes in the membrane curvature can
give rise to cell membrane remodelling [6] resulting in the formation of microenvironments that can facilitate the interaction
of biomolecules in the cell. On a larger scale, these dynamical changes play a key role in controlling cellular growth, division
and movement processes. Furthermore, there has been a significant amount of modeling work focussed on characterizing the
bending rigidity of ordered membranes [7], vesicle membranes [8,9] and the red blood cell membrane [2,3,10].

The continuum regularization of a membrane network is naturally performed through meshfree approximation schemes,
which are well suited for the discrete-to-continuum scale bridging. Recently, a local maximum entropy (LME) approach has
. All rights reserved.
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been proposed to construct smooth meshfree approximants of given nodal data [1,11,12]. The LME approach is a convex,
non-interpolant approximation method that suitably balances the maximization of the information entropy corresponding
to the given data [13], with the minimization of the total width of the shape functions [14]. Some of the distinctive features
of such an approach consist of the non-negativity and the partition of unity properties of the shape functions, which in par-
ticular can be thought of as the elements of a discrete probability distribution; a weak interpolation (Kronecker-delta) prop-
erty at the boundary; and first- or higher-order consistency conditions [1,11]. As compared to popular, ‘explicit’
approximation methods, such as approaches utilizing B-Splines and Non-Uniform Rational B-Splines (NURBS), the LME re-
quires more calculations and specifically the solution of a convex nonlinear optimization problem at each sampling point.
Nevertheless, the LME guarantees high accuracy and smoothness of the continuous mapping [11], which are properties of
fundamental importance when dealing with curvature estimation. Due to its mixed, local–global character, the LME approx-
imation scheme can be conveniently used to filter the inherent small scale roughness of the membrane, which is a distinctive
feature of such an approach, as compared to popular computer graphic methods for estimating the curvatures of point-set
surfaces, (e.g. moving least-squares (MLS) methods). Another peculiar advantage of the LME regularization consists of its
ability to handle unstructured node sets, which do not require any special pre-processing in such a scheme An extensive
comparison of the application of the LME, MLS and B-Spline approaches to structural vibration problems is presented in [11].

The present work deals with the formulation and the implementation of a curvature estimation method for membrane
networks, which is based on the LME approach proposed in [1]. In Section 2, we provide the explicit formulae for the sec-
ond-order derivatives of the LME shape functions (not given in [1]), and a LME procedure for the estimation of the lines
of curvature and the principal curvatures at the generic node of a membrane network. Next, we present in Section 3 some
numerical applications of the above procedure to membrane networks extracted from a sinusoidal surface and a spherical
surface, establishing comparisons with exact solutions and assessing the convergence properties of the LME estimates.
We also provide, in the same section, some numerical results about the principal curvatures of the red blood cell (RBC) model
proposed in [2,3], and a discrete-to-continumm approach to the prediction of the bending rigidity at zero temperature of MD
membrane networks. The method and results presented here represent an essential first step towards an extensive estima-
tion of the elastic moduli of the RBC, which will be the specific subject of future studies. Additionally, we plan to use the
same approach to measure from trajectories of coarse-grain MD simulations the curvature of cell membranes affected by
asymetric lipid bilayers or by protein-lipids interactions. Such future extensions of the present work are summarized in Sec-
tion 4, which also includes some final comments on the results presented in Section 3.

2. LME regularization of membrane networks

2.1. Generalities on the LME approximation

First, we will present how to find the continuum regularization of a given discrete set XN of N nodes (or vertices) having
Cartesian coordinates fxa1 ; xa2 ; zag (a = 1, . . . ,N) with respect to a given frame {O,x1,x2,z � x3}. We wish to construct a contin-
uum surface described by the Monge chart
z ¼ zNðxÞ ¼
XN

a¼1

zapaðxÞ ð1Þ
where pa are suitable shape functions of the position vector x = {x1,x2} in the x1, x2 plane. When adopting the local maximum
entropy approach proposed in [1], we determine the functions pa by solving the following optimization problem:

For a given x, we minimize:
fbðx;pÞ � b
XN

a¼1

pajx� xaj2 þ
XN

a¼1

pa log pa ð2Þ
subject to:
pa P 0; a ¼ 1; . . . ;N ð3ÞXN

a¼1

pa ¼ 1 ð4Þ

XN

a¼1

paxa ¼ x ð5Þ
where b 2 [0,+1) is a scalar parameter, and p = {p1, . . . ,pN}. The constraints (3)–(5) enforce the non-negativity of the shape
functions, the partition of unity property, and the first-order consistency conditions, respectively. It is worth noting that Eqs.
(4) and (5) guarantee that affine functions are exactly reproduced by the LME scheme [1,11]. On the other hand, Eqs. (3) and
(4) allow us to regard p(x) as a discrete probability distribution, and the quantity HIðpÞ ¼ �

PN
a¼1pa log pa as the correspond-

ing information entropy [13]. The quantity WðpÞ ¼
PN

a¼1pajx� xaj2 instead represents the total width of the shape functions
pa at the given x. Depending on the value of b, the LME problem suitably balances the maximization of the information en-
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tropy corresponding to the given nodal data with the minimization of the total width of the shape functions pa. A global max-
imum-entropy scheme ([13]) is recovered by setting b = 0 in (2), while a minimum-width approximation scheme ([14]) is
obtained in the limit b ? +1.

Now, we introduce the partition function Zðx; kÞ ¼
PN

a¼1Zaðx; kÞ, where k = {k1,k2} denotes the vector of the Lagrange mul-
tipliers of the first-order consistency conditions (5), and it results in
Zaðx; kÞ ¼ exp½�bjx� xaj2 þ k � ðx� xaÞ� ð6Þ
It can be shown ([1]) that, for any x 2 convX, the LME problem admits the unique solution shown below
p�aðxÞ ¼
Zaðx; k�Þ
Zðx; kÞ ð7Þ
where
k� ¼ arg min
k2Rd
fFðkÞ ¼ log Zðx; kÞg ð8Þ
It is useful to the employ the Newton–Raphson method to solve Eq. (8) iteratively. Let kk denote the approximate solution to
(8) at the kth iteration. A Newton–Raphson update furnishes
kkþ1 ¼ kk � ðJ�1Þkrk ð9Þ
where rk and JK are the particularization of the gradient r and the Hessian J of F for k = kk. Straightforward calculations (cf. [1])
give
rðx; kÞ ¼ rFðkÞ ¼
XN

a¼1

1
Z
@Za

@k
¼
XN

a¼1

paðx� xaÞ ð10Þ

Jðx; kÞ ¼ r2FðkÞ ¼
XN

a¼1

@pa

@k

����
x
� ðx� xaÞ ¼

XN

a¼1

paðx� xaÞ � ðx� xaÞ � r� r ð11Þ
2.2. Derivatives of the LME shape functions

The analysis carried out in [1] leads to the following expression of the spatial gradient of p�a
rp�a ¼ �p�aðJ
�Þ�1ðx� xaÞ ð12Þ
where J⁄ = J(x,k⁄).
Now we compute the second-order derivatives of the LME shape functions. Differentiating both sides of (12) once, we get
p�a;ij ¼
@2p�a
@xi@xj

¼ @

@xj
�p�aJ��1

ik ðxk � xak
Þ

h i
¼ p�a;jJ

��1
ik ðxk � xak

Þ � p�aJ��1
ij � p�aJ��1

ik;j ðxk � xak
Þ ð13Þ
The only quantity that needs to be computed on the right-hand side of (13) is J��1
ik;j . Differentiating both sides of the identity

shown below
J�imJ��1
mj ¼ di

j ð14Þ
where di
j denotes the Kronecker symbol, leads to
J��1
ik;j ¼ �J��1

im J�mn;jJ
��1
nk ð15Þ
On the other hand, from (11) we deduce the result
J�mn;j ¼
XN

a¼1

p�a dm
j ðxn � xan Þ þ dn

j ðxm � xam Þ
h i

�
XN

a¼1

p�a;jðxm � xam Þ þ p�ad
m
j

" #
r�j � r�m

XN

a¼1

p�a;jðxn � xanÞ þ p�ad
n
j

" #
ð16Þ
Eqs. (15) and(16) allow us to derive the explicit formulae (13).

2.3. Lines of curvature and principal curvatures of membrane networks

Let us now examine a node set XN ¼ ffxa1 ; xa2 ; zag; a ¼ 1; . . . ;Ng extracted from a membrane network lying in the 3D
Euclidean space (Fig. 1). The Monge chart
zNðxÞ ¼
XN

a¼1

zap�aðxÞ ð17Þ



Fig. 1. Node set extracted from a 3D membrane network and its orthogonal projection onto the x1, x2 plane.
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defines the LME regularization of XN that we will denote by SN in the following. The unit vectors mh1i, mh2i are tangent to the
lines of curvature of SN, and the principal curvatures k1, k2 of such a surface correspond to the solution of the eigenvalue
problem (see, e.g., [15,16], Appendix A.2)
ðbab � kcaabmb
ðcÞ ¼ 0 ðc ¼ 1;2Þ ð18Þ
where aab and bab are the first and the second fundamental forms of SN, defined by
aab ¼ da
b þ zN;ab; bab ¼ �zN;ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zN;

2
1 þ zN;

2
2

q
: ð19Þ
By taking into account the previous expressions of the shape functions p�a and their derivatives, we easily derive from Eqns.
(18) and (19) the LME estimates of the mean curvature Hx

N ¼ 1=2ðk1 þ k2Þ, and the Gaussian curvature Kx
N ¼ k1k2 of SN at the

given x.

3. Numerical results

3.1. Sinusoidal membrane

We begin by considering the node set XN such that xa1 and xa2 are randomly generated numbers within the interval [0,p],

and it results in za ¼ sin x2
a1
þ xa2

� �
. Fig. 2 shows the LME surfaces SN obtained in this case for N = 500, b = 0.001, and b = 10.

The SN are sampled over a 12 � 12 uniform grid of points defined over the x1, x2 region [0,p] � [0,p]. We observe from Fig. 2
that the SN corresponding to b = 0.001 is almost flat, while the SN corresponding to b = 10 fairly reproduces the local shape of
XN in the neighborhood of each node.

Next, we examine uniform grids of nodes xa ¼ fxa1 ; xa2g over the x1, x2 region D = [0,3] � [0,3], and the 3D node set

XN ¼ x̂a ¼ xa; za ¼ sin x2
a1
þ xa2

� �n o
; a ¼ 1; . . . ;N

n o
. For each xa 2 D0 = [0.5,2.5] � [0.5,2.5] 	 D, we further consider the sub-

set Xa
N 	 XN , which is generated by the mth nearest neighbors of xa, m being an integer parameter. We employ the node set

Xa
N to get LME estimates Ha

N and Ka
N of the mean and Gaussian curvatures of XN at x̂a. In order to normalize the effects of b on

the LME estimates, we rescale such a parameter as follows
b ¼
�b

diam Xa
N

� �� �2 ð20Þ
where �b is a dimensionless quantity and it results in
diam Xa
N

� �
¼ max

xa ;xb2Xa
N

fjxa � xbjg: ð21Þ



Fig. 2. LME approximations of scattered data extracted from the sinusoidal surface S : z = sin(x1
2 + x2) for two different values of b.
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Fig. 3. Root Mean Square Deviations (RMSD) of the LME approximations to the mean curvature H and the Gaussian curvature K of the sinusoidal surface
z ¼ sin x2

1 þ x2
� �

over the x1, x2 domain [0.5, 2.5] � [0.5,2.5]. Left: RMSD as a function of �b, for m = 10 and h = 0.0303. Right: RMSD as a function of h, for m = 10
and �b ¼ 150.
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It is useful to compare Ha
N and Ka

N with the ‘exact’ counterparts Ha and Ka, which are easily computed through (18) and (19),
by replacing zN with z ¼ sin x2

1 þ x2
� �

. The accuracy of the nodal LME estimates HN ¼ Ha
N; a ¼ 1; . . . ;N0

� 	
and

KN ¼ Ka
N; a ¼ 1; . . . ;N0

� 	
can be inspected by examining the following Root Mean Square Deviations (RMSD)
RMSDðHNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0
a¼1

Ha
N � Ha� �2

� ,
N0

vuut ;

RMSDðKNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0
a¼1

Ka
N � Ka� �2

� ,
N0

vuut ð22Þ
for different values of �b and m. Here, N0 denotes the total number of nodes belonging to D0. We examine the following three
different mesh sizes: h = 0.0566 (N = 54 � 54); h = 0.0405 (N = 75 � 75); and h = 0.0303 (N = 100 � 100). Here and in the fol-
lowing examples, we solve the nonlinear optimization problem (8) using recursive Newton–Raphson updates (9), up to the
termination condition jrkj < 10�6 diamðXa

NÞ. Fig. 3 illustrates how the quantities RMSD(HN) and RMSD(KN) vary with �b and h
for fixed m = 10, while Figs. 4–6 depict 2D and 3D density plots of the data sets HN and KN for several values of m, keeping
�b ¼ 150, and h = 0.0303 fixed. The results shown in Figs. 4–6 point out that the LME estimates HN and KN exhibit uniform
asymptotic convergence to the exact solutions H and K, respectively, for �b P 100;m P 9, and h 6 0.0303.



Fig. 4. 2D density plots of the LME approximations to the mean curvature H of the sinusoidal surface z ¼ sin x2
1 þ x2

� �
over the x1, x2 domain

[0.5,2.5] � [0.5,2.5], for �b ¼ 150;h ¼ 0:0303, and different values of m (lower bound of the color bar: �4; upper bound: +4).
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3.2. Spherical membrane

We examine, in the present and the following sections, a closed membrane network XN corresponding to the CGMD
model of the red blood cell given in [2,3]. Such a model describes the system formed by the cytoskeleton spectrin network,
the lipid bilayer and the transmembrane proteins of an actual RBC membrane, through a network of N (virtual) particles
embedded in a closed polyhedral surface showing M triangular facets. Each particle has sixfold coordination, with the
exception of twelve ‘defects,’ which instead have fivefold coordination. The particles represent discrete areas of the RBC
membrane and their equilibrium distance r0 is set equal to the average length of the spectrin filaments (
100 nm). Each
particle has mass m and is connected to it’s nearest neighbors though linear springs of stiffness k, which are parameterized
such that the network of particles reproduces the membrane rigidity of a RBC. The bending rigidity is also accounted for



Fig. 5. 2D density plots of the LME approximations to the Gaussian curvature K of the sinusoidal surface z ¼ sin x2
1 þ x2

� �
over the x1, x2 domain

[0.5,2.5] � [0.5,2.5], for �b ¼ 150;h ¼ 0:0303, and different values of m (lower bound of the color bar: �0.56; upper bound: +0.56).
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by introducing dihedral angle potential energy terms of angular stiffness D between adjacent triangles. The global surface
area of the polyhedral membrane is kept constant using Lagrange multipliers, in order to mimic the relative incompress-
ibility of the lipid bilayer of a normal RBC. The model under consideration is also able to keep the volume enveloped by
the polyhedral membrane constant, with the aim to resemble the typical behaviour of a RBC in normal conditions. The
dynamics of the RBC model can be obtained by integrating the Newton equations of motion of each virtual particle using
a standard MD code. We used DL POLY 2.20 ([17]), and employed the Nosé-Hoover thermostat; 6 � 106 steps with time-
step Dt = 2.07 � 10�5 t0, where t0 ¼

ffiffiffiffiffiffiffiffiffiffi
m=k

p
; N ¼ 5762 particles; m = 5.82625 � 10�20 kg; k = 8.3 lN/m; D = 130 � 10�20 J;

constant absolute temperature T = 309 K; constant surface area A ¼ 4:986� 107 nm2; and constant volume
V ¼ 3:311� 1010 nm3. Such parameter settings allow the LME regularization to approximate a spherical surface S with
radius �r ¼ 1992 nm [2].
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The theoretical average surface S clearly has uniform principal curvatures k1 ¼ k2 ¼ H ¼ �1=�r ¼ �5:019� 10�4 nm�1 (the
minus sign follows from the outward orientation of the normal vector), and Gaussian curvature
K = k1k2 = 25.19 � 10�8 nm�2. Nodal LME estimates HN ¼ Ha

N; a ¼ 1; . . . ;N
� 	

and KN ¼ Ka
N; a ¼ 1; . . . ;N

� 	
of the mean and

Gaussian curvatures of the network can be obtained by introducing different local frames fx̂a; x1; x2; zg at each different
node x̂a, with x1, x2 and z tangent to the local parallel, meridian, and radial lines, respectively. Table 1 shows the mean values
and the standard deviations of the data sets HN and KN defined as follows
Fig. 6.
[0.5,2.5

Table 1
Mean a
and diff

HN �
sd(HN

KN �
sd(KN
HN ¼ 1=N
XN

a¼1

Ha
N; sdðHNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

a¼1

Ha
N � HN

� �2
� ,
ðN � 1Þ

vuut ð23Þ

KN ¼ 1=N
XN

a¼1

Ka
N; sdðKNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

a¼1

Ka
N � KN

� �2
� ,
ðN � 1Þ

vuut ð24Þ
for �b ¼ 100 and different values of m. The results in Table 1 highlight a good agreement between LSM estimates and exact
solutions for m P 10. It has to be considered that the MD model doesn’t reach a perfectly (average) spherical shape at equi-
librium, due to the presence of the fivefold defects.
3.3. Principal curvatures of the RBC membrane

We analyze in the present section a slight different formulation of the RBC model given in [2,3], which differs from that
discussed in the previous section only in terms of the volume constraint. Here, we set the volume enveloped by the RBC
membrane equal to 0.65 times the volume of the sphere analyzed in the previous example, allowing the current model to
assume the typical biconcave shape of a normal RBC [3].The surface area of the RBC membrane is again set to
4.986 � 107 nm2, as in the previous case. We compute nodal LME estimates HN ¼ Ha

N; a ¼ 1; . . . ;N
� 	

and
KN ¼ Ka

N; a ¼ 1; . . . ;N
� 	

of the mean and Gaussian curvatures of a real RBC membrane by processing the rolling mean shapes
XN of the CGMD model up to different simulation times t. Let n denote the weighted unit normal to the current vertex x̂a of
3D density plots of the LME approximations to the mean and the Gaussian curvatures of the sinusoidal surface z ¼ sin x2
1 þ x2

� �
over the x1, x2 domain

] � [0.5,2.5], for �b ¼ 150;h ¼ 0:0303, and m = 12.

nd standard deviation of the data sets HN and KN for a spherical membrane network with N = 5762 nodes and radius r = 1992 nm, considering �b ¼ 100
erent values of m. Exact solution: H = �5.019 � 10�5 Å�1, K = 25.19 � 10�10 Å�2.

m = 5 m = 7 m = 9 m = 10 m = 12

105 Å
�1 39.0626 �7.1062 �5.1293 �5.0443 �5.0311

) � 105 Å�1 2.8047 0.1467 0.0296 0.0271 0.0238

1010 Å
�2 1540.19 50.488 26.3077 25.4453 25.3118

) � 1010 Å�2 234.04 2.1551 0.3152 0.2840 0.2473
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the triangulation associated with XN, assuming the triangle areas as the weights [18]. In the present case, we define the local
x1 axis as the direction of the edge attached to x̂a that has the minimum deviation from the parallel drawn on an ideal sphere
passing through the same point. In addition, we define x2 by means of the vector product of the unit vectors in the directions
of n and x1, and z via the vector product of the unit vectors in the directions of x1 and x2. A graphical representation of the
local parameterization introduced for the analyzed model of the RBC membrane is provided in Fig. 7.

Fig. 8 shows the dependence of the LME estimates HN and Ktot
N ¼ KNA on �b, for t = 75.5 t0 and m = 10. It is worth noting that

Ktot
N represents an estimate of the total curvature Ktot ¼

R
SN

K dA of the RBC model. Due to the ‘Gauss-Bonet theorem’ such a
quantity only depends on the genus of SN and should be equal to 4p, as in the case of a sphere [15]. One observes from Fig. 8
slight oscillations of HN and Ktot

N with �b; Ktot
N =4 � 3:00 for �b < 100; and Ktot

N =4 � 3:14 for �b ¼ 125. 3D density plots of the data
sets HN and KN are given in Figs. 9 and 10, considering �b ¼ 125;m ¼ 10, and different simulation times t. The results shown in
Figs. 9 and 10 indicate that the LME regularizations of the average CGMD configurations smoothly describe the geometry of a
normal RBC membrane. The LME regularization is indeed able to reproduce the biconcave shape of such a membrane (con-
sider that the hidden bottom edges of the surfaces shown in Figs. 9 and 10 are nearly specular with respect to the top ones),
furnishing positive (red) and negative (blue) mean curvatures in correspondence with concave and convex portions, respec-
tively (cf. Fig. 9), and negative (blue) Gaussian curvatures over saddle-shaped regions (cf. Fig. 10). One observes perturba-
tions in the mean and Gaussian curvature maps in correspondence with the fivefold defects of the membrane
triangulation during the initial phase of the MD simulation. The MD simulation and the LME regularization are however able
to smooth out the local noise produced by such perturbations, as the simulation time progressively increases.

3.4. Estimation of the bending rigidity of membrane networks from MD simulations

Let us consider now a triangulated membrane network endowed with the following dihedral angle energy
Fig. 7.
(For int

Fig. 8.
Edihedral ¼ D
X

M;M0 2 CM

neighbors

ð1� cos dMM0 Þ ¼ D
2

X
M;M0 2 CM

neighbors

jnM � nM0 j2
ð25Þ
3D map of the local bases fx̂a; x1; x2; zg introduced at selected nodes of a triangulated model of the RBC membrane (x1: yellow, x2: blue, z: cyan).
erpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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LME estimates jbHN j ¼ jHN j � 105 Å
�1

and Ktot
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Fig. 9. 3D density plots of the LME approximations HN to the mean curvature H of of a CGMD model of the RBC membrane [2,3] at different simulation times
t, for �b ¼ 125 and m = 10 (bHN ¼ HN � 105 Å

�1
; lower bound of the color bar: �11.5 � 10�5 Å�1; upper bound: +2.5 � 10�5 Å�1).
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where CM denotes the set of all triangles forming the network; dMM0 is the dihedral angle between the triangles M and M0; nM is
the unit normal to the triangle M; and the summation runs over all the pairs M;M0 2 CM which share a common side. Accord-
ing to [7,8], the limiting bending energy of such a network is a Helfrich-type bending energy [19] of the form
Ebend ¼ jH

2

Z
SN

ðð2HÞ2 � 2KÞdS ð26Þ
where jH is the bending rigidity, and it results jH ¼
ffiffiffi
3
p

D=3 for a sphere, and jH ¼
ffiffiffi
3
p

D=2 for a cylinder [8]. (Note that in
[7,8] the symbol H is used to denote twice the mean curvature of the network.)

The LME prediction of the principal curvatures of the network allows us to estimate the limiting bending energy (26). As a
matter of fact, the computing of the mean curvatures HN ¼ Ha

N; a ¼ 1; . . . ;N
� 	

of the current configuration leads us to approx-
imate (26) as follows
Ebend
N ¼ jH

2

XN

a¼1

2Ha
N

� �2Aa
N

 !
� 8p

" #
ð27Þ



Fig. 10. 3D density plots of the LME approximations KN to the Gaussian curvature K of a CGMD model of the RBC membrane [2,3] at different simulation
times t, for �b ¼ 125 and m = 10 (lower bound of the color bar: �2 � 10�9 Å�2; upper bound: +7 � 10�9 Å�2).

538 F. Fraternali et al. / Journal of Computational Physics 231 (2012) 528–540
where Aa
N is the surface area of the a-th element of a dual tessellation of the network, which we assume is formed by poly-

gons joining the midpoints of the network edges with the triangle barycenters (barycentric dual mesh). Eq. (27) can be em-
ployed to estimate the Cauchy–Born contribution [20,21] to the isothermal bending rigidity, here denoted by j0

H . The latter

consists of the configurational average of the instantaneous bending rigidities of the fluctuating network. On matching Ebend
N

to Edihedral, we identify the instantaneous bending rigidity with the ratio Edihedral Ebend
N

� ����
jH¼1



and compute j0

H through
j0
H ¼

Edihedral

Ebend
N

� ����
jH¼1

* +
ð28Þ
where h � i denotes the configurational average symbol.
For the sake of example, let us reconsider now the MD model of the RBC membrane examined in the previous section.

Fig. 11 shows the time history that we obtained for the bending rigidity j0
H of such a model, on computing the rolling
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Fig. 11. LME estimates of the Born contribution to the bending rigidity of the RBC membrane model presented in Section 3.3, at different times of a MD
simulation.
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averages of the instantaneous bending rigidities during a MD simulation (cf. Section 3.3). It is seen from Fig. 11 that the value
of j0

H slightly fluctuates during the simulation, featuring oscillations with progressively smaller amplitude as the computa-
tional time t increases. We estimated a limiting value of j0

H approximatively equal to 79 J, for t > 100 t0. Such a value is just
slightly greater than that predicted in [8] for the sphere

ffiffiffi
3
p

D=3 ¼ 75:06 J
� �

, which is not surprising, since the biconcave
(mean) shape of the RBC model under consideration has the same genus of the sphere.
4. Concluding remarks

We have presented and numerically tested a meshfree approach to the curvature and bending rigidity estimation of
membrane networks, through a suitable extension of the LME method formulated in [1]. The results of Sections 3.1 and
3.2 demonstrate the convergence properties of the LME curvature estimates, both for a rectangular geometry (fixed
{x1,x2,z} axes), and for a spherical membrane. On the other hand, the results presented in Sections 3.3 and 3.4, emphasize
the ability of the LME approach in tracking the local curvatures and the bending rigidity of the RBC model presented in
[2]. Concerning the parameter estimation, we have found that the limitations �b P 100 and m P 10 generally ensure stable
curvature predictions. In particular, for m P 10 we found that100 is approximately the smallest value of �b that guarantees
asymptotic convergence of LME curvature predictions for the examined examples. The value of �b rules the degree of locality
of LME approximations, which reduce to piecewise affine shape functions supported by a Delaunay triangulation for �b!1
[1,11].

In closing, we suggest some directions for relevant extensions of the present work. We intend to apply the LME regular-
ization algorithm to predict the entire set of the isothermal membrane and bending rigidities of fluctuating biomembranes
modeled through MD simulations, with special reference to the RBC membrane. We plan to combine the LME regularization
of the RBC model proposed in [2], with the elastic moduli estimation procedures given in [7,8,21]. Another application of the
LME procedure presented in this work is to mesure the curvature of lipid bilayers as modelled with MD simulations. Lipid
bilayers are generally flat, however several different protein-driven processes will result in the membrane curvature that is
required for various cell processes (i.e. fusion). One mechanism is caused by protein domains inserting shallowly into one of
the lipid leaflets, which push the neighboring lipid head groups away and therefore causing local spontaneous curvature. We
are currently conducting coarse-grain MD simulations that model the interactions between different varieties of these pro-
tein domains and lipid bilayers. The LME procedure will allow us to quantify the amount of curvature that results from these
interactions.
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