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Abstract This paper presents a tensegrity approach

to the minimal mass design of tensile reinforcements

of masonry structures with arbitrary shapes. The

proposed strengthening methodology allows for the

design of minimal mass resisting mechanisms of

systems formed by a network of masonry rods, mainly

working in compression, and grids of tensile rein-

forcements. Assuming a perfectly plastic response by

each member, the existence of such resisting mecha-

nisms ensures that the reinforced structure is stable un-

der the examined loading conditions, due to the safe

theorem of the limit analysis of elastic-plastic bodies.

The approach proposed in this paper includes an

explicit determination of the state of prestress to be

applied to tensile reinforcements, in order that they are

effective under pre-existing loading conditions. Sev-

eral benchmark examples illustrate the potential of this

approach when dealing with minimal mass reinforce-

ments of 3D models of masonry walls under in-plane

and out-of-plane forces, and a structural complex

formed by a cloister vault resting on supporting walls.

Keywords Masonry structures � Tensile

reinforcements � Tensegrity � Topology optimization �
Composite materials

1 Introduction

The optimal strengthening of masonry structures

experiencing damage or aging problems attracts

remarkable interests among structural engineers and

architect, because many historical buildings world-

wide include such structures in need of strengthening

[1, 2]. Unreinforced masonry walls are often made of

materials with poor mechanical properties under

tensile stresses (i.e., nearly zero tensile strength). This

is especially the case in old buildings, due to the

degradation of mortar beds caused by aging. In the

past, such a drawback has been faced through the

application of reinforcements for the masonry made of

traditional building materials, like steel or wood (refer,

e.g, to [3–5] and references therein). Nowadays, strips

and/or meshes of materials like fiber reinforced
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polymers (FRP) or fabric reinforced cementitious

matrix (FRCM) composites are often bonded to

masonry structures to improve their mechanical prop-

erties [6–8]. It is worth remarking that the above

strengthening techniques, when improperly used, may

lead to an excessive over-strength of the reinforced

structure, and reduced ‘‘cracking-adaptation’’ capacity

[9–11].

The present paper adopts tensegrity concepts (i.e.,

sticks and strings models) to formulate a general

methodology for the tensile strengthening of masonry

structures. Tensegrity structures represent an emerg-

ing field of structural mechanics, which nowadays has

interesting applications in several fields of engineer-

ing, mechanics and physics [12], including robotics

[13, 14], deployable/smart structures [15–18], acous-

tics [19–21], and biomechanics [22, 23]. The mechan-

ical response of these structures is often characterized

by geometrically nonlinear behaviors [24–27], and

multi-stable configurations [28–30]. The statics of

tensegrity structures have been extensively studied

using a variety of approaches [31–34], with special

attention paid to stability problems [29, 35, 36]. It is

worth noting ground structure approaches to the form-

finding of such structures via mathematical program-

ming [37]. A review of methods currently available for

form finding and control can be found, e.g., in [38–42],

and references therein. Tensegrity models are in line

with the modern discrete element modeling (DEM) of

masonry structures, which includes computer-as-

sisted, funicular-network procedures [43], lumped

stress models (LSM) [44], and thrust network

approaches (TNA) [45–47].

A recent study [48] has presented a tensegrity

approach to the ‘‘minimal-mass’’ FRP-/FRCM rein-

forcement of masonry vaults and domes. This proce-

dure employs tensegrity concepts to find an optimal

resisting mechanism for the reinforced structure,

under given loading conditions. It allows the designer

to describe the response of the reinforced structure

with the use of simplified schemes, assuming that

tensile stresses are directly taken by the FRP rein-

forcements, and the stress level can be determined by

adopting a distribution of stresses that satisfies the

equilibrium conditions but not necessarily the strain

compatibility (cf. Sect. 5.2.1 of the ‘Italian Guide for

the Design and Construction of Externally Bonded

FRP Systems for Strengthening Existing Structures’

[49]). The approach proposed in [48] describes the

reinforced structure as a tensegrity network of

masonry rods, working in compression, and tension

elements corresponding to the FRP-/FRCM- rein-

forcements. It optimizes a background structure

connecting each node of a discrete model of the

structure with all the neighbors lying inside a sphere of

a prescribed radius, in order to determine a minimal

mass resisting structure under the given loading

conditions and prescribed yielding constraints [50].

The FRP-/FRCM- reinforcements can be replaced by

any other reinforcements that are strong in tension

(e.g., timber or steel beams/ties).

The present study generalizes the methodology

presented in [48] to cases that use 2D and 3D discrete

models of masonry structures with arbitrary shape.

Such a generalization allows us to explore the

potential for tensegrity modeling of reinforced

masonry structures in the design of non-invasive

reinforcement patterns for systems formed by arbi-

trarily assembled masonry walls, vaults and domes.

Another way of our study expands the study initiated

in [48] concerns an explicit determination of the state

of prestress to be applied to the tensile reinforce-

ments of masonry structures, in order to let them be

effective under pre-existing loading conditions. We

employ a novel application of linear programming to

obtain a minimal mass layout of masonry roads and

tensile reinforcements describing the state of stress of

a reinforced masonry structure, under given strength

constraints. Due to the safe theorem of the limit

analysis of elastic-plastic bodies [51], the existence

of such a resisting mechanism of the reinforced

structure ensures that it is safe under the examined

loading conditions, assuming perfectly plastic

response of each member. The input variables of

the proposed procedure consist of a 3D point cloud

defining the geometry of the structure to be rein-

forced, obtainable through, for example, in-situ laser-

scanning, together with the material densities and

yielding strengths of masonry and reinforcing ele-

ments. It is worth remarking that limit analysis is

well recognized by competent scientific literature

(e.g., [6, 9–11, 44–46] and references therein) as one

of the most reliable approaches to the study of the

stability of masonry structures.

The remainder of the paper is structured as follows.

Section 2 illustrates the adopted tensegrity methodology

for the reinforcement of an arbitrary masonry structure

under given yielding constraints and loading conditions.
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Next, Sect. 3 presents a number of benchmark examples

dealing with the FRP-/FRCM- reinforcement of

masonry walls subjected to in-plane (Sect. 3.1) and

out-of-plane forces (Sect. 3.2), as well as the FRP-/

FRCM- reinforcement of a three-dimensional structural

system formed by a cloister vault and supporting walls

(Sect. 3.3). Concluding remarks and suggested direc-

tions for future research are presented in Sect. 4.

2 Minimal-mass reinforcement of a masonry

structure

Let us apply the optimization strategy presented in

Sects. 2 and 3 of Ref. [48] to the general case of an

arbitrary masonry structure, whose geometry is

described by a three-dimensional set of nn nodes with

position vectors nkðk ¼ 1; . . .; nnÞ. Such nodes may be

condensed over one or multiple structural surfaces,

e.g, the intrados and the extrados surfaces of a planar

wall or a vaulted structure.

We introduce a background structure (refer, e.g., to

the example in Fig. 1) by connecting each node nk with

all the nodes nj such that it results jnk � njj � rk
(interacting neighbors), through two elements work-

ing in parallel: a compression element (or bar)

bi ¼ nk � nj; and a tension element (or string)

si ¼ nk � nj. Let us denote the number of compression

elements (bars) by nb; the number of tension elements

(strings) by ns; and the set of real numbers by R. We

introduce a Rnb�nn bar-connectivity matrix CB such

that ½CB�ij ¼ �1 if the bar vector bi has its start point at

the node nj; ½CB�ij ¼ 1 if bi has its end point at the node

nj; and ½CB�ij ¼ 0 if bi does not contain nj. Similarly,

we introduce a Rns�nn string-connectivity matrix CS,

making use of the string vectors si.

Assuming that the background structure is subject

to a number m of static loading conditions, we write its

equilibrium equations as follows

AxðjÞ ¼ wðjÞ ð1Þ

Here, j is the loading condition index ðj ¼ 1; . . .;mÞ;A
is the static (or equilibrium) matrix, wðjÞ is the vector

collecting all the external load vectors applied to each

node (wi), and xðjÞ is the vector collecting all the force

densities (i.e., the forces per unit length) in bars (kðjÞi )

and strings (cðjÞi ). The analytic expressions of such

quantities are as follows:

A ¼ � CT
B � I3

� �
B̂ CT

S � I3
� �

Ŝ
h i

2 R3nn� nbþnsð Þ

ð2Þ

xðjÞ ¼ kðjÞ1 � � � kðjÞnb j c
ðjÞ
1 � � � cðjÞns

h iT
2 Rnbþns ð3Þ

wðjÞ ¼ wT
1 � � � wnn

T
� �T2 R3nn ð4Þ

where ‘‘�’’ denotes the Kronecker product between

matrices (refer, e.g., to [50]), I3 denotes the 3 � 3

identity matrix; and it results

B̂ ¼
b1 � � � 0

..

. . .
. ..

.

0 � � � bnb

2

664

3

775 2 R3nb�nb ;

Ŝ ¼
s1 � � � 0

..

. . .
. ..

.

0 � � � sns

2

664

3

775 2 R3ns�ns

ð5Þ

We now assume that bars and strings behave as

elastic-perfectly-plastic members, with yield strength

rbi in the generic bar (compressive yield strength), and

yield strength rsi in the generic string (tensile yield

strength). We let Abi denote the cross-section area of

bi, and let Asi denote the cross-section area of si. The

masses of such members are respectively given by

mbi ¼ qbiAbibi, and msi ¼ qsiAsi si, where qbi and qsi
respectively denote the mass densities of bi and si; bi
denotes the length of bi and si denotes the length of si.

Moreover, in correspondence with the j-th loading

condition, we let kðjÞbi denote the force density carried

by bi, and let cðjÞsi denote the force density carried by si,

such that kðjÞbi [ 0 when bi is compressed, and cðjÞsi [ 0

when si is stretched. Yielding constraints impose these

results

kðjÞi bi � rbiAbi ; cðjÞi si � rsiAsi
ð6Þ

in correspondence with all the bars and strings, and all

the loading conditions.

We seek for an optimized resisting mechanism of

the examined structure through the following linear

program [48, 50]
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minimize
xðjÞ;y

m ¼ dTy

subjectto

AxðjÞ ¼ wðjÞ

CxðjÞ �Dy

xðjÞ � 0; y� 0

8
><

>:
;

ð7Þ

where

y ¼ ½Ab1
� � � Abnb

jAs1
� � � Asns

�T ð8Þ

dT ¼ ½qbibi � � � qbnb bnb j qsi si � � � qsns sns � ð9Þ

C ¼
diagðb1; . . .; bnbÞ 0

0 diagðs1; . . .; snsÞ

� �
ð10Þ

D ¼
diagðrb1

; . . .; rbnb Þ 0

0 diagðrs1
; . . .; rsns Þ

� �

ð11Þ

Fig. 1 Background structure associated with a 3D point cloud describing the geometry of a cloister vault supported by perimeter walls

(dimensions in meters): a 3d view; b top view; c, d side views
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The solution to problem (7) provides a minimal-

mass configuration of the background structure,

chooses whether a bar or a string connects each

couple of interacting nodes; and returns bars and

strings with zero cross-section areas in correspon-

dence with the interacting nodes that do not need to be

connected in the minimal mass configuration, under

the given equilibrium (1) and yielding (6) constraints.

We initially solve problem (7) by assuming that all

the bars feature yield strength equal to the compres-

sion strength rb of masonry, and all the strings feature

yield strength equal to the tension strength rsm of

masonry (as in an unreinforced structure). Next, we

compute the widths of such bars and strings by

dividing the corresponding cross section areas by the

thickness of the structure t. When the width of a

masonry string becomes larger than t, we rescale its

cross-section Asi , by replacing such a member with a

reinforcing element endowed with yield strength

rsf [ rsm , and cross-section area A
0
si
¼ Asirsm=rsf .

The width of the reinforcement is finally obtained by

dividing A
0
si

by the reinforcement thickness tf . It is

worth noting that the above replacement leads us to

reduce the mass of the resisting structure, compared to

the case of unreinforced structure, since the assump-

tion rsm\rsf trivially implies A
0
si
\Asi . Overall, this

procedure allows us to design an optimal (lightweight)

topology of the reinforcing elements, which are

necessary to ensure equilibrium and respect of yield-

ing constraints under the examined loading conditions.

3 Numerical results

The present section introduces several numerical

applications of the minimal mass optimization

procedure described in Sect. 2. These are aimed at

designing optimal reinforcements of a masonry wall

subject to in-plane forces (Sect. 3.1) [52], a 3D wall

model subject to out-of-plane forces (Sect. 3.2), and

a 3D structural complex formed by a cloister vault

and supporting walls (Sect. 3.3). We examine

masonry material exhibiting f c ¼ 1:21 MPa com-

pressive strength; and f t ¼ 0:08 MPa tensile strength,

in association with reinforcements exhibiting bonding

strength greater than or equal to f f ¼ 112:5 MPa; tf ¼
0:17 mm thickness, and 3:2 N/m2 self-weight per unit

area of the reinforcement [52]. Such reinforcements

correspond to the Carbon Fiber-Reinforced Polymeric

(CFRP) strips analyzed by Foraboschi and Vanin in

Ref. [52]. We wish to emphasize, however, that the

following results can be applied to other kinds of

masonry reinforcements that are strong in tension. The

masonry selfweight is assumed to be equal to cm ¼
18:0 kN/m3 in the first two examples (brick masonry),

and cm ¼ 15:0 kN/m3 in the final example (tufe

masonry). As in Sect. 2, we assume that each structure

analyzed is formed by masonry struts with compres-

sive yield strength rb; tension reinforcements with

yield strength rsf , and tension masonry elements with

yield strength rsm , over the unreinforced regions. Such

strengths are defined as follows

rb ¼ fc; rsf ¼ a ff ; rsm ¼ b ft ð12Þ

where a and b are scaling factors, that account for an

amplification of ff due, for example, to the adoption of

special reinforcement anchoring techniques ða[ 1Þ,
and a safety factor reduction of ftðb\1Þ, respectively.

We already noted that of all the possible resisting

mechanism of the same type, the optimization proce-

dure presented in Sect. 2 returns the minimum mass

tensegrity mechanism of the reinforced structure. Such

a statically admissible state of stress for the reinforced

structure is described by an optimized network of

masonry struts (bars) and tensile reinforcements

(strings), and the sets of force densities kðjÞi and cðjÞi
respectively carried by bars and strings in each of the

m loading conditions (j ¼ 1; . . .;m) examined. In the

case of a loading condition that exists prior to the

application of the reinforcements, the forces t
j
i ¼ cðjÞi si

give the pretensions to be applied to the reinforcing

elements in order to allow them to be effective under

the loads wðjÞ. Such pretensions can be applied making

use of the mechanical anchoring devices described in

Sect. 5.3.5 of Ref. [49].

In the first two examples, we numerically approx-

imate the fully no-tension model of the unreinforced

masonry by setting b ¼ 0:1. The final example

considers the complete replacement of masonry

members working in tension with reinforcements

made of fiber-reinforced composites [48]. Unless

otherwise specified, we mark the reinforcing elements

with red lines featuring thickness equal to the actual

reinforcement width; the masonry struts with solid

black lines featuring thickness equal to their width;
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and the masonry elements working in tension by

dashed black lines. We let Vm and Vf denote,

respectively, the total volume of masonry elements

and the total volume of reinforcing elements forming

the minimal mass resisting mechanism obtained

through the procedure illustrated in Sect. 2. In

addition, we let lf denote the reinforcement volume

ratio defined as follows

lf ¼ Vf =Vm ð13Þ

3.1 CFRP reinforcement of masonry walls subjected

to in-plane forces

We begin by studying the CFRP reinforcement of the

masonry walls experimentally analyzed by Foraboschi

and Vanin in [52] under the combined action of

vertical and horizontal forces. The examined walls

have 274 cm width; 234 cm height; 24 cm thickness;

and show a 88 cm � 117 cm central opening

juxtaposed between two piers with 93 cm width and

234 cm height. The piers are connected at the top by a

88 cm � 84.5 cm lintel. The walls are confined

between two concrete beams placed, respectively, at

the top (where the external loads are applied), and at

the foundation (see Figs. 1 and 7 of Ref. [52]).

Three different specimens with the above geometry

were tested under a (single) loading condition com-

bining vertical and horizontal loads in Ref. [52]

(m ¼ 1). Such a loading condition has a fixed vertical

load Fv on each pier, which is equal, respectively, to

20 kN for specimen ] 1, 40 kN for specimen ] 2, and 70

kN for specimen ] 3. The vertical forces on the piers

are combined with lateral forces Fh applied from left-

to-right with monotonic law on top of the walls, up to

the wall collapse (ultimate horizontal forces respec-

tively equal to 19, 54 and 84 kN, for specimens ] 1, ] 2,

and ] 3).

The three specimens analyzed in [52] were initially

tested up to failure in absence of reinforcements, and

subsequently unloaded and strengthened with CFRP

strips placed in such a way as to close the cracks

formed during the tests on the unreinforced specimens

(see Fig. 2). The above specimens differ from each

other also in terms of the technique used to bond the

CFRP strips to the masonry substrate. Bonding was

accomplished through simple application of a layer of

epoxy resin for specimen ] 1; the application of CFRP

bolts combined to epoxy bonding for specimen ] 2;

and bonding with epoxy resin under vacuum for

specimen ] 3 (see Ref. [52] for more details). We

numerically model such bonding conditions by

assuming a ¼ 2 in the case of specimen ] 1; a ¼ 10

for specimen ] 2; and a ¼ 15 for specimen ] 3. In each

case, we set b ¼ 0:1, as we already mentioned.

We numerically study the walls under examination

using three different background structures (or

meshes): (a) a coarse mesh featuring 326 nodes and

2442 potential connections (bars/strings, cf. Fig. 2a);

(b) a mid-size mesh with 523 nodes and 4178 potential

connections (Fig. 2b); and (c) a fine mesh showing

1012 nodes and 9174 potential connections (Fig. 2c).

Figures 3, 4, 5 show the minimum mass reinforce-

ments that we obtained for the above wall specimens,

in correspondence with the ultimate value of the

horizontal force that was experimentally recorded in

[52] (Fh ¼ Fhu ; Fh ¼ 0:5Fhu ; and Fh ¼ 0:25Fhu ).

The results presented in Table 1 and Figs. 3, 4, and

5 highlight the good convergence properties of the

tensegrity resisting mechanisms, for successive mesh

refinements. Analyzing the results in Table 1, we

indeed observe that the total reinforcement volume Vf

grows slightly and tend to have an asymptotic limiting

value as the mesh size decreases, especially in the

cases of specimens ] 2 and ] 3 (cf. also Figs. 4 and 5).

The case of specimen ] 1 is slightly different, due to

the prediction of large reinforcements at the bottom-

right corner of the wall, when using a coarse mesh (cf.

Fig. 3). The oscillating values exhibited by the

reinforcement volume ratio lf in Table 1 are

explained by the fact that the total volume of masonry

elements forming the resisting mechanism (Vm) gen-

erally increases as the mesh size decreases. When the

rate of increase of Vf is greater than that of Vm the ratio

lF increases, while the opposite happens when instead

the rate of increase of Vm is greater than that of Vf .

Trivially, the heaviest reinforcements correspond to

the case of specimen ] 1, which features to the lowest

masonry-reinforcement bonding strength (a ¼ 2). In

each of the examined cases, the largest reinforcements

must be placed diagonally at the basis of the the right

pier, over the lintel and at the top of the right pier.

Let us assume now that the reinforcements of the

masonry panels under consideration need to be

applied without prior unloading of the structure. The

resisting mechanisms shown in Figs. 3, 4, and 5 lead

us to predict pretensioning forces ti ¼ cisi in the
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ranges 0:46 kN 	 11:34 kN; 0:46 kN 	 26:51 kN;

and 0:50 kN 	 40:93 kN, for specimens ] 1, ] 2 and

] 3, respectively.

3.1.1 Experimental validation

The reinforcement schemes illustrated in Figs. 3, 4,

and 5 are generally similar to those analyzed in Ref.

[52] (see Fig. 6), with the exception of a vertical

reinforcement placed over the left pier in Ref. [52],

which is not included in the current reinforcement

strategy. It is worth noting, however, that the results in

Figs. 4 and 5 indicate the presence of tensile forces

within the masonry of the left pier in specimens ] 2 and

] 3, as Fh gets close to its ultimate value Fhu .

Our results for the present example highlight that

the first reinforcements needed to guarantee safe

equilibrium of the examined walls must be placed in

diagonally at the bottom of the right pier and on top of

the lintel (already for Fh 
 0:25Fhu ). For increasing

values of the horizontal force Fh, such reinforcements

grow in size and spread out over the right pier and the

lintel. In the cases of specimens ] 2 and ] 3, the CFRP

reinforcements tend to be vertical over the lintel and to

interest also the top of the left pier in diagonal

direction (cf. Figs. 4, 5).

The sequence of CFRP-masonry debonding mech-

anisms experimentally observed in Ref. [52] begin by

detaching the strips reinforcing the lintel and the base

of the right pier (marked by the labels 1 and 2 in

Fig. 6). Next, the CFRP strip placed at the basis of the

left pier (marked by the label 3 in Fig. 6) are detached,

leading the wall to a kinematic collapse mechanism

[52]. We observe a good match between the rein-

forcement sequence illustrated in Figs. 3 to 5 and the

collapse mechanisms observed in Ref. [52], and this

observation qualitatively validates the current rein-

forcement design strategy of the walls under

examination.

It is worth noting that the topologies of the

reinforcements presented in Figs. 3, 4, 5 follow from

the analyzed direction of the force Fh (left-to-right),

and would be obviously reversed in case of an opposite

sign of such a force. More symmetric reinforcements

would be obtained by including both left-to-right and

right-to-left horizontal force conditions in the load

combination at the base of problem (7) (cf. Ref. [48]

and Sect. 3.3).

3.2 Reinforcement of a masonry wall subjected

to out-of-plane actions

We now consider the same masonry wall analyzed in

the previous section, this time being acted upon

simultaneously by masonry selfweight and out-of-

plane horizontal forces, with the latter replacing the in-

plane horizontal forces analyzed in Sect. 3.1. Such

out-of-plane forces mimic the effects of ‘seismic’

loading in the direction orthogonal to the mid-plane of

the wall, and have magnitude equal to that of the self-

weight forces multiplied by a factor 0.35 [53].

The current example is modeled by introducing a

background structure formed by two layers of nodes

Fig. 2 Different background structures of the masonry wall

analyzed in Foraboschi and Vanin [52] with dimensions in

meters: a coarse mesh: 326 nodes, 2442 members, connection

distance rk = 0.20 m for nodes with z\0:325 m and rk ¼

0:25 m for the other nodes; b mid-size mesh: 523 nodes, 4178

members, rk ¼ 0:20 m; c fine mesh: 1012 nodes, 9174

members, rk ¼ 0:15 m

Meccanica (2017) 52:1561–1576 1567

123

Author's personal copy



parallel to the x� z plane of a Cartesian frame with the

z-axis placed along the vertical (Fig. 7). These two

layers of nodes are offset 24 cm from each other along

the y direction (wall thickness). The background

structure in Fig. 7 features 576 nodes, and 7732

potential connections (bars/strings). The minimal

mass resisting algorithm obtained through the proce-

dure described in Sect. 2 is illustrated in Fig. 8. It

consists of 575 tension members and 853 struts.

The results in Fig. 8 highlight the fact that a set of

vertical reinforcements are needed on the face of the

wall opposite to the out-of-plane forces, in order to

guarantee a safe equilibrium condition for the wall.

The face of the wall to be reinforced should obviously

be the opposite one, if the source of the out-of-plane

forces is reversed. The heaviest reinforcements are

necessary at the base of the piers affected by tensile

stresses. The lintel shows diagonal masonry elements

Fig. 3 Minimal mass FRP reinforcements (marked in red) of

specimen ] 1 in Foraboschi and Vanin [52] for different values

of the applied horizontal load Fh and different background

meshes ðFv ¼ 40 kNÞ: a, d, g coarse mesh; b, e, h mid-size

mesh; c, f, i fine mesh ða ¼ 2; b ¼ 0:1Þ. The widths of the

compression elements are reduced by a factor 0.25 for visual

clarity. (Color figure online)
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working in tension, which can be reinforced through

local insertion of additional tensile reinforcements.

The lateral faces of the central opening also need to be

reinforced with diagonal reinforcements, as shown in

Fig. 8. The tensile forces ti in the vertical reinforce-

ments range act between 5.26 kN at the bottom of the

wall, and 49.43 kN towards the top of the wall.

3.3 Reinforcement of a structural complex formed

by a cloister vault and supporting walls

Our final example is concerned with a 3D structural

complex composed of 4 orthogonal walls that are

4.5 m horizontal length, 3.0 m height and 50 cm

thickness. These walls support a cloister vault with

Fig. 4 Minimal mass FRP reinforcements (marked in red) of

specimen ] 2 in Foraboschi and Vanin [52] for different values

of the applied horizontal load Fh and different background

meshes ðFv ¼ 80 kNÞ: a, d, g coarse mesh; b, e, h mid-size

mesh; c, f, i fine mesh ða ¼ 10;b ¼ 0:1Þ. The widths of the

compression elements are reduced by a factor 0.25 for visual

clarity. (Color figure online)
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Fig. 5 Minimal mass FRP reinforcements (marked in red) of

specimen ] 3 in Foraboschi and Vanin [52] for different values

of the applied horizontal load Fh and different background

meshes ðFv ¼ 140 kNÞ: a, d, g coarse mesh; b, e, h mid-size

mesh; c, f, i fine mesh ða ¼ 15;b ¼ 0:1Þ. The widths of the

compression elements are reduced by a factor 0.25 for visual

clarity. (Color figure online)

Table 1 Statistics of optimal CFRP reinforcements of masonry walls subjected to in-plane forces

Specimen Mesh 1 Mesh 2 Mesh 3

Vf � 104ðm3Þ lf � 104 Vf � 104ðm3Þ lf � 104 Vf � 104ðm3Þ lf � 104

1 0.991 3.647 1.046 3.092 1.155 3.359

2 0.697 1.675 0.756 1.677 0.765 1.391

3 0.712 1.287 0.773 1.295 0.793 1.195
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2.25 m elevation in the center and 25 cm thickness (cf.

Fig. 1). The two walls are parallels to the y axis of a

Cartesian frame with the z-axis placed along the

vertical; the walls show 1.5 m � 1.6 m central

openings. The background structure illustrated in

Figs. 9 and 10 features 683 nodes and 8432 potential

connections. It is worth noting that in the present case

we model both the perimeter walls and the vault as 2D

membranes lying in the 3D Cartesian space. To be

consistent with a similar example studied in [48], we

hereafter model the masonry as a completely no-

tension material, and replace all the masonry strings

Fig. 6 FRP reinforcement patterns analyzed in Foraboschi and Vanin [52] for specimen ] 1 (a), ] 2 (b), and ] 3 (c). The number

indicates the temporal sequence of cracks

Fig. 7 Background structure of a masonry wall subjected to out-of-plane actions: a 3d view; b top view; c front view. The connection

distance of all nodes is rk ¼ 0:3 m
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with tension reinforcements, independent of their

actual dimensions.

The optimal design for reinforcement for the

current example is illustrated in Figs. 9 and 10. This

shows a pure vertical loading (structure selfweight)

action, and a load combination including the masonry

selfweight and seismic loading in both the �y

directions (multiple loading conditions: m ¼ 3). The

seismic loading consists of horizontal forces with

magnitude equal to 0.35 of the magnitude of vertical

forces in all nodes [53].

The optimal reinforcements for pure vertical load-

ing action are placed mainly along the perimeter at the

base of the cloister (z 
 3 m); along horizontal lines

over the two piers of the y-walls with openings; and

along diagonal lines at the intersections of the vault

segments (Fig. 9). If such reinforcements are applied

to a preexisting structure, we observe that the resisting

mechanisms shown in Fig. 9 have pre-tensioning

forces ti ¼ cisi in the range 7.96 	48:93 kN at the base

of the vault.

As for the case of the load combination that

includes vertical loading and seismic loading in the �y

directions (cf. Fig. 10), we observe that the optimal

reinforcement strategy combines the reinforcements

required for vertical loading as well as diagonal

reinforcements over the two piers of the walls that

have central openings, and reinforcements aligned

with - or orthogonal to - the junctions between the

vaults segments, when moving towards the crown of

the vault (cf. Figs. 10 and 9). Due to the membrane

modeling that has been adopted for all the elements

forming the current structure, of all the vault supports,

only the two walls parallel to the direction of the

seismic forces (þy-axis) are actually such forces. We

assume that seismic loading follows the application of

Fig. 8 Minimal mass FRP reinforcements (thick red lines)

of a masonry wall subjected to out-of-plane actions: a 3d

view; b top view; c front view ða ¼ 1;b ¼ 0:1;Vf ¼ 1:391�

10�4 m3;lf ¼ 0:655 � 10�4Þ. The widths of the compression

elements are reduced by a factor 0.25 for visual clarity. (Color

figure online)
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the reinforcements, and therefore the pretensioning

forces to be applied to such elements are only

determined by vertical loading. The inclusion of

seismic forces in the �y directions in the current load

combination leads us to suggest symmetric reinforce-

ments over the vault panels and supporting walls

(Fig. 10).

Comparing the results shown in Figs. 9 and 10

with similar ones obtained [48] for vertical and

seismic loading of a cloister vault (featuring slightly

different geometry and material properties), we

realize that the presence of perimeter walls in the

current model has led us to design different

topologies for the reinforcing elements, as

Fig. 9 Optimal reinforcement patterns of the cloister vault

supported by walls under vertical loading (reinforcements

marked in red): a 3d view; b top view; c xz view; d yz view

ða ¼ 3:343;Vf ¼ 2:651 � 10�3 m3;lf ¼ 2:246 � 10�3Þ. The

widths of the reinforcements are magnified by a factor 2 for

visual clarity. (Color figure online)
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compared to those predicted by the modeling of the

vault as an independent structure constrained by

fixed spherical hinges at the base (see Fig. 5 of Ref.

[48]). This is mainly due to the fact that the

perimeter walls do not carry forces orthogonal to

their planes in the current model, and therefore

cannot be replaced by spherical hinges. It is worth

noting that the current model suggests the need for

major reinforcements over the perimeter walls, and

lighter reinforcements over the surface of the vault.

4 Concluding remarks

We have presented a methodological framework for

the minimal mass reinforcement of arbitrarily shaped

Fig. 10 Optimal reinforcement patterns of the cloister vault

supported by walls under combined vertical and seismic

loadings in the ?y-direction (reinforcements marked in red): a
3d view; b top view; c xz view; d yz view

ða ¼ 3:343;Vf ¼ 2:635 � 10�3 m3;lf ¼ 1:118 � 10�3Þ. The

widths of the reinforcements are magnified by a factor 2 for

visual clarity. (Color figure online)
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masonry structures. This framework generalizes the

tensegrity approach for the strengthening of masonry

vaults and domes recently presented in Ref. [48]. The

proposed methodology employs a novel application of

linear programming, which is aimed at designing

lightweight reinforcements for masonry structures,

and the corresponding pre-tensioning forces. The

present expansion of the research presented in Ref.

[48] is multifold: (1) we approximate the no-tension

constraint by admitting the presence of tension

elements within the unreinforced masonry, which are

supposed to carry very low tensile stresses; (2) we

analyze masonry structures with general shapes and

dimensions, including 2D walls, 3D walls, and struc-

tural complexes formed by an arbitrary combination of

walls, vaults and domes; and (3) we predict the state of

prestress to be applied to masonry reinforcements

under pre-existing loading conditions.

The reinforcements analyzed in the present study

consist of linear elements, such as FRP-/FRCM-

reinforcements, steel ties, timber beams, and any

other reinforcements that are strong in tension. The

adopted optimization approach allows us to design

non-invasive reinforcement patterns, which are able to

preserve a sufficient crack-adaption capacity of the

structure [9–11, 48], with the respect to the equilib-

rium equations and material yield limits.

The numerical results given here highlight the fact

that the proposed reinforcement design approach is

able to capture the main features of the experimental

response of real-scale masonry walls loaded by

vertical and horizontal forces and CFRP-reinforced

[52]. We have also shown that such a design strategy is

able to handle both in-plane and out-of-plane loadings,

walls with openings, and the arbitrary support condi-

tions of vaulted structures. The proposed strengthen-

ing methodology matches the safe theorem of the limit

analysis of elastic-plastic bodies [9–11, 51], and is in

line with the recommendations embodied in modern

standards for the the design and construction of

strengthening techniques for existing structures [49].

Future directions for research growing out of the

present study will be aimed at analyzing the minimal

mass reinforcement of a variety of case-studies

dealing with masonry structures of arbitrary geometry

and complexity. Additional future research lines

include experimental validations of the design proce-

dure presented in Sect. 2, through laboratory testing of

real-scale and reduced-scale models, under static and

dynamic loading.
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