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Abstract We formulate a novel procedure for the

limit analysis of two-dimensional masonry structures

subject to arbitrary loading conditions. The proposed

approach works in the framework of free discontinuity

methods, on examining collapse mechanisms that

exhibit free crack opening discontinuities. The load

bearing capacity and the collapse mechanism of the

structure are obtained through a fully variational

approach, by minimizing a kinetic functional that

admits the collapse crack pattern as a variable.

Numerical examples illustrate the practical applica-

tion of the proposed procedure to the limit analysis of a

variety of masonry walls and arches subject to

foundation settlements, vertical and horizontal forces.

Keywords Masonry structures � Load bearing

capacity � Limit analysis � Kinematic collapse

multiplier � Free discontinuities

1 Introduction

A simplified constitutive model of masonry is the so-

called Normal Rigid No-Tension (NRNT), which is

well suited for structures where the effects of bending

and shear stresses on the collapse mechanisms are

negligible [1–9]. More sophisticated constitutive

relations for such a material have been proposed in

the literature, with the aim of capturing the actual

inhomogeneous nature of masonry, and complex

behaviors frequently observed under experimental

tests, such as softening-type response, time-depen-

dent phenomena, friction, linear and nonlinear

homogeneization (refer, e.g., to [10–14] and refer-

ences therein). As observed in the introductory article

of the recent book [9], the real geometry and the

material properties of most masonry buildings are not

known in detail, so that the definition of even the

most primitive engineering parameters, such as

strength and stiffness, might be difficult and affected

by high randomness and uncertainty. One of the most

basic constitutive assumption that can be made for

masonry, in view of the small and often erratic value

of the tensile strength, is that the material can carry

only compressive stresses (No-Tension/NT model).

Since the pioneering work of Heyman [1] it is

generally recognized that such an assumption leads to

a powerful and meaningful interpretation of the

fracture patterns exhibited by a wide class of real

masonry structures.
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Several authors of the Italian school of structural

mechanics have studied and enriched the NT model

over the years, through a variety of mathematical,

numerical and experimental approaches (see, e.g.,

Refs. [3–9]). By way of examples and through

mathematical arguments, it has been shown that the

study of the ultimate load-carrying capacity of

masonry structures can be conducted within the

framework of the limit analysis of solid bodies, by

estimating lower (safe theorem) and upper (kine-

matic theorem) bounds of the collapse load, in

presence of suitable admissible stress and strain

fields (cf. [15, 16]). The use of singular stress and

strain fields within the static and kinematic theorems

of the limit analysis of masonry structures is

diffusely reviewed in [17, 18]. Typically, the above

discontinuities are ‘a-priori’ introduced along pre-

defined patterns, which usually coincide with the

edges of suitable finite element discretizations of the

body to be analyzed.

The present work generalizes such an a approach,

by dealing with a free-discontinuity formulation of the

kinematic theorem of limit analysis of masonry

structures in two-dimensions. We examine collapse

mechanisms that exhibit singular strain fields repre-

senting concentrated fractures, on extending a previ-

ous free-discontinuity model of the elastic problem of

masonry structures [19] based on the variational

formulation of Griffith-type fracture in brittle solids

[20]. It is worth noting that free discontinuities

approaches to plasticity and rigid-block problems of

limit analysis have been proposed in Refs. [21–23]

over recent years. The free-discontinuity model pre-

sented in this work approaches the functional of the

kinematically admissible collapse multiplier of a

masonry body by taking the crack pattern as a variable

of the problem. On minimizing such a functional over

a discrete set of collapse mechanisms with crack-

opening displacements, and employing a numerical

model with movable interfaces separating rigid ele-

ments, we seek for a local minimum point of the above

functional. As a result we predict both the collapse

load and the collapse mechanism of the body through a

fully variational approach, which does not require the

pre-definition of the crack pattern. The practical

implementation of the proposed approach is illustrated

through a collection of numerical examples dealing

with masonry structures subject to both vertical and

horizontal forces.

2 The boundary value problem for rigid no-tension

materials

2.1 Constitutive restrictions and equilibrium

problem

We consider a body X 2 Rn (here n = 2), loaded by

the given tractions s on the part oXN of the boundary,

and subject to given displacements u on the comple-

mentary, constrained part of the boundary oXD, is in

equilibrium under the action of such given surface

displacements and tractions, besides body loads b and

distortions E [the set of data being denoted: (u, E; s,

b)], and undergoes small displacements u and strains

E(u).1

The body X is composed of a Rigid No-Tension

(RNT) material, that is the stress T is negative

semidefinite

T 2 Sym�; ð1Þ

the effective strain E� ¼ EðuÞ � E is positive

semidefinite

E� 2 Symþ; ð2Þ

and the stress T does no work for the corresponding

effective strain E�

T � E� ¼ 0: ð3Þ

2.2 Admissible fields

For RNT materials is natural to define the sets of

statically admissible stress fieldsH and kinematically

admissible displacement fields K, as follows

H ¼ T 2 SðXÞ s.t. divTþ b ¼ 0; Tn ¼ s on oXN;f
T 2 Sym�g;

ð4Þ

K ¼ u 2 TðXÞ s.t.u ¼ u on oXD; EðuÞ � Eð Þf
2 Symþg;

ð5Þ

where a convenient choice for the function spaces

SðXÞ and TðXÞ is

1 When eigenstrains are considered, under the small strain

assumption, the total strain E(u) is decomposed additively as

follows: EðuÞ ¼ E� þ E, E� being the effective strain of the

material.
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SðXÞ ¼ SMFðXÞ;
TðXÞ ¼ u; s.t. grad u 2 SMF�ðXÞf g; ð6Þ

SMF(X) being the set of special measures (that is

measures with null Cantor part) whose jump set is

finite, in the sense that the support of their singular part

consists of a finite number of regular (n - 1)d arcs.

With SMF�ðXÞ we denote the subset of SMFðXÞ for
which the support of the singular part is restricted to a

finite number of (n - 1)d segments.

3 Compatibility conditions

3.1 Compatibility and incompatibility of loads

and distortions

The data of a general BVP for a RNT body can be split

into two parts

‘ $ ðs;bÞ � loads;
‘� $ ðu;EÞ � distortions:

ð7Þ

The equilibrium problem and the kinematical

problem for RNT materials, namely the search of

admissible stress or displacement fields for given data,

are essentially independent, in the sense that they are

uncoupled but for condition (3).

It has to be pointed out that, for RNT bodies, there

are non-trivial compatibility conditions, both on the

loads and on the distortions; that is the existence of

statically admissible stress fields for given loads, and

the existence of kinematically admissible displace-

ment fields for given distortions, is submitted to

special conditions on the data (for a thorough study of

compatibility conditions on the loads see [7]).

The definition of compatible loads and distortions is

rather straightforward:

‘ is compatiblef g , H 6¼ ;f g;
‘� is compatiblef g , K 6¼ ;f g: ð8Þ

Therefore the more direct way to prove compati-

bility, both for loads and distortions, is to construct a

s.a. stress field or a k.a. displacement field, as done in

the previous examples.

To prove the existence of a solution to the BVP for a

No-Tension body, the compatibility of ‘ and ‘� is

necessary but not sufficient, since the further condition

T � E�ðuÞ ¼ 0; ð9Þ

must be satisfied (this is the material restriction (3)).

Then one can say that a possible solution to the BVP is

given, if there exist a s.a. stress field and and a k.a.

displacement field, which are reconcilable in the sense

of condition (3).

The way to verify the incompatibility of the data is

less straightforward.

‘ incompatiblef g ( 9u0 2 K0 s.t. ‘; u0
� �

[ 0
� �

;

ð10Þ

‘� incompatiblef g ( 9T0 2 H0 s.t. ‘�;T0
� �

[ 0
� �

;

ð11Þ

where H0 and K0 are the same as defined in (4) and

(5) but with set of data ðu;E; s; bÞ ¼ ð0; 0; 0; 0Þ, and
‘; u0
� �

, ‘�;T0
� �

represent the work of the loads and

distortions for u0, T0, respectively.

4 Limit analysis

We concentrate on necessary or sufficient conditions

for the compatibility of a given set of loads (s, b),

restricting to the case of zero kinematical data (u, E).

4.1 Theorems of limit analysis

Strictly admissible stress fields and load classification

On denoting ‘; uh i the work of the load ‘ ¼ ðs; bÞ for
the displacement u, the load can be classified as

follows:

‘ is a collapse loadð Þ , 9u� 2 K s.t. ‘; u�h i[ 0ð Þ
ð12Þ

‘ is a limit loadð Þ , ‘; uh i� 0; 8u 2 K and 9u�ð
2 K�K00 s.t. ‘; u�h i ¼ 0Þ

ð13Þ

‘ is a safe loadð Þ , ‘; uh i\0; 8u 2 Kð Þ ð14Þ

where H00 and K00 are the sets H0 and K0

corresponding to null stress and strain fields, depend-

ing on the geometry of the boundary, of the loads and

of the constraints. A stress field T 2 H such that

trT\0 and detT[ 0; 8x 2 X, is said to be strictly

admissible.
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Notice that, if T is strictly admissible, then at each

point ofX (that is the open set _X to which the fixed part

of the boundary oXD is added) it results:

r1\0; r2\0, r1; r2 being the eigenvalues of T at

the point x.

Kinematic Theorem If ‘ is a collapse load (in the

sense of item (1) above) then H is void.

Static Theorem If a strictly admissible stress field T

exists, then the load ‘ is safe (in the sense of item (3)

above).

Limit Theorem If H is not void and there exists

u� 2 K�K00 such that ‘; u�h i ¼ 0, then the load ‘ is

limit (in the sense of item (2) above).

For the proof of these theorems we refer to the

paper [15]. The reader must be warned that the proofs

given by Del Piero refer to a similar function space for

the displacement but to a different functional setting

for the stress (namely L2ðXÞÞ. In the present paper we

assume that these theorem are still valid in the present

larger setting for the stress.

4.2 Formalization of the kinematical problem

We focus on the formalization of the kinematical

problem under the effect of kinematical data (such as

settlements and distortions). By restricting to dis-

placement fields characterized by strain fields that are,

purely, line Dirac deltas with support on a finite

number of segments, the body X can be divided into a

finite number, say n, of domains Xi (forming a

partition of X) each exhibiting a rigid body motion.

Under the assumption of small strains, for each

element Xi, such rigid body motion, that is the

displacement ui of any point of Xi, can be described

in terms of three displacement parameters ui; vi; /i, as

follows

ui1ðx1; x2Þ ¼ ui � /ix2; ui2ðx1; x2Þ ¼ vi þ /ix1:

ð15Þ

Under these restrictive assumptions the generalized

displacement of the structure, denoted û is a vector of

3n components, namely the three displacement

parameters per each element Xi:

û ¼ u1; v1;/1; . . .; ui; vi;/i; . . .; un; vn;/n
� �

: ð16Þ

5 A free-discontinuity approach to kinematic

collapse analysis

The present study is concerned with masonry struc-

tures composed of rigid no-tension material, that is a

continuum for which the stress and strain are restricted

by the assumptions (1), (2), (3). In Fig. 1 the main idea

is depicted for a simple plane wall with regular

openings: thick solid lines represent the boundary; thin

solid lines represent fixed interfaces; grey lines

represent moving interfaces. We formulate a free-

discontinuity approach to the kinematic collapse

analysis of a masonry body by letting the separation

interfaces be free to move within the reference

configuration, through suitable, configurationalmove-

ments of their end nodes (Fig. 1).

The unilateral constraint considered along the

interfaces, incorporates the no-penetration condition.

The normality condition (2), (3) (that is the non-

sliding assumption along the interface) is enforced by

the bilateral pendulum (see Fig. 1b). The kinematical

and statical problems for such a structure are coupled,

in the sense that, given the assumption of zero

dissipation on any interface (Assumption (3)), the

work of the reactions for the displacements both at the

internal and at the boundary interfaces must be zero. In

Fig. 1 The rigid-block masonry model with fixed and floating

interface
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general there will be infinite elements û 2 K and

infinite elements R̂ 2 H, and the no-work assumption

gives a criterion to select (may be not uniquely),

among them, a couple ðû0; R̂0Þ, that is called: solution
of the kinematical and statical problem. (Notice that,

restricting to a finite number of rigid blocks, having

fixed or moving interfaces, the setsH andK become

finite dimensional). There is a way to select variation-

ally such a couple. The idea is to introduce the

potential energy of the structure, that is minus the

potential energy of the loads, i.e. the scalar product of

the loads and couples applied at the centroids of the

pieces, collected in a generalized force vector f̂ , for the

generalized displacement û collecting the parameters

of translation and rotation of each piece of S). We call

the potential energy EðûÞ, and minimize EðûÞ over the
set K. We write

EðûÞ ¼ � f̂ ; û
� �

; ð17Þ

as a linear function of the generalized displacement u

of the structure, and set

Eðû0Þ ¼ min
û2K

EðûÞ: ð18Þ

This is a linearly constrained minimization problem

for a linear function if the interfaces are not moving,

that is the pieces are fixed. In such a simplified case the

problem can be solved by using Linear programming

(e.g., the simplex method). If both the load data and

the distorsion data are fixed, the minimum criterion

selects, among all the kinematically admissible dis-

placements û the displacement û0 that is more

convenient on an energetically ground. If the load is

assigned with a load parameter k (say: the vertical

component of the load is fixed and the horizontal

component is gradually increased with k), at each

stage of the loading program (that is at any given value

of k) the minimal displacement can be calculated

through the minimum condition. The limit value k0 of
the load parameter is obtained when amechanism (that

is an indefinite increase of the displacement) for which

the loads perform zero work is detected. Our free-

discontinuity approach allows the separation discon-

tinuities to move within the reference configuration of

the body, on employing the two-stage minimization

algorithm that is illustrated in Sects. 6.2 and 6.3.

6 Numerical results

6.1 A case study with fixed discontinuities

As a first case study, we analyze the case study

depicted in Fig. 2, which is concerned with the façade

wall of a XVII century building from the archive of the

Italian National Fire Corps, section of Bergamo

(courtesy of Prof. Paolo Faccio, IUAV Venezia),

exhibiting a widespread crack pattern due to a

differential settlement of the foundation. We model

the portion of the wall interested by the foundation

settlement as a set S of n = 7368 triangular rigid

blocks connected by unilateral and bilateral con-

straints (Fig. 3). The profile of the applied settlements

is given in Fig. 3a on adopting a magnification factor

equal to 4. An arbitrary generalized displacement of

the wall is given by

û ¼ uð1Þ; vð1Þ;/ð1Þ; ; uðnÞ; vðnÞ;/ðnÞf g: ð19Þ

with the displacement parameters being referred to the

centroid of the mesh elements. The corresponding

generalized dual force is as follows

F̂ ¼ Hð1Þ;Vð1Þ;Mð1Þ; ;HðnÞ;VðnÞ;MðnÞf g: ð20Þ

Assuming pure dead loads due to the self-weight of

the wall, we have: H(i) = 0, V(i) = P(i), M(i) = 0,

for any i = 1,2,...,n, where P(i) is the self-weight of

the panel i. The bilateral and unilateral constraints

depicted in Fig. 1b are considered to be active on all

the mesh interfaces, which leads us to the following

system of equality and inequality constraints:

C0û ¼ 0; C00û� d; ð21Þ

d being the vector of the applied settlements. The set of

kinematically admissible generalized displacement is

given by

K ¼ û : C0û ¼ 0;C00û� df g; ð22Þ

and the crack pattern û0 is numerically obtained by

minimizing the objective function

EðûÞ ¼ �F̂ � û ð23Þ

over K. The result provided in Fig. 3b shows an

overall good matching between our prediction of the

crack pattern of the wall, and the real pattern
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illustrated in Fig. 2. Due to the large number of

unknowns and constraints, an interior point algorithm

was employed to minimize the objective function (23).

6.2 Collapse mechanism with free-discontinuities

of a barrel vault subject to seismic loading

A second example deals with the collapse analysis

of the monumental barrel vault structure shown in

Fig. 4a. The loading condition is represented by the

self-weight p of the structure (masonry unit weight

equal to 17 KN/m3), and horizontal forces kp (static

seismic loading, cf. Fig. 4a). We estimate the collapse

multiplier of the horizontal forces by analyzing a

1.0 m long slice of the structure, and discretizing such

a region through the r-adaprive mesh shown in Fig. 4b.

Such a mesh is obtained by nesting a discontinuous

mesh (dashed red edges) into a continuous mesh (solid

black edges). The nodes of the discontinuous mesh are

allowed to move along the edges of the fixed mesh,

giving rise to an adaptive discontinuous triangulation

[20]. We obtain a free-discontinuity estimate of the

collapse multiplier kc through a two-level minimiza-

tion procedure. Let ni the scalar variable ranging in the
interval (-1, 1) that defines the position of the generic

movable node of the discontinuous mesh. We set ni ¼
�1 when such a node is ‘collapsed’ at the nodes of the

continuous edge along which it is constrained to move.

Let n denote the vector collecting the ni variables of all
the movable nodes. For a given vector n collecting the

position variables of all the movable nodes ni, we
minimize the following functional

Eðû; nÞ ¼ �f̂ � û ð24Þ

over the set K of all the admissible generalized

displacements û that are allowed to exhibit separation

discontinuities along the edges of the discontinuous

mesh. Here, f̂ defines the generalized force vector

collecting both vertical forces (self-weight), and

horizontal forces proportional to the load multiplier

k (Fig. 4a). The above minimization is performed

through a standard linear programming algorithm, and

returns a load multiplier that we interpret as the

‘fitness’ function k0 of the given n. Next, we minimize

k0ðnÞ under the bound constraints �1\ni\1, via the

evolutionary algorithm illustrated in [24], on obtaining

a ‘free-discontinuity’ collapse multiplier kc. Figure 4c

shows the collapse mechanism obtained for the

present example through the adaptive discontinuous

mesh in Fig. 4b (kc ¼ 0:1053). It is worth noting that

such a mechanism features four opening hinges

(cracks) in the masonry, one of which is located in a

buttress and the other three over the vault.

6.3 Collapse mechanism with free-discontinuities

of a masonry wall with openings subject

to seismic loading

Our final example is concerned with a three-story wall

with openings under the action of fixed vertical loads,

Fig. 2 The façade of a XVII

century building exhibiting

a manifest crack pattern due

to a foundation settlement

(courtesy of Prof. Paolo

Faccio, IUAV Venezia)
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and horizontal forces that grow from base values

F1 ¼ 33:82 kN; F2 ¼ 45:58 kN; F3 ¼ 70:31 kN pro-

portionally to a load multiplier k (Fig. 5a). The

masony is made of 1.0 m thick tufe bricks featuring

18 kN/m3 self-weight. Distributed vertical loads with

magnitude 7.5 kN/m are applied at each story level.

We solve such an example through the procedure

described in the previous section, on employing the

mesh shown in Fig. 5b. Such a mesh shows r-adaptive

nodes in correspondence with the diagonals crossing

the masonry blocks (potential crack-opening discon-

tinuities), which are allowed to move along one of the

competent diagonals. We solve the current example

through the two-level minimization procedure

described in the previous section, by governing the

movement of the adaptive nodes through a configu-

rational variables �1\ni\1. Figure 5b shows the

final collapse mechanism predicted obtained for the

structure under examination, which corresponds to

kc ¼ 3:9827.

(a)

(b)

Fig. 3 Crack pattern of façade wall with openings due to a given ground settlement: a superimposed original and deformed

configurations; b silhouette of the deformed configuration highlighting the crack pattern
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7 Concluding remarks

The free-discontinuity model presented in this work

can be used to predict the ultimate load carrying

capacity of arbitrary 2D masonry structures under

vertical and horizontal loads, with the latter describing

seismic excitations within a conventional static

approach [25]. It returns the collapse multiplier and

the collapse mechanism of the structure under inves-

tigation through a fully variational procedure, which

does not require any a-priori assumption on the crack

pattern exhibited by the structure at collapse. A two-

level minimization procedure has been adopted to

search for the collapse multiplier of discontinuous

finite element models that are equipped with rigid

blocks and r-adaptive separation interfaces. It is worth

remarking that the given procedure can be easily

extended to 3D structures with no conceptual difficul-

ties, but just a greater computational burden. It

provides an accurate tool for predicting the actual

Fig. 4 Masonry structure covered with a barrel vault (a), adopted mesh featuring r-adpative separation surfaces (dashed red lines) (b),
and predicted collapse mechanism (c)
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collapse mechanism of reals masonry structures under

seismic actions, which represents a major problem in

all the countries (like, e.g, Italy) that are interested by

severe earthquakes and exhibit rich and precious

historical heritage constructions.

It is worth noting that the numerical procedure for the

limiti analysis of masonry structures here proposed is

based on a recursive linear programming technique,

whose computational efficiency relies on the agility of

the employed linear minimization procedure. For large-

scale problems (more than 1 K variables) the basic

simplex method (exponential running time) should be

replaced bymore efficient tools, such as, e.g., the interior

point method, which runs in polynomial time. On

observing, for the sake of example, that the number of

bricks in a traditional masonry building of four storeys

and planar dimensions of about 20 m 9 20 m is roughly

106, we can expect this numerical limit being barely an

issue with running time of few minutes for a model

equippedwith appropriatemacro rigid elements [22, 23].

Future extensions of the present study will focus on

the limit behavior of masonry walls, vaults, and 3D

structural complexes featuring arbitrarily complex

shapes [26]. Additional future research lines might

regard the generalization of the current free-discontinuity

approach to masonry structures reinforced through

traditional and/or composite materials, on accounting

for interface debonding and ripping at the interfaces

between masonry and reinforcements [27, 28].
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