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Abstract

Nano grephene (Gr) particles are of abundant methbdnd scientific interest as having the
astonishing prospective to usage as the sensomgeelein the miniaturized and biomedical
sensor device. The nano Gr particles have beerasggpen the life science and health platform
due to their interesting material performance liegellent biocompatibility, conductivity, super
para magnetism, thermal, chemical, mechanical aeihlhargical properties to use as a sensor
component. In recent years, Gr as nanoparticles deasiired powerful technological and
scientific attention and having potential applioas like; for fabrication of super-capacitors,
batteries, solar or fuel cells, miniaturized andnhedical sensors. Gr is one of the most
influential nano composites with endowment of uséhe sensing mechanism like; bio-sensing,
bio-imaging and diagnostic of diseases due to d$atmg material behavior like;
biocompatibility, cell growing properties, exceltesurface behavior thermally and chemically
etc. The present discussion explores the statetaleaiew and prospective of the Gr in the
miniaturized and biomedical sensors. The sensincham@sm for each of the sensors has been
discussed for betters understanding of the funatitynand prospective of the Gr in the sensors.

Keywords: biomedical sensors, additive manufactyriphysical sensor, biosensors, bio-
potential electrode, sensing mechanism

1 Introduction

The broad term sensors is an electronic modulepoaent, subsystem or an element based on
the certain detection mechanism to measure thegelsaim the environmental activities, [1-5].
The biomedical sensors are broadly differentiagoinuthe basis of sensing mechanism like the
gas sensors senses the gaseous particles, opticalrs measure the light changes and similarly
various physical, bio-potential electrode and bigses measures different physical and
chemical quantities. There are some of the prevstwdies which have lightened the prospective
and application of different classified sensorgha different areas of applications, [6-12]. A
sensor observed the changes in the environment @oengs such as movement, light,



temperature, moisture, pressure, flow rate and nmose as response/output. The sensors are
usually liable to determine the values in electricaechanical, optical and electromechanical
signals. Blood pressure and flow rate, growth mdtbone, body temperature measurement are
some of the applications of physical sensors pspmewith use of Gr. Most commonly uses as
diagnostics of body issues are externally employégse of Gr increases the precision and
sensitivity of measurement [13].

The biosensors are the most advanced and intdllggmsors that fit internally to the human
living organism for the investigations of interrddanges like, enzymes, protein, and DNA etc.
Gr are the most important research components aukeir activeness even at nano-particle
level, enable it to be potential part, [14]. A Higlensitive behavior of Gr in terms of thermal
and electrical conductivity made it eligible fos igpplications in fabrication of bio sensing
devices, electronic circuits charge storage devaogsmedical biosensors [15-17].

The diagnostics of gaseous issue in relation withcentration of chemical in human bodies,
their monitoring (chemical activities in the body)erformed by the chemical sensors. High
chemically sensitiveness of Gr enables it to be astnuesirable component in biomedical
devices, [18]. There are some of the considerasogck as specifications of sensor devices must
be known by a user before working. Sensitivity, raiag conditions, accuracy, and response
time are few basics of sensors which explain thealsdities of the sensors in numerous
applications such as; accelerometer, biosensoragdmsensors, motion sensors etc. This
excellent material behavior of Gr extracted fronagdrite has been best applicable to the 3D
printing like fused deposition modeling (FDM) ofraponents for high quality sensors, medical
devices and precision making mechanical and ebtatttools,[19-20]. Gr is two dimensional
materials have noteworthy belongings of extraomyindoung’s modulus, knack to thermally
and electrically superconductive (high kinesis dfarge and electron), surface insulating
performance and enormous aspect ratio for prototgpacation. The performance of vertical
axis wind turbine can be improved by changing gdana components design, FDM emerged
as specific tool for such analysis by fabricatingdtional prototypes, [21]. FDM technology
covers almost every area of application. For exangyi medical field, a device called oral
pulsatile, release of drugs and patient-tailoréteta have been fabricated by FDM [22-23].

2 Synthesisof Gr for sensing devices

Graphite is a low cost raw source for extractionGuf It is generally extracted via different
methods of processing like; chemical vapour depes(CVD), micromechanical exfoliation,
and ball milling etc. [24-26]. Previous studieseals that exfoliation concept can also be used as
chemical processing of graphite in water for Grduaion by using 1-pyrenesulfonic acid
sodium salt, [27]. Graphite is the best and econahsource for extraction of Gr material. The
previous literature highlighted that oxidative treant of graphite resulted in formation of
graphite oxide (GO) for extraction of Gr, [28-2@)xidation and exfoliation mechanisms for GO
production were explained by [30-32]. Synthesisofthrough exfoliation of natural graphite in



ortho-dichloro benzene (ODCB) has been achievegrbgess called “sonication”, [33]. All Gr
extraction technique contributed to achieve specifechanical, optical and thermal properties,
as chemical vapor deposition (CVD) led to Gr shmeduction with high mechanical strength,
[34-35].

Most of the studies related to the FDM with difietréeedstock filament materials (like polymer
reinforced Gr particles) highlighted the pre-pr@teg, production and post-processing of
prototypes,[36-43].Graphite is semi-metallic chéeazed allotropes of carbon which is
available in crystalline and considered as modtlstéorm of carbon. Mechanical exfoliation,
chemical exfoliation, chemical synthesis, pyrolyspitaxial growth, CVD are some of the
processes which are used for Gr synthesis fromhgeafFigure 1).

The solid phase method is based upon the prinoiplaechanical exfoliation and synthesis of
silicon carbide (SiC). The Gr is extracted by tlse of taping method for mechanical exfoliation
(Figure 1. The Gr extracted from the graphite by the meidarexfoliation are of excellent
charge carrier mobility characteristics, [44-47].

The solution phase method is consisting of theaektin of Gr by exposing to the chemical
reagent or exposing the graphite oxide to chemocaisisting mechanical setup. The new
technique for Gr extraction has been introducedhsyuse of laser for reduction of graphite
oxides (See Figure'T). The chemical exfoliation is the economical esfi@n technique which
can have the potential to use in the different @ugaapplication for the sensor fabrication, [48-
51]. A process procedure has been shown in Fig(fe the mixing of graphite in organic
solvent contributed to mixing of graphite dissabuati Treating in ultrasonic bath followed by
centrifugation provide separation of graphite flekem Gr. Aging of Gr dissolution contributed
for stabilization of Gr layers in solutions theraghite flakes are removed to extract the Gr
through pipetting. Chemical exfoliation method ntidl the synthesis processes is termed as the
informal and furthermost cost-effective one witlhuidation of pureness of ultimate artifact [49],
51-52]. Exfoliation is a chemical approach for remmoof GO from graphite dissolution to
achieve Gr extraction,[33]. Exfoliation processnfigr chemically converted stable Gr from
graphite powder with very less production cost ¥53- There are some most common organic
chemical like; benzene, toluene, nitrobenzene Hhasen reported as catalyst for chemical
exfoliation of graphite. N, N-dimethyl- formamid®MF) and N-methylpyrrolidone (NMP)
have been used to form homogeneous dispersion aghgne, [56-59]. Except chemical
exfoliation some studies have been reported foolition through electrochemical, water
dispersion and other mode of dispersion, [25, D76H.

The Gr for sensor application and other manufastuprocesses required large surface area and
effective mechanical and thermal and electroniperties which are generally not achieved with
either solid phase method or solution phase methiod.CVD method has been emerged as the
most effective technique for the manufacturing ighhyield Gr. [35, 63-69]. The Gr by the CVD
methods are extracted with the use of the substised, the nature of substrate is resulted into
the yield of the extracted graphene. Fitj° §hows the process of chemical vapor deposition for
extraction of graphene.
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Table 1 shows the comparative study for chargaeramobility of Gr processed by different
synthesis technique. The mechanical exfoliationlted in the highest charge carrier mobility of
Gr.

Table 1 Charge carrier mobility resulted by diff#rprocesses of synthesis, [72]

Properties Mechanical Chemical Chemical Chemical  Synthesis
exfoliation exfoliation  exfoliation vapor on SiC
by graphene deposition
oxide (CVD)
Sample size(mm) >1 Infinite Infinite Approx.1000 100

because of because of




overlapping overlapping

flakes flakes
Crystallite size(um) >1000 <0.1 Approx. 100 1000 50
Charge carrier mobility ~ >10° 100 1 10000 10000

(at 25C) (cnfvis?h

3 Specifications of biomedical sensors

A sensor observed the changes in the environmempaoents such as movement, light,
temperature, moisture, pressure, flow rate and maorg as response of output. The sensors are
usually liable to determine the values in electricaechanical, optical and electromechanical
signals. There are some of the considerations stigpecifications of sensor devices must be
known by a user before working. Sensitivity, op@gtconditions, accuracy, and response time
are few basics of sensors which explain the caijpiabilof the sensors in numerous applications
such as; Accelerometer, Biosensors, image senmsot®n sensors etc (Table 2).

Table 2 Specification of Gr sensors, [73-78]

Key Description
Extentrange  The ranges of sensor for measurenfidgno-@haracteristics must be detailed
the maximum and minimum measurable information.ds@mple of pressure
sensors, the pressure must be in range of 0-10MPa.

Sensitivity Sensitivity of a sensor is defined las thanges of output over the input under
the controlled specific environment. For pressemssrs it should be equal to
the 0.4V/Pa. 0.4 Volt will change over 1Pa pressure

Operating  The operating temperature ranges of sensor musvpbienum for great

temperature performance. Operating beyond temperature range caage the losses in
accuracy and performance. For graphene baseg d8@sors the operating
range suggested 20-1%6D

Accuracy The accuracy is the measure of the exsstmgon the true values output. The
accuracy must be detailed to minimize the rejestion

Reproducibility Reproducibility of the sensor is the measure ofdleseness in output over
keeping the same operating conditions and sameoisensSor temperature
sensor the reproducibility of £0.1%/ in temperature range of 208D

Response time Response time is the measure to eeaensor on calibrated values upon
changes in the input. For pressure sensor the mesptime should be 10
second to reach the 95% of the maximum output.

Drift zero= (A Yo/YEs) X100%, drift is defined as the changes in thewouvalue
when input keep constant. The zero drift can beresged as above
expression. Wherd Y is the output changes angsYs the reference input.




4 Prospective of Gr in bio-medical sensing devices
4.1 Classification of biomedical sensors

The biomedical sensors are broadly classified én4ttbasic subgroups based upon the nature of
sensing such as; physical sensors, chemical sefmsosgotential electrode and biosensors [74].
Physical sensors are those sensors which senselsaihges in the physical factors like; pressure,
force, velocity, momentum, capacitance, depth avelletc. the chemical sensors are liable to
measure the any changes in the chemical compositienvironment, food and other bodies, the
most common used chemical sensor is gas sensoroWwud days with prospect of efficient the
other type of chemical sensors have been emergedeliectrochemical sensor, photometric and
physiochemical sensor. Bio-potential electrodestlanse sensors which measure the change in
the factor by a electrode in form of some graphplots, the ECG, EOG and EMG are some of
the bio-potential electrode which commonly usedhie@ biomedical fields. Biosensors are the
advanced sensors which can fit internally to thend&u body for sensing purpose of protein,
DNA, glucose etc. Figure 2 shows the detailed dlaation of miniaturized and biomedical
sSensors.

Miniaturized and biomedical sensor

- ]

Physical sensors Chemical Sensors Bio-potential electrodes Bio-sensors

Capacitive, Electro- Gas, Electrochemical, Body surface Bio-potential Enzyme, Protein,

magnetic, Piezoelectric Photometric, and electrode, Metal plate, Antigen, Antibody.

Potentiometric, Physicochemical sensors Intracavitary and Intratissue Ligand, Cell, DNA
Resonam;té;eg;zl / depth electrode, Microelectrode Sensors

Figure 2 Classification of miniaturized and bio-roadl sensors
4.2 Physical sensors

Some of the applications of physical sensors argéometric, mechanical, thermal, hydraulic,
electrical and optical measurements. Blood presanteflow rate, growth rate of bone, body
temperature measurement are some of the applisatibphysical sensors prospective with use
of graphene. Most commonly uses as dignostics dfy issues externally. Use of graphene
increases the precision and sensitivity of measanerfil3].Physical sensors are composed of
nanochemical resonator and pressure membrane faasureament of force, pressure,
temperature, flow rate, bone growth rate in bioroaldiields, [79]. All the touch screen device,
oil and pressure regulating system in automobithustries, digital blood pressure monitoring,



evaluation of gases and their partial pressureetep balance between control system and
atmosphere in aviation field and to measure thehdep submarine in marine industries, [80]
The Gr in the miniaturized sensors is the needafr o improve the efficiency in physical
sensors. Gr is the most desirable material foridabon of nonchemical resonator and pressure
membrane to use in miniaturized biomedical sendmgces, [81]. The pressure sensors are the
most commonly used sensor in biomedical and minzdd sensors. The ordinary sensors are
used to low efficient measurement. Composite sengoth use of Gr can be used as the
attachment to the ordinary sensors as the secomadaagurand shown in Figure 3 will improve
the efficiency and precision.

Secondary

Measurand

Active or passive ==l Electrical Signal

Sensor

Sensing Element

\. J/

Figure 3 Gr based composite sensor elements

Pressure Sensors: The pressure in pressure safefiggs can be measure statically (Figure
4(a)) and dynamically (Figure 4(b) ), the pressexerted to the system can be understood from
the given source described below [82]. For improeeimn sensitivity Gr blended sensors may
be employed.

Static pressure sensing Dynamic pressure sensing
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Figure 4 Pressure sensing mechanism in static yamahaic conditions
The upward pressure exerteq)an be calculated by expression given below

Pu=(h+L)Pg



Where, h= distance between pressure point to ttiacgy A&L= area and length of the bock in
container f* and g are the density and acceleratierta gravity.

The pressure in a moving fluid exerted parallghflow direction is called the impact pressure,
Ps. This is due to the kinetic energy of the fluid:

Ps=PVe#2
Vo = fluid velocity

Light sensors: The photo-detector is one of the splay sensors which measure the
environmental quantity like; incident of light. Rbedetecting sensors measure incident of light
or photon flux or optical power by converting thesarbed photon energy into electrical current.
They are widely used in a range of devices, sucheaste controls, televisions and DVD
players. The sensing mechanism of photo-detecsowsoirks on the photo thermoelectric effect
principle based upon the Motto’s formula,[83]. Tpteoto-detection is the measure of the change
in the thermoelectric power also called thermo po(gg related to the electrical conductivity
(o) and can be calculated by the given equation, [84]

2K *T 8 0
3qo0 6€

The proposed equation leads to the sensing mechasichange in output of the. Where K is
the Boltzmann's constant, g is the electronic chaf.60217662xI8 coulombs), k is
Boltzmann's constant (1.38064852%F0n” kg s K™),€,is the standard permittivity of free
space (8.85 x It farad per meter (F/m))efis effective temperature and can be calculated as;

Tos = \[To + T2

T is the sample temperature anglig the fitting parameter related to Dirac poirg@sated with
random potential fluctuations. Here also Gr blengdadhples will improve the sensitivity of
measurement.

4.2.1 Prospect of Gr in physical sensors

Capacitive sensors use carbon nano-platelets witymeric material to reduce the cost, easily
implemented and rapid prototyped of physical anenabal sensors. The prospective of Gr in
biomedical sensor is wide because change of reswsdue with very small changes in the strain
(£0.2%). The humidity changes measurement are theyéalto use the Gr in the miniaturized
sensors. The typical mechanically or chemicallyaoted GO can achieve high sensitivity and
fast response. The capacitive pressure sensordieigetric permittivity materials as graphene
for high performance [85-87]. Electromagnetic ifgeznce (EMI) shielding properties are the
key element in electromagnetic sensors to knowetffieiency and capability of the sensing



materials. The Gr aerogels (GAs) are prepared utidechemical process by GO reveals the
potentiality of the graphene in the electromagnsticsors. The EMI shielding effectiveness (SE)
has been noted significantly changes by varying ubder hydrazine vapor. The surface-
enhanced Raman scattering (SERS) characteristicbkecanhanced by the using hybrid blend of
Gr/Ag-nanopatrticles. The unique blending of Gr/Agpraparticles enhances sensitivity of
electromagnetic sensor up to the ultra-sensitiewel,[88-89]. Bi-Gr sheets/piezoelectric (BGP)
was exposed to the moving particle medium of cergaises, ensured the potential application of
Gr reinforced laminates for the future prospectiok Gr. The viscoelastic behavior of
piezoelectric layer decreases the nonlinear dynamiglitude of BGP laminated films only. The
difference between linear and nonlinear solutioggethds on the speed of moving particles. The
obtained new features and interesting results atheunonlinear viscoelastic dynamic responses
of BGP laminated films under moving particles, [90]he potentiometric sensors are the
resistive sensors which changes the resistancesexpto the different environmental pressure
conditions (by following LVDT, Hall Effect, or bydely current principle). Recently with
prospect of use of Gr studies reported for polybesed potentiometric nano-Gr/ionic
liquid/carbon paste electrode for the determinatibm changes in the pharmaceutical products.
The acetone detection through ultraviolet (UV)niimation has been promised the better and
high level application of potentiometric sensordhwir sensors, [91-92]. The variation in
resonant frequency under different loading condgiosed to measure the changes over stress,
gas density and applied pressures. The Gr basedamtscan leads to the absorption on terahertz
(THz) frequency range. Most of the studies highighthe use of other micro or nano molecules
but Gr will certainly be one of the best replacetsai sensing element, [93-95]. The depth/level
sensors are calculated the volume, depth of theniclaé tank, water reservoir, and large dam.
Some of the studies have highlighted the propspectf Gr as Gr/polyethylene-based
nanocomposites by depth-sensing indentation. lokgious that Gr has the excellent and
outstanding properties of sensitivity like, therlyjaélectrically, mechanically and good resonant
properties. The depth sensors need to be a goaingealement carrying all round material
properties. The graphene may be the best avaitgdtien among the entire nanocomposite to be
a part of level/depth sensing device, [96-98].

4.3 Chemical sensors

Gas, Electrochemical, Photometric, and other plogsiemical sensor are some of the chemical
based biomedical sensors. Diagnostic of gaseousedsin relation with concentration of
chemical in human body is one of the important eons. The monitoring of chemical activities
in the body can be performed by the chemical senddigh chemically sensitiveness of Gr
enables it to be a most desirable component in éical devices. [18].The interpretation of gas
sensing mechanism is governed by the two modgl€xygen ionosorption and (ii) Oxygen
vacancies, [99]. The steps involves to exposings#resors to as air or reducing gas (Like, CO)
media.



The responses mechanism are defined upon expasore/gien by an adsorptions reactions, at
elevated temperatureseactive oxygen species such as, &hd Q are adsorbed on the surface

of metal oxide semiconductor. The sequence of psEinvolved in the adsorption of oxygen
on the metal oxide surface [100].

O, (gas) + & O, (adsorbed)
O, (adsorbed) +'& O,% (adsorbed} 20 (lattice)

When the sensing element exposed ter@ironment, the ©adsorbed by the sensing surfaces
resulted of decrease in the charge carrier coratgmir (€) which leads to increase in the
resistance of the sensing material. The changeeimdsistance is termed as the sensibility of the
sensor upon exposure t@.’he similar mechanism also governed for the riedugases like;
COy,, [99, 101-102].

The sensing of gas sensors upon exposing to a reducing gas environment (e.g. CO), the
reactions delivered as;

CO + O (adsorbed)y™ GC@¢€
2CO + Q'(adsorbedy—> CLOr €

The monitoring purposes of chemical activities Ire tbody are measured by the chemical
sensors. High chemically sensitiveness of Gr esaltléo be a most desirable component in
biomedical devices.Photochemical and photometree the most commonly used chemical
sensors that fulfill the need for examining the ammtration and changes in the chemical
reactions with most precision, [103-106]. Convemidy nanacomposite like silicon nanowire is
the one of the most desirable materials for apfiinein chemical sensors, [107].

The electrochemical sensors are liable to respoadhanges in the PH value of the solutions. A
relation has been suggested by [108] for oxides@plgene field effect bio- sensors for
electrochemical sensing devices. The PH value eaméasure of the solution gate capacitance
(Csg) change as shown by equation given below.

CpL-Cox

S =
The Csg is the combination of the series connectgshcitance of the solution 40 and
capacitance of double oxide layer (Cox) as theisgmaaterial.

Semiconductors are the key for fabricating chemmsahsors; study highlighted the image
correction for chemical sensors by changing mdteharacteristics [109]. The semiconductor
reported as less efficient and produced lesser ensansing, conductive polymers are the
replacement of semiconducting polymer due to higibikty in image sensing, [110]. Metal



oxide nanowires are emerged as the one of theestadlerial for the stable image sensing. The
metal oxide as chemical sensors proposed as easpidf prototyping, integration to other
devices and fabrication purposes, [111].

The sensing mechanism for graphene-based quantpatitance wireless vapor sensors has
been demonstrated. The change in the resonantefiegwf metal oxide graphene capacitive
(varactor) sensor is liable to change in the vagmrcentration as relative humidity (RH). A
model has been suggested to calculate the vareapacitance () as sensing mechanism to

vapor, [112]
Cy =4 ! + AN
T\ Ce €

q

Cv is the varactor capacitance, A is the activa ariethe metal oxide Gr capacitor, Coc is the
oxide capacitance per unit area and Cq is the goafG&r capacitance per unit area, and the C
and G can be calculated as;

EOT is the equivalent oxide thickness of dielectiometal oxide graphené€,is the standard
permittivity of free space.

Cq = ;<W In| 2+ 2cosh KT,,;

Where q is the electronic charge, k is Boltzmarcosistant, h is the plank constant,Fermi
velocity VE= 1100000 cm/sec,¢is the Dirac point energy cfis effective temperature.

The adsorption capacity is the main key to selbetdensor material, [113-114]. Most of the
chemical sensors exposes to the water, gas or fhtitimedia to calculate the changes in the
adoptions. The Gr in the chemical sensor widelydusecause of their excellent adsorption
nature exposing to certain gases and liquid. Thesisg mechanism by adsorption can be
suggested as;

m; —m;

Q:

m;

Q is the adsorption capacity and can be calculate#&nowing the mwhich is the mass of
sensing element before exposure to fluid andsrithe mass after exposure to fluid.

Figure 5 shows the sensing mechanism of a biosaystem
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Figure 5 Principle of chemical sensor based meshariL15]
4.3.1 Prospect of Gr in biomedical chemical sensors

Gas adsorption is the key of sensitivity towards sblection of sensor materials. The more is the
gas adsorbed sensitive characteristics of the rahtagher will be the preference to use as
sensing material. Gr proposed the good adsorptmanacteristic to ensure the reliability of the
chemical sensors. Study highlighted the use ofoware irradiation technique synthesis of zinc
oxide semiconductor using Gr for chemical sendéltorinated graphene oxide has been studies
experimentally for sensing of Nfgas The advancement in the field of sensor fabricatian be

a best applied by the blend of Gr/titanium dioxigrid material. Blend of Gr-TiO2 resulted in
excellent NH3 gas sensing, [116-119]. Potentiome@imperometric and conductometric are
some of the electrochemical sensors which providecontinuous information about the changes
in the environment. Detectability, experimental giicity and low cost are some of the
remarkable characterizes of the electrochemica@srenable it to apply potentially in different
areas. The Gr can be best applying to the elearoatal sensor for advances the sensing ability.
Determinations of daphnetin, preparations of Hydiop graphene surface are some of the
achievement after use of graphene as an electrachlensensing element,[120-122].
Photodetectors are recent advancement of sensenlgaisesponse the changes in luminous flux,
illuminance, luminous intensity and luminance fppkcation in different fields. Photo-resistors,
photodiodes or photomultipliers are the sensinmetld t in photometric sensors. There is a need
to explore the use of Gr for sensing element fatpmetric sensor. It has been explored that Gr



has excellent adsorbent ability that is the reasshould be apply as photometric sensors, [123-
124]. The recent development in the chemical basedors has been targeted for the sensing of
local magnetic fields, magnetic particle charast&rs, viscosity and chemical binding. The
graphene will be the future material for the phghiEmical sensing as having great electrical,

thermal and chemical characteristic,[125-128]

4.4 Bio-potential electrode

Body surface bio-potential electrode, metal plal@racavitary and intratissue electrode,
microelectrode are some of the classificationsiofpotential electrodes. The little changes in
activities of muscle, brain, eye retina, nerves akith can be measure by the use of the bio
potential electrode such as; ECG (ElectrocardioyfG (Electromyogram), EOG
(Electrooptigram). ESR (Galvanic skin reflex) et@9].The bio-potential electrodes are the
transducer used in the sensing devices for comgethie bodies’ ionic current into electronic
current. The responses can be explored in the édreome signals or other representations. The
uses of high conductive bio-potential electrodetheekey element in the sensors uses for carries
the charges. The ECG/EEG/EMG Systems are sontegidtentially applied devices that give
the very precise output in the form of signal feryachanges in the human body. The bio
potential electrodes are the greatly applied bicoadand miniaturized sensors, [129]. The
transducing function is being able to be applicasehe excellent electrical conductivity of the
electrode. Graphene is the most accepted mateeeause of its extraordinary electrical
conductivity. The sensing mechanism of the ele@riodaqueous solution for charge carrier can
be governed by the given equation, [130].

CsC™ +n®
ATS A+m™

Where n is the valence of positively charged mal@e), and m is the valence of negatively
charged material (A). In the genetral, the catimnsolution and the metal of the electrodes are
the same, so the atoms C are oxidized when they giv electrons and go into solution as
cations. Figure 6 shows the different configuragion
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4.4.1 Prospect of Gr in bio-potential electrodes

Gold, silver and copper are the conventional maltéor the body surface electrode for sensing.
Gr is the need of hour to use as the body surféaerede due to its positive features like;
excellent electrical, thermal and surface propsrtieecent studies have reported on direct
electrochemical and electro-catalytic characteonabf hemoglobin on palladium-Gr modified
electrode. The experimental studies have been steghthat polymer reinforced with the Gr has
a wide potential for the fabrication of body sudadectrode with provision of rapid prototyping,
[131-133].Intracavitary and intratissue electrode asing from the years to cure the internal
body issues rather than to diagnose the problera. disinanomaterial in the intracavitory and
intratissue can greatly improve the performancthefbiopotential electrode. the studies reveals
the application of Intracavitary electrode in theg®@ internal body parts to minimize risk of
ventricular fibrillation, [134-135]. Chemically reded graphene oxide (CRGO) is largely
replacing the conventional electrode material iITFHEOG/EMG system as the sensing material.
Studies reported for the dry electrodes as touctsmefor electrocardiograph measurement
fabricated by CRGO and Graphene-clad textile aebees for electrocardiogram monitoring,
[136-139].

4.5 Bio-analytic or biosensors

Bio-analytic or biosensor is a intelligent analydievice that best applies for detection of analyte
that integrate biological component with a physieuical detector. The biosensors are eligible



to observe and analyses the level of enzymes,iprdA and microorganism concentrations
in the bodies, [140-141]. The main sensing elemm@ntransducer attached physiologically,
optically or electrochemically convert the signbtained by integrating the bio-analytic with the
sensitive biological element to measurement anahtifiation. The typical bio-analytic setups
consisting of a bio-recognition site, a signal reee and a signal amplifier to display the
processed observations.

Field-effect transistors shortly known as FET amoag the most applicable sensors for
biosensors. An FET contains input and output edeets, a semiconducting channel and a gate
electrode. The working mechanism of a FET biosermssed upon the Electrical transport
through the semiconductor channel which becomeaitatetl by the applied gate voltage, [142-
143]. FET is a typical transistor that uses eleatrfield to control the functionality of a device.
The conductivity between the input and output seusccontrolled by the electric fireld of the
device. The electric field in FET is generated bysidering the voltage difference between the
body and the gate of the device. The detection am@sm as a biosensor, the transport
mechanism is governed by the defining the voltaifferdnce between the two parameter (V),
[144].

vV =1|Z|e/®

|Z|is the magnitude of impedance, | is the currefft,is the phase factor which is the delay in
the voltage w.r.t | by a phade j=v—1.

Biosensing mechanism based on surface plasmomnaese (SPR) is is the most common and
known technique to examine the biochemical reastia scientific, food research, and medical
diagnostics, [145]. In particular, SPR provides skbising without need of fluorescent,
radioactive material, which could interfere witle thiosensing process, sensitivity, and real-time
monitoring of biomolecule binding. The sensitivity a liable of the performance for any
biosensors. For SPR biosensors, the sensitivitg(§)verned by the given expression, [146].
AP AP An

S=Ac” Bnac” omE
P is the output of the SPR sensor as SPR angbnfdyte concentration (C) nis the refractive
index can be taken as 0.005. Therefor the sendityermed as the product of refractive index
change (&,) and Efficiency (E).

A bio-receptor in the bio-analytic is the main etrhwhich interacts with  antibody/antigen,
Artificial binding protein, enzymes, DNA, epigeredj organelles, cells and tissues for signal
processing, [147]. There are 6 types of bio-traneduare commonly uses in the bio-analytic
such as; optical, piezoelectric, electronic, gratims, electrochemical and pyro-electric types.
Figure 7 shows the working mechanism of bio-potitased sensors.
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Figure 7Mechanism of sensing for (1) Antibody bad@dsensor (2) DNA/RNA based
biosensors, [148].

4.5.1 Prospect of Gr in Bio-analytic or biosensors

The studies highlighted the triple particle nantipbe for the biosensor for the glucose response.
This type of biosensor was fabricated using thepgtole as liking agent through dispersing
the nanosized gold particle on the surface of redugraphene oxide, [149-150]. The cancer
biomarker detection is one of the greatest achiewenin the biosensor fabrication, the
multimaterial electrochemical biosensor was faltedausing graphene surface enhanced with
magnetic beads (MBs) and enzyme-labeled antibodty-ganoparticle, [151]. Polymer based
graphene nanocomposite sensor has been demonsfoatée cholesterol detection, high
conductivity of graphene based nanocomposite b#snpal to be a part of biosensors, [152-
153] has explained the synthesis of the graphenehbynical vapor deposition method for the
fabrication of Nickel nnaosheet/ graphene basedposites for biosensing. A study reported to
detect the dangerous pesticide residue in the watdood using the sensor fabricated from
functionalized GO, [154-155] have developed theplgesne based potentiometric biosensor for
the detection of the bacterial. Graphene can bd teathe enhancement in the sensitivity,
detection accuracy and quality factor, the studyoreed for the application of GO for the
biosensor functionality for explosive detectiorb§l. As GO exhibit the excellent dispersibility,
biocompatibility to potentially use in the biomealicand Nano-electric biosensors [1, 129].
Dopamine is an organic chemical of the catecholanaind phenethylamine families that plays
several important roles in the brain and body, d&te were achieved developing a graphene
based biosensor, with stusy suggested 3D printirgyaphene based biosensor, [157-158]. One
of the most recent studies having the potentiatHerdetection of Zika virus infection, the sensor
developed for Zika virus detection was cost effectis use of graphene, [159]. Development of
Hall Effect based biosensor for DNA detection hbeen promises the future of the graphene to
be best use for miniaturized and biomedical apptos, [160].

5 Case study forfabrication of sensor component by additive manufacturing



The FDM feedstock filament with an ABS-Gr (90-10dami5-25 wt.%) matrix has been
successfully prepared by exfoliation of graphiteh&t lab scale [43, 161]. The blending of Gr in
ABS has been processed by two methods, mechanisahgmand chemical + mechanical
mixing. Finally, the feedstock filament has beemcassfully used for preparing functional
prototypes. The results of the present case studygest that the electrical and thermal
conductivity and mechanical properties of the fioral prototypes have been improved. The
proportion of Gr in the ABS matrix is the signifidtaparameter which influences the electrical
conductivity, followed by the in-fill density andché process used for blending. Whereas for
thermal conductivity, the process used for blendcigemical and mechanical mixing), followed
by in-fill density and proportion of Gr in the AB®atrix are significant parameters. The Gr-
blended ABS specimens with improved mechanicakntbé and electrical properties can be
used for a number of engineering applications. ITassociation with recycled materials for the
manufacturing of innovative, sustainable compos#esits attention.Investigations have been
made to calculate the thermal and electrical cotindties of the Gr blended ABS function
surface obtained by 3D printing [161]. The ABS virgially calculated as thermal conductivity
of 0.1 W/m.K, after blending of Gr to ABS by twirtrew extrusion followed by 3D printing
resulted in the improvement in the thermal conditgtiof ABS polymer up to 176.6 times (See
Figure 8). The thermal conductivity (K) of graphebkended fictional prototypes with 3D
printing has been evaluated by the given formulagisee’s disk method;

ar
mc (E) X
A(t; — t1)
Where A is the cross sectional area of 3D printed, @2-t1 is the temperature gradient across
sample, x is the thickness of the 3D printed paris the mass of Lee’s disk and c is the specific
heat of capacity of disk. The rate of cooling/tenapere gradient (dT/dt) has been calculated by
plotting the graph of temperature and time. Themnia conductivities have been calculated
using the said expressions and it is plotted astiom of infill density and proportions of
graphene content against thermal conductivity.
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Thermal Conductivity
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Figure 8 Thermal conductivity of different sample

Similar operations have been performed using the'©haw.
The electrical conductivityo] for different fictional prototypes has been invgsted by the
given relations;

1

6 — —inS/m (Siemens/meter)

Wherep is the resistivity of the sample, the resistivafythe 3D printed part can be calculated
as;the inverse of conductivity is called resisyivit

RA
PET
Where | is the length of the sample and R is tlséestance of the 3D printed part and it can be
calculated using Ohm’s law

I = % In Amperes

Where V is the voltage and | is the current flowoas the samples. Upon this basis the electrical
conductivity for each samples have been determanedplotted to see the changes in their
values according the other factor variations (Sgarg 9).

Electrical Conductivity

=¢—Infill Density (%)  =l=Electrical conductivity (S-m)
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Figure 9 Electrical conductivity of different sarapl

As observed from literature, the functional compdna sensors devices is being fabricated by
the 3D printing techniques. The present case salgty highlights the potential to fabricate the
functionally upgraded parts for sensors devices.

6 Conclusions

Sensors are heart of any measurement, controliagdastics devices and termed as the critical
component. Following conclusions can be made frbm present state of art review with
prospective of use of Gr in the sensing devices.



» Conventional sensor devices use the sensing eletmnthigh cost due to use of
expansive nanoparticles. Gr has emerged as orteeohost acceptable replacements of
nanoparticles used as sensing material. In biorakdjplications the Gris replacing the
conventional metallic nano particle with provisiafi reducing cost and improving
sensing ability. The 3D printing followed by thetrision process can be the one of the
replacements to fabricate the sensor part blenglgzhtiicle with nano composites. This
novel method of manufacturing the sensor elemeltbeiinstrumental for reducing the
elemental cost of sensor devices.

The employment of composite ABS-Gr FDM feedstotknfients for the rapid prototyping of multi
scale innovative materials and structures [162-20its attention.
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