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Abstract This paper produces a design for a minimal mass,
deployable support structure for a solar panel covering of
water canals. The results are based upon the minimal mass
properties of tensegrity structures. The efficient structure is
a tensegrity system which has an optimal complexity (i.e. an
optimal number of members) for minimal mass. This opti-
mal complexity is derived in this paper, along with deploy-
able schemes which are useful for construction, repairs, for
Sun following, and for servicing. It is shown that the mini-
mal structure naturally has deployable features so that extra
mass is not needed to add the multifunctional features. The
design of bridge structures with tensegrity architecture will
show an optimal complexity depending only on material
choices and external loads. The minimization problem con-
siders a distributed load (from weight of solar panels and
wind loads), subject to buckling and yielding constraints.
The result is shown to be a Class 1 Tensegrity substructure
(support structure only below the deck). These structures,
composed of axially-loaded members (tension and compres-
sive elements), can be easily deployable and have many
port-able applications for small spans. The focus of this
paper is an application of these minimal mass tensegrity
concepts to design shading devices to prevent or reduce
evaporation loss, while generating electric power with solar
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panels as the cover. While the economics of the proposed
designs are far from finalized, this paper shows a technical
solution that uses the smallest material resources, and shows
the technical feasibility of the concept.
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1 Introduction

In civil engineering, many different kinds of bridge structu-
res are known and used, such as, e.g.: beam bridges, truss
bridges, cantilever bridges, archbridges, tied archbridges, sus-
pension bridges, and cable stayed bridges, to name just few
examples.Unfortunately, available bridge designsmost often
do not account for topology optimization and minimal mass.

To stop the evaporation losses, reports have shown (Kahn
and Longcore 2014) the economic benefits of covering the
aqueducts that bring water to California from the Colorado
River. It is also logical that the chosen cover could be solar
panels to generate energy without requiring new land, (con-
trary to the requirements of wind turbines or large solar
farms) (Mahurkar 2012). The Narmanda Canal in Gujarat
India is an example of solar panel covered aqueduct built
in 2012 (Mahurkar 2012). To determine the true achievable
benefits of such a concept one must engineer the support
system to use the smallest amount of material possible, and
then reconsider the economic projections. This paper pro-
vides the minimal mass solution to the solar panel support
structure.

Tensegrity structures are very efficient, and tend to pro-
vide minimal mass solutions to structure design under
certain conditions. We propose a tensegrity bridge design
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that has minimal mass among all possible tensegrity topolo-
gies (configurations of members). The use of tensegrity
architectures to design minimal mass structures has been
proposed for tensile structures subject to stiffness con-
straints (Skelton and Nagase 2012); as well as structures
carrying compressive loads (Skelton and de Oliveira 2010a);
cantilevered bending loads (Skelton and de Oliveira 2010b);
torsional loads (Skelton and de Oliveira 2010c), simply -
supported bending loads (Carpentieri et al. 2015); and dis-
tributed loads on simply-supported spans, where significant
structure is not allowed below the roadway, (Skelton et al.
2014). Of course, minimal mass structures are not new
ideas (refer, e.g., to Michell (1904)). A tensegrity design
of a pedestrian bridge is given in Rhode-Barbarigos et al.
(2010), on using a parametric design approach based on
hollow ring modules. A more recent parametric design has
been developed by Pichugin et al. (2015), with reference
to a bridge structure carrying a uniform vertical load over
multiple spans. Interesting studies dealing with structural
optimization under compliance and frequency constraints
are given in Bochenek and Tajs-Zielinska (2015), Kanno
(2013), and Yamada and Kanno (2015), and references
therein.

Michell (1904) derived a minimal mass, simply - sup-
ported truss structure, subject to yielding constraints. Such
a structure is composed of an infinite number of members,
and actually consists of a continuum in which the lines of
tensile stress and the lines of compressive stress are per-
pendicular each other. It is worth noting that Michell’s truss
features a considerably large rise vs span ratio and also
yielding is not the actual mode of failure when the number
of structural members is finite, rather than infinite. Consider
also that practical construction always creates joint mass
that calls for a finite number of members in the minimal
mass realization of the structure. As a result, minimal design
approaches accounting for buckling constraints are required,
and will be used in this paper to produce minimal mass con-
figurations of a deployable roof of a water canal. We show

that the minimal mass configuration of the analyzed struc-
ture features a flat roof (no superstructure, only structure
below the horizontal), and a very streamlined cross- section,
which is also able to tolerate high winds (not examined in
the present study). The optimally designed roof structures
are light-weight and easily deployable. We refer the reader
to Puig et al. (2010) and Tibert and Pellegrino (2002) for
a comprehensive review of deployable tensegrity systems,
and their application to space structures.

The concept of optimality adopted in this paper regards
the achievement of a design that ensures the less use of
material under equilibrium constraints for given external
loads and under specified failure mechanisms of the mem-
bers (bars and cables). We deal with the minimum mass
design of 3D networks of deployable tensegrity structures
carrying vertical loads distributed over the surface of an
array of solar panels (solar thermal collectors and/or pho-
tovoltaic panels). The aim of the present paper is to design
minimal mass structures (i.e. economically convenient) that
span any given water canal and carry energy harvesting
devices, at the same time.

The examined structures are designed to generate elec-
tric power while operating as horizontal shading devices
for water canals, which are principally aimed at reduc-
ing water evaporation. A deck made of solar panels is
supported by a network of truss structures with tensegrity
architecture, which are connected each other through a sta-
bilizing network of cables. The overall structure is foldable
and deployable and is controlled by stretching or relax-
ing the transverse cables. A minimum mass design leads to
lightweight structures easily deployed and maneuverable to
aid construction, assembly, servicing, and repair.

The application of interest in this paper is in any canal
which brings water to cities that are long distances from a
river. As an example, we compute the design for a 400 miles
canal bringing water to San Diego from the Colorado River.
The technical goal is two-fold: i) to stop or reduce the evap-
orative losses in such canals, and ii) to use the space above

Fig. 1 The canal cover built in
Narmada, India (Mahurkar
2012), and proposed minimal
mass concept (tensile cables are
yellow and compressive
members are red)
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the canal to generate power using solar panels. This is not a
new idea. The UCLA study by Kahn and Longcore (2014)
discusses some of the economic issues related to such
goals. The article by Merchant (2014) describes a realiza-
tion developed in India. The UCLA report suggests envi-
ronmental improvements and challenges, while the India
report (Mahurkar 2012) demonstrates feasibility with sys-
tems that have been operational since 2012.We here seek for
optimal solutions using minimal material resources, and a
deployment strategy that erects a light-weight structure (see
Fig. 1).

Our motivation is to reduce engineering and construction
costs, proposing a support structure for a solar roof that can
be actually employed to cover long canals. The panels will
not be exactly flat to allow water runoff. Neither the panels
nor the support structure will touch the water.

The remainder of the paper is organized as follows.
Section 2 describes the tensegrity bridge with parametric
topology to be used in this case and defines the loads to
be carried. Section 3 describes deployment schemes of the
examined bridge, both for construction and maintenance.
The following Section 4 discusses the strategies adopted
to get a minimal mass design. Numerical results are pro-
vided in Section 5. Conclusions are offered at the end
(Section 6).

2 Description of the model

The minimal mass of a cable with loaded length s, yielding
strength σs , mass density ρs , and maximal tension ts is

ms = ρs

σs

tss. (1)

To avoid buckling, the minimal mass of a circular bar of
length b, modulus of elasticity Eb, and maximal force fb is

mb,B = 2ρbb
2

√
fb

πEb

. (2)

In the designs of this paper, we will assume buckling
as a mode of failure of compressive members since it has
been shown in Carpentieri et al. (2015) that buckling is the

mode of failure in most of the practical cases, and indeed,
in our design. In particular, minimal mass designs subjected
to buckling constraints automatically also satisfy yielding
constraints if it results (refer, e.g., to Carpentieri et al.
(2015))

fb

b2
<

4σ 2
b

πEb

. (3)

2.1 Description of the tensegrity model

The paper Carpentieri et al. (2015) finds a planar tensegrity
bridge structure that minimizes the sum of deck mass, struc-
tural mass, and joint mass. The topology of such a structure
depends on several design parameters, which describe its
complexity (i.e. the total number of members) and geome-
try, and are allowed to change in order to achieve an optimal
complexity (minimal mass design).

The solution is a Class 1 tensegrity structure (compres-
sive members do not share common vertices) characterized
by a finite number of members. That is, the optimal structure
is not a continuum (in contrast to Michell’s truss, Michell
(1904)) but a discrete structure with an optimal number of
elements. This optimal number depends on material choice,
the span, and the external load. The bridge has no struc-
ture above the horizontal line (we call this a substructure
bridge). The present study assures that the most efficient
structure does not extend above horizontal, making it ideal
for our proposed solar array surface, since the surface is
horizontal, and does not generate any shadows on the solar
panels.

For a water canal application, Fig. 2 shows a 3D deploy-
able flat roof made of repetitive 2D substructure bridges
with multi-scale topology defined in Fig. 3. Each planar
substructure bridge (Fig. 3) is constrained with two fixed
hinges at both ends with vertical reactions Ftot /2 and hor-
izontal reactions wx (in practice these hinges might be
pulleys that allow roll-up during construction or repair). As
illustrated in Fig. 2, this module can be replicated (along
the longitudinal direction) to build a deployable three-
dimensional structure able to carry vertical loads distributed
on the horizontal plane of the solar array.

(a) (b) (c)

Fig. 2 Different configurations of a deployable solar roof for water canals: a open onfiguration, b transition between open/closed configurations,
c closed configuration
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Fig. 3 Adopted notations for forces and lengths of bars and cables for a substructure with generic complexity (n, p, q) = (n, 1, 0)

3 Description of the deployment scheme

Two different deployment features are incorporated into this
design; one for construction (Fig. 4), and one for mainte-
nance (Fig. 2). We will call the motion for construction,
transverse deployment, described as follows. Since the net-
work is a class 1 tensegrity one can roll up the cables. Imag-
ine the truss system (before the solar panels are installed)
rolled up on a large reel of inner radius R0 and radius after
rollup R (see Fig. 4). To compute the required radius of the
reel, let L be the cable length required to cross the canal,
let r be the cable radius, let v be the number of revolutions

required to rollup a cable of length L. The radius of the reel
after rollup is R = R0 + 2vr , and the length of the cable
rollup is L = 2π

∑
v(R0 + 2ir) = 2π(vR0 + rv(v + 1)).

Then one can show that the required radius of the reel is

R = R0+2vr = 3R0+2r

⎡
⎢⎣−1 +

√√√√1 + 2L

πr
(
1 + R0

r

)2
⎤
⎥⎦ .

(4)

The width of the reel must be greater than the length
of the longest bar in the bridge truss network (about 1

Fig. 4 Description of the
control system for the
deployability
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meter for a 20 meters span). One end of the reeled bridge
network is secured to the bank foundation (at the reel
location) and the other end attached to a cable across the
water on the opposite bank. By pulling this cable across
the canal the truss network unreels across the canal. In
succession, as the truss is pulled across (while maintain-
ing sufficient tension to remain above water level), the
solar panels can be installed (attached to the cables) at
the canal bank as the cable pulls the network across the
canal.

The second type of deployment is perpendicular to the
first one, and is called the longitudinal deployment, see
Fig. 1. This deployment is along the centerline direction of
the canal. After damage to a section, the entire width at that
location is opened (cable disconnects), this deployment can
create an opening of the array to allow access to the water
for any reason, such as cleaning, servicing, removing debris
from the water, or repairing solar panels.

This longitudinal deploy-ability is assured by controlling
the actual aspect angle αd in Fig. 5. This angle is controlled

by a motor that turns a tire on a level concrete track, to
roll the bridge sections closer to each other (for servicing
or repair), or further apart (for deployment to operational
configuration). The angle αd is a small angle (about 1 deg),
determined by the tension selected for the cross cables sup-
porting the panels. Hence the solar panels can face vertical
within 1 deg.

The planar bridge topology is considered here to eluci-
date the fundamental properties that are important in the
vertical plane. We use the nomenclature from (Carpentieri
et al. 2015), referring to Figs. 3 and 6.

1. A substructure bridge has no structure above the deck
level.

2. n means the number of self-similar iterations involved
in the design.

3. p means the complexity of each iteration in the sub-
structure.

4. β is the aspect angle of the substructure measured from
the horizontal.

Fig. 5 Schematic of a
deployable tensegrity system
equipped with solar panels
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Fig. 6 Exemplary geometries of
substructures for different values
of the complexity parameters n

(increasing downward) and p

(increasing rightward)

For a tensegrity bridge with generic complexities n and p

(see Fig. 3), the total number of nodes nn of each topology
is given by

nn = p
(
2n − 1

) + 2n + 1. (5)

For the substructure bridge, the number of bars nb and
the number of cables ns are

nb = p
(
2n − 1

)
, ns = (p + 1)

(
2n − 1

) + 2n. (6)

The bridge structures must be stabilized out of the plane
with a set of longitudinal cables as illustrated in Fig. 5.
In particular longitudinal cables (the magenta elements
showed in Section B-B of Fig. 5) are used to prevent out of
plane vertical movement.

The deck is composed of different orders of cables (refer
to Figs. 5, 7)

1. longitudinal cables: the elements connecting each
tensegrity bridge unit along the length of the canal;

2. transverse cables: the elements of each tensegrity
bridge lying on the transversal direction;

3. cross cables: the elements that directly carry the solar
panel loads and transfer their weight to the bridge
structures.

Let F be the total external vertical load for the solar pan-
els to be carried by one planar bridge structure. Each deck
section will be loaded by

fp = F

2n
. (7)

It will be convenient to define the following constant

η = ρbL

(ρs/σs)
√

πEbF
, (8)

and define a normalization of the system mass m by the
dimensionless quantity μ

μ = m

(ρs/σs) FL
. (9)

The total vertical force Ftot can be computed designing
the cross cables represented in Fig. 7. These cables directly
support two different solar panel modules of sizes � by

Fig. 7 Details of the canal
structure: a deck system, b
deformed shape of the deck
cross cables subjected to the
solar panel force

(a) (b)
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wd/2 (see Fig. 7). We design these cables assuming that, at
the fully-deployed configuration of the structure, the cross
cables are inclined at a fixed angle αd with respect to the
horizontal (Fig. 7). At this configuration the tensile force in
each cross cable is

td = fp

4 sinαd

, (10)

and the length of each cable is

sd =
√

w2
d + �2

2 cosαd

. (11)

By using (1) we can compute the total mass of the cross
cables as

md = 4
ρd

σd

tdsd = ρdfp

σd

√
w2

d + �2

2 sinαd cosαd

. (12)

Then, the normalized total mass of the deck structure is

μ∗
d = 2n md

(ρs/σs) FL
. (13)

The total force acting on each internal node on the deck is
then the sum of the forces due to the external loads and the
force due to the deck load

Ftot = F + 2n md g. (14)

4 Analytical results

In this section we study the minimal mass of bridges with
complexity n. We make use of the notation illustrated in
Fig. 3 in which complexity p is fixed to be one. Each iter-
ation n = 1, 2, ... generates different lengths of bars and
cables. We need not consider p > 1 because Carpentieri
et al. (2015) have shown that p = 1 is the minimal mass
solution of a simply-supported substructure bridge under
buckling constraints. The lengths at the ith iteration
are

bi = L

2i
tanβ, si = L

2i cosβ
, i = 1 − n. (15)

Observing the multi-scale structure of Fig. 3 it’s clear that
the number of bars and the number of cables at the ith self-
similar iteration are

nsi = 2i , nbi = 2i−1. (16)

In this case the total force applied to the bridge structure
is given by (14) and then the forces in each member become

fbi = F + 2nmdg

2i
, tsi = F + 2nmdg

2(1+i) sinβ
. (17)

where the mass mB at the buckling condition is

mB = 2ρb√
πEb

nb∑
i=1

b2i

√
fb,i + ρs

σs

ns∑
i=1

tisi , (18)

where (bi, si) is respectively the length of the ith bar or
cable, and (fb,i , ti) is respectively the force in the ith bar or
cable.

Consider a substructure bridge with topology defined
by (5), (6), (15), with complexity n. The minimal mass
design under yielding and buckling constraints is given by
(Carpentieri et al. 2015)

μ∗
B = mB

(ρs/σs) FL
= β1

(
1 + tan2 β∗

B

)
2 tanβ∗

B

+ηβ2 tan
2 β∗

B, (19)

where the aspect angle is

β∗
B = arctan

{
1

12β2η

[
β3 + β1

(
β1

β3
− 1

)]}
, (20)

and the coefficients βi are

β1 =
(
1 − 1

2n

)(
1 + 2ng

md

F

)
, (21)

β2 =
(
1 + 2

√
2

7

)(
1 − 1

23n/2

)√
1 + 2ng

md

F
, (22)

β3=
(
216β1β

2
2η

2−β3
1 + 12

√
324β2

1β
4
2η

4−3β4
1β

2
2η

2

)1/3

.

(23)

The minimal mass solution under buckling constraints
depends on the material choice for the structural compo-
nent (bars, cables and deck), on the external force F and
span L. If the deck mass md is zero then the minimal
mass is for complexity n = 1. Instead, if Ftot is vari-
able with the complexity n through the deck mass md (as
defined in (14)), the global optimum can be reached for
a generic finite complexity n, as a function of the ratio
between the total deck force (2n md g) and the total external
force (F ).

The final total mass to be optimized is then the summa-
tion of the mass of the bridge structure (19), the total mass
of the deck (13) and the mass of the joints (	nn)

μ∗
tot = μ∗

B + μ∗
d + 	nn, (24)

Table 1 Material properties

steel Spectra� - UHMWPE

ρ [kg/m3] 7862 970

σ [N/m2] 6.9x108 2.7x109

E [N/m2] 2.06x1011 120x109
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Fig. 8 Left: dimensionless
masses μB vs. aspect angle βB ;
right: dimensionless total
masses μtot (24) vs. complexity
n (η = 7569.04)
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	 being a factor equal to zero for perfect joints and greater
then zero for crudely constructed (cheaper) joints.

5 Numerical results

5.1 Minimal mass roofs of water canals

Let us now focus our attention on numerical results regard-
ing the optimal design of real-life roof structures of water
canals featuring different complexities n. The examined
structures show the following design data: L = 30.48 m,
F = 12 kN , wd = 4.88 m, αd = 1 deg, and the material
properties in Table 1. We investigate on the optimal val-
ues of the following parameters: μ∗

B , μ∗
tot and β∗

B , which
respectively denote the dimensionless minimal mass of a
single bridge unit; the dimensionless minimal mass of the
overall system formed by the bridge and the deck; and the
optimal aspect angle of the bridge structure, under com-
bined yielding and buckling constraints. The optimal angle
β∗

B of the examined structures can be computed from (20),
and/or the plots in Fig. 8. It is easy to verify that the minimal
mass structure shows a markedly streamlined profile with
β∗

B = 2.18 deg (Fig. 8-left). The global minimum of μ∗
tot

is attained in correspondence with the complexity n∗ = 3,
both for 	 = 0 (μ∗

tot
∼= 23.07; m∗

tot
∼= 3.0318 kg, cf.

Table 2), and for 	 > 0 (Fig. 8-right). The optimal design
leads to 0.10 kg mass per cables and 0.02 kg mass per bars
per meter of the canal lengthwise span (cf. Table 2).

Table 2 Optimal masses μ∗
B (19) and μ∗

tot (24) and optimal aspect
angles β∗

B (20) of substructure bridges with steel bars and Spectra�
cables, under combined yielding and buckling constraints (B), for
different complexities n

n p Ftot [N] β∗
B [deg] μ∗

B μ∗
tot m∗

tot [kg]

1 1 12019.39 2.06 10.4357 25.4791 3.3480

2 1 12010.97 2.13 15.1186 23.6251 3.1044

3 1 12007.50 2.18 17.2522 23.0724 3.0318

4 1 12006.35 2.21 18.2414 23.1662 3.0441

5 1 12006.03 2.23 18.7080 23.3822 3.0725

5.2 Eigenmodes and eigenvectors of the stiffness matrix

Let us examine the stiffness matrix of the planar structure in
Fig. 5, for n = n∗ = 3, β = β∗

B = 2.18 deg, and different
values of the mass mt of the horizontal cables placed at the
deck level (cf. SectionA-A of Fig. 5). We remark thatmt = 0
corresponds to the minimal mass configuration shown in
Section 5.1. We computed the above matrix through the pro-
cedure described in Sect. 8 of (Nagase and Skelton 2014).
All eigenvalues of the stiffness matrix are positive, which
guarantees the global stability of the analyzed structure in
the transverse plane (Skelton and de Oliveira 2010c).

The results in Fig. 9 show the first five eigenvalues
(sorted in increasing order). In particular, we observe in
Fig. 9 that the eigenvalues monotonically increase in mag-
nitude with prestress (hence mass mt ), implying that one
can actually improve the overall stability of the structure
by slightly increasing prestress, as compared to the min-
imal mass configuration. Figure 10 shows the first four
eigenmodes of the stiffness matrix under examination, for
mt = 0.2 kg (tension = 146.12 kN). As we already noticed,
the analyzed bridge structure is stabilized out of the plane
through the longitudinal cables shown in Fig. 5.

Fig. 9 First five eigenvalues of the stiffness matrix of the examined
structure for different values of mt
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Fig. 10 First four eigenmodes
of the stiffness matrix of the
examined structure for
mt = 0.2 kg. The blue segments
indicate the displacement
vectors of the nodes from the
undeformed shape (dotted lines).
The plots of the eigenmodes
make use of different scales for
the vertical and horizontal axes,
in order to magnify the nodal
displacements. For such a
reason, the undeformed
geometries appear distorted with
respect to the real profiles
(β = β∗

B = 2.18deg)

6 Concluding remarks

This paper provides closed form solutions (analytical
expressions) for minimal mass tensegrity bridge designs to
be used as deployable roofs for water canals. The forces,
locations, and number of members are optimized to min-
imize mass subject to buckling (for bars) and yielding
(for cables) constraints for a planar structure with fixed-
hinge/fixed-hinge boundary conditions.

We have examined a 3D deployable tensegrity structure
made of repetitive planar substructure bridges (spanning the
canal in the transverse direction) conveniently stabilized out
of plane with a set of cables, in both the transverse and the
longitudinal direction of the canal. Each planar structure has
a self-similar type of topology generated by the complexity
parameter n. The minimal mass solution yields complexity
n∗ which depends upon material properties. Moreover, the
topology of the 3D structure is function of canal width (L),
aspect angle (β) of the substructures bridges, longitudinal
aspect angle (αd ) governing the deploy-ability of the struc-
ture, the distance between consecutive repetitive structures
in the longitudinal direction (wd ).

Using steel bars and Spectra�cables, we obtained an
optimal structure that shows a very small rise, i.e., a stream-
lined profile. The given design occupies the minimum
volume and mass for the attempt at energy production
and shading over water canals Formulas are given which
will allow economic tradeoffs between material costs of
the structure, the labor cost (assuming price per joint is
inversely proportional to mass of the joint) of making more
refined joints, and the choice of material (steel, Spectra�, or

other). Implicit in these tradeoffs, the optimized complexity
n∗ of the structure is derived to allow economic decisions
on the number of components (bars and cables) that will
minimize mass for the given choice of material and joint
costs.

Numerical and experimental studies on the dynamics of
these structures will follow in subsequent work to impose
further design constraints on stiffness issues (vibrational
frequencies, mode shapes, displacements for high winds
conditions, etc., cf., e.g., (Carpentieri et al. 2015; Modano
et al. 2015)), but the capability of all these choices and
adjustments are within the free parameters of the designs
in this paper. The subsequent dynamics approach will eval-
uate the value (economics and performance tradeoffs) the
use of feedback control for the deployable and service func-
tions, or to adjust the stiffness of the structure (varying the
prestress of the cables) to modify stiffness or damping after
storm damage. Additional future research lines include the
design of different deployment schemes, on examining both
straight and curved canals.
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