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Abstract
We investigate the use of tensegrity structures with morphing and prestress-stability capabilities
for the design of active solar façades of smart buildings. Morphing tensegrity lattices are used to
design shading screens composed of umbrella-shaped ‘eyes’ that are opened and closed by
adjusting the elongation in a limited number of cables. Prestressable lattices are instead
employed to design superstable Venetian blinds that are composed of orientable slats. Future use
of tensegrity solutions for next-generation smart buildings are outlined, with the aim of
designing kinetic solar façades that combine morphing abilities with prestress-stability.
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1. Introduction

It is known that the construction industry significantly con-
tributes to overall energy consumption (up to 40% in the
European Union, see [1], and directive 31/2010/UE) and
there is an urgent need for sustainable buildings that are able
to reduce CO2 emissions by 90% and energy consumption by
as much as 50% [2]. Renewable energy technologies have
significant deployment potential as resources are spread
globally, in contrast to the conventional sources such as gas,
coal and oil, which are more geographically concentrated.
Renewable generation is estimated to rise to 25% of gross
power generation in 2018, up from 20% in 2011 as deploy-
ment spreads out globally [1].

The demand for energy efficient buildings calls for the
adoption of active façades that are able to mitigate air con-
ditioning consumption resulting from direct exposure to solar
rays, and to harvest wind and solar energy through on-site wind
power generators [3], building integrated photovoltaic (BIPV)
systems, and/or solar hot water panels [4–7]. The so-called

solar-architecture nowadays explores the use of flexible
envelopes governed by smart control systems to adjust heating,
ventilation, thermal isolation, lighting and shading of energy
efficient buildings according to weather conditions and seasons
(see e.g., [7] and references therein). The building of the future
also needs to be safer with respect to natural hazards, such as
earthquakes and high winds, and more energy efficient in terms
of making components and subsystems multidisciplinary (e.g.,
combining structural design with heating, ventilation and air
conditioning design) [8, 9].

Two main categories of solar façades are recognized in
the literature: opaque and transparent–translucent façades, and
both types can be either active or passive [5, 6]. Opaque
façades actively or passively absorb and reflect sun rays [5],
while transparent and translucent façades are able to combine
absorption and reflection (translucent façades) mechanisms
with direct transfer of solar heat gain into the building [6].
Active opaque façades include BIPV, solar-thermal (BIST),
and photovoltaic/thermal (BIPV/T) systems; while passive
opaque façades consist of either thermal storage walls or solar
chimneys [5]. Active opaque façades make use of electrical
and/or mechanical devices to transfer the gained solar energy
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into the building (in the form of thermal or electrical energy),
while passive opaque façades directly transform the incident
sunlight into thermal energy. Active transparent and translu-
cent façades comprise mechanically ventilated transparent
façades, and semi-transparent BIPV, BIST and BIPV/T
systems, while passive transparent and translucent systems
essentially consist of naturally ventilated façades.

Receiving increased attention are active solar systems
consisting of double (or multiple) glazed façades that incor-
porate Venetian blinds (also known as double skin façades or
DSFs) [6, 10–14]. Such systems overcome the advantages of
single (fully) glazed facades due to high energy consumption
and excessive noise permeability [10]. The use of natural or
forced ventilation into the cavity between the external and
internal glazing; the optimal design of the position of the
blinds [11]; sun-tracking abilities of the blind slats; and the
adoption of photovoltaic module integrated blinds (PV-
blinds) [12], may significantly reduce heating and cooling
energy needs of buildings equipped with DSFs [10, 13]. It is
worth noting that the use of forced ventilation within the
cavity of DSFs may require the adoption of wind-stable
Venetian blinds [14], which are also needed in the case of
external blinds [15–17]. Commercially available solutions for
wind-stable Venetian blinds are usually equipped with slats
moving on special profile rails [17]. Such systems are affected
by significantly large friction effects, due to the multiple
contacts between the slats and the rails, and interlocking
effects between the slats [17].

Innovative shading screens have been recently designed
by Aedas Architects for the Al Bahar Towers in Abu Dhabi
[18]. These screens consist of curtain walls placed two
meters outside the towers’ façades, and are intended to
mimic the shading lattice-work ‘mashrabiya’. The mashra-
biya screens are composed of more than one thousand
‘origami’ eyes in fiberglass, which are opened (i.e., folded
out) at night, and are progressively closed during daylight
hours, through a piston-actuated, computer-controlled tech-
nology. The screens are designed to reduce the solar irra-
diation of the towers by more than 50%, and to produce
marked decreases in air conditioning consumption, since
Abu Dhabi temperatures can increase up to 50 degrees
Celsius in summer.

The present work investigates the use of tensegrity
structures to form active solar façades of next generation
smart buildings. Tensegrity systems are prestressable truss
structures, which are obtained by connecting a network of
compressive members (bars or struts) through a set of stabi-
lizing cables (or strings) under tension [9]. Tensegrity archi-
tectures appear in a variety of natural shapes [9], and have
been employed for different engineering uses [19–22]. It has
been recognized that tensegrity systems are lightweight, easy
to control and to deploy, and that the adoption of tensegrity
concepts may lead to the design of minimal mass structures
under different loading conditions [9, 23]. There is also the
question of their easy integration into solar and acoustical
panels, which can be physically identified with special rigid
members of the structure.

We begin in section 2 by studying the actuation
mechanisms of tensegrity lattices, with special focus on
morphing and superstable lattices. Next, we investigate the
use of morphing and superstable lattices as components of
kinetic facades of smart buildings. We first design a tensegrity
solution for the active shading screens similar to those used in
Al Bahar Towers in Abu Dhabi (section 3). We continue in
section 4 with the design a superstable tensegrity structure,
which mimics a Venetian blind, and provides support for
wind-stable slats. Future perspective of the present study are
drawn in section 5, while concluding remarks are presented in
section 6.

2. Actuation of tensegrity lattices

2.1. Morphing lattices

Let us examine the motion of the elementary truss lattice
shown in figure 1. The elongation rate of the mth element
connecting nodes i and j is given by:

= - ⋅  u u ae , 1m j i m( ) ( )

where am is the unit vector parallel to the element at the
current time t (pointing towards node j);  u uandi j are the
velocity vectors of the nodes i and j, respectively; and ℓm is
the length of the element at time t. We assume that the lattice
has N nodes and M members.

On introducing an arbitrary Cartesian frame, we let xin¯
denote the Cartesian components of node i in correspondence
with the unstressed (or natural) configuration of the lattice,
and let uin denote the Cartesian components of the displace-
ment vector of the same node =n 1, 2, 3 .( ) Making use of
the dot notation for time derivatives, we collect the Cartesian
components of the velocity vectors of the different nodes into
the following array with 3N entries

T
= ¼      u u u u u u u , 2N N N1 1 11 2 3 1 2 3[ ] ( )

T denoting the transposition symbol. Similarly, we collect the
elongation rates of all lattice members into the following array
with M entries

T
= ¼  e e e . 3M1[ ] ( )

It is an easy task to write the compatibility equations (1)
in matrix form, obtaining

= u eC , 4( )

Figure 1. Elementary truss lattice.
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where C denotes the ´M N3 compatibility matrix with
current entry equal to ¶ ¶ℓ u ,m in and ℓm is computed as follows

å= + - +
=

⎡⎣ ⎤⎦ℓ x u x u . 5m
n

j j i i
1

3 2

n n n n( )¯ ( ¯ ) ( )

We now assume that a given number P of velocity
components are forced to be zero, due to the presence of
externals constrains limiting the possibilities of motion of the
lattice. By suitably sorting the velocity vector u, we can
rewrite the matrix equation (4) as

=



 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥C C

u

u
e, 61 2

1

2

[ ] ( )

where u1 is the array with Q=(3N-P) entries that collects the
unconstrained velocity components; u2 is the P-dimensional
array collecting the nodal velocity components constrained to
zero; C1 is a ´M Q submatrix of C; and C2 is the
complementary ´M P submatrix of C. In minimal coordi-
nates, the compatibility equations of the constrained lattice
are then written as

= q eB 7( )

with = CB 1 (instantaneous kinematic matrix of the lattice
[24]), and = q u1.

We say that the lattice is morphing [25], if it follows

= =r M Q 8( )

r denoting the rank of the kinematic matrix B. Under the
assumption (8), the system of compatibility equation (6) has
unique solution Îq Q for any given Îe ,M  denoting
the set of real numbers. As a consequence, in a morphing
lattice, one can produce the motion of the structure by
actuating a single element, i.e., by prescribing that a single
entry of e is nonzero. Such a result implies the actuation of
morphing lattices requires minimal storage of internal energy
[25]. Given an ‘actuation’ history = e e,¯ the positions of the
vertices of a morphing lattice at the current time t are
computed from the integral equation

ò ò= = = - q q et tBd    d 9
t t

0 0

1 ¯ ( )

-B 1 denoting the inverse of the kinematic matrix B in
correspondence with the current configuration of the lattice,
which exists and is unique under the assumption (8).

Assuming the action of quasi-stating loading and making
use of the principle of virtual work, it is an easy task to obtain
the following expression of the equilibrium problem of the
lattice [9, 25]

=At f , 10( )

where T=A B is the instantaneous static (or equilibrium)
matrix of the lattice; Ît M is the array collecting the axial
forces carried the lattice elements (or bar tensions [24]), and

Îf Q is the array of the active nodal forces. It follows from
(7) that a morphing lattice is statically and kinematically
determinate (or isostatic) [24]. It is worth remarking that we
can design structures that can change their shape (i.e., have
morphing abilities, in a generalized sense) by controlling
strings that are not statically determinate. The example
presented in section 4 shows that, in a statically and
kinematically indeterminate structure, it is possible to
produce motions that preserve the rigidity of the compressed
members and at the same time keep the structure stable
against undesired mechanisms by the suitable pre-tensioning
of the strings. The whole philosophy of tensegrity is
largely based on such a self-stress concept [9] (see also
section 2.3).

We now get back to the lattice structure in figure 1,
assuming that nodes 1 and 2 are constrained to move along
the lines 1-4 and 2-4, respectively, and that node 4 is con-
strained to move along the x3-axis (refer to supplementary
material for additional details). We also suppose that the
nodes of such a structure have the following position vectors
ni =i 1, .. , 4( ) in correspondence with the open config-
uration of the lattice (figure 2)

= =

=
-

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

n n

n n

m m

m m

0.125
0.057
0.045

,
3.875
0.057
0.045

,

2.000
0.738
0.262

,
2.000
1.000
0.968

. 11

1 2

3 4 ( )

Under such assumptions, it is not difficult to show that
the structure in figure 1 is morphing and can be controlled by
actuating only the string 1-2, that is, prescribing nonzero
elongation rate in such an element, and zero elongation rates
in all the remaining elements. This actuation mechanism
leaves unchanged the lengths of the edges of the triangles 1-3-
4 and 2-3-4, which therefore move rigidly over time
(figure 2).

Figure 2. Motion produced by the actuation of the string 1-2: (a) string 1-2 unstretched; (b) string 1-2 stretched to 6.25%.
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2.2. Tangent stiffness matrix and stability

A lattice is said to admit mechanisms at the current time t, if
there exist sets of nodal velocities qM at that time that do not
produce elongation rates in any lattice member =e 0 .( ) Such
a definition trivially implies that the kinematic matrix of the
lattice B has nonempty null space, i.e. it results in

<r Q. 12( )

Concerning the constitutive response of the lattice
members, we hereafter restrict our attention to truss lattices
whose members can be described as linear elastic springs,
such that the law relating the axial force carried by the generic
member to the member length can be written as

= - = ¼t k ℓ ℓ m M, 1, , . 13m m m m( )¯ ( )

In equation (13), ℓm̄ denotes the rest-length (or natural
length) of the member, i.e., its length in the unstressed con-
figuration of the lattice. In the same equation, km denotes the
axial stiffness of the member. It is worth noting that the
constitutive assumption (13) is linear form the material point
of view, and nonlinear from the geometrical point of view (St
Venant–Kirchhoff model) [29]. When the generic member is
made of a homogeneous material with Young modulus E ;m its
cross-section has constant profile with area A ;m and the
change in the cross-section area induced by the axial
stretching of the member can be neglected, we write

=k E A ℓm m m m̄.
We now substitute equation (13) into equation (10) and

recall that the current entry of the equilibrium matrix is equal
to ¶ ¶ℓ u ,m in obtaining the following expression of the generic
equilibrium equation of the lattice

å -
¶
¶

=
=

k ℓ ℓ
ℓ

q
f . 14

m

M

m m m
m

r
r

1
( )¯ ( )

By taking time derivatives of both sides of equation (14),
we get to the incremental elastic problem of the lattice into the
following form

= K q f, 15T ( )

where KT is the tangent stiffness matrix given by

= +K K K 16T M G ( )

with

=
¶
¶

¶
¶

=
¶
¶ ¶

= ¼

K k
ℓ

q

ℓ

q

K t
ℓ

q q
r s Q

,

, 1, , . 17

M m
m

r

m

s

G m
m

r s

2

rs

rs ( ) ( )

In equation (17), KM is known as the material stiffness
matrix of the lattice, while KG is known as the geometric
stiffness matrix. Equation (17)1 highlights that KM depends
on to the material stiffness coefficients ¼k k k, , , M1 2( ) and the
cosine directors of the member axes (¶

¶
ℓ

q
m

r
for = ¼m M1, ;

= ¼r Q1, , .) Equation (17)2 instead reveals that KG

depends on the tensions acting in the current configurations of
the lattice members ¼t t t, , , ,M1 2( ) and the changes in the

cosine directors of the member axes (i.e., the quantities ¶
¶ ¶

,ℓ

q q
m

r s

2

for = ¼ = ¼m M r s Q1, ; , 1, , .) It is easy to realize that
KG can be neglected when the structure is under zero member
tensions, and/or the member lengths vary linearly with the
nodal displacements q (e.g., in the case of infinitesimally-
small deformations). Upon looking at the expression of KM

given by (17)1, it is also easy to recognize that the material
stiffness matrix can be written as

T= ¼K A Ak k kdiag , , , 18M M1 2( ) ( )

which implies that its null space coincides with that of the

kinematic matrix T=B A (see also [26, 27]). Therefore, a
zero-material-stiffness mode, defined as a virtual displace-
ment uM such that it results =K u 0,M M has the same shape
as a mechanism of the lattice, coinciding with a mechanism
qM multiplied by an infinitesimal time interval. For the sake of
simplicity, hereafter we will use the term mechanism to
denote both a velocity vector qM that lies in the null space of
the kinematic matrix, and a zero-material-stiffness mode uM .

A configuration of a lattice is said to be stable if the
tangent stiffness matrix KT is positive-definite in corre-
spondence with such a configuration, i.e., it results

⋅ >K u u 0, 19T ( )

where u is an arbitrary virtual displacement from the analyzed
configuration (i.e., a virtual velocity q multiplied by an
infinitesimal time interval) [26–29]. A zero-stiffness mode is
instead defined as a virtual displacement u such that the right-
hand side of (19) is zero.

The lattice is said to be in a prestress-stable configura-
tion, if it obeys

⋅ >K u u 0 20G M M ( )

in correspondence with each nontrivial mechanism ¹u 0M( )
[26–29]. It is clear that, in such a configuration, the lattice
mechanisms are not zero-stiffness modes, due to the action of
stabilizing member tensions.

Finally, the lattice is said to be superstable if it is pres-
tress-stable and, in addition, KG is nonnegative in corre-
spondence with all the virtual displacements that are not
mechanisms. As a consequence of such a definition, a
superstable lattice is stable along all the possible virtual dis-
placements from the current configuration, independently of
prestress and material properties [28]. The lattice in figure 1,
which does not admit mechanisms (being statically determi-
nate), is superstable and exhibits the kinematic matrix, pro-
vided as supplementary material.

Figure 3. Elementary super-stable lattice.
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2.3. Superstable lattices with kinematic and static
indeterminacies

According to condition (8), morphing lattices do not admit
states of self-stress, i.e., nontrivial solutions ¹t 0s of
the equilibrium problem (10) under zero external forces

=f 0 .( ) Lattices that instead admit such states of bar tensions
are said prestressable [9, 26]. Trivially, the equilibrium
matrix A of a prestressable lattice has nonempty null space,

i.e., it obeys

<r M. 21( )

Let us collect the free components of an arbitrary virtual
displacement of the lattice in figure 3 into the following

vector with two entries T=u u u, ,1 2[ ] with u1 and u2

respectively denoting the horizontal and vertical displacement
components of node 1. Assuming that the two members of the

Figure 4. (a) Frontal view of the actuation mechanism of mashrabiya shading screens with tensegrity architecture available at stacks.iop.org/
SMS/24/105032/mmedia. (b) 3D view of the actuation mechanism of mashrabiya shading screens with tensegrity architecture (actuation
movie provided as supplementary material).
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lattice in figure 3 show equal axial stiffness k, length ℓ and
rest-length ℓ ,¯ we obtain

= = -
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

K Kk k ℓ ℓ

ℓ

2 0
0 0

,

0 0

0
2 , 22M G ( )¯ ( )

= + = -

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

K K K

k

k ℓ ℓ

ℓ

2 0

0
2 . 23T M G ( )¯ ( )

An arbitrary mechanism of the lattice under examination

is therefore of the following kind: Td=u 0, ,M [ ] for arbitrary
d, and it obeys

d
⋅ =

-
> >K u u

k ℓ ℓ

ℓ
ℓ ℓ

2  
0, for . 24G M M

2 ( )¯ ¯ ( )

Condition (23) implies that the lattice in figure 3 exhibits
positive geometric stiffness when the bars 1-2 and 1-3 are
under nonzero pre-tension forces = -t k ℓ ℓ .( ¯) In addition, it

is possible to verify that it results in

⋅ =K u u 0 25G N N ( )

for any Th=u , 0N [ ] that is not a mechanism. In other
words, initial tensions in the bars 1-2 and 1-3 stabilize the lattice
against vertical deflections d of the central node 1 (lattice
mechanisms), and induce zero geometric stiffness against virtual
displacements that are not mechanisms (i.e., the lattice under
consideration, which is trivially both kinematically and statically
indeterminate of degree one, is superstable). The use of a
superstable lattice for the actuation of a shading façade is
illustrated in section 4.

We end the present section by noting that the presented
results on the morphing and stability properties of tensegrity
lattices, which are known in the literature, are aimed at
demonstrating that such systems are well suited to the design
of stable structures that can be actuated with limited storage
of internal energy. The following sections illustrate practical
uses of such features in designing innovative structures for
kinetic facades of smart buildings.

3. ‘Mashrabiya’ sun screens with tensegrity
architecture

The morphing abilities of the elementary lattice structure
illustrated in figure 1 can be exploited to design a tensegrity
solution for the actuated façade panels of the Al Bahar
Towers in Abu Dhabi. Designed recently by Aedas Archi-
tects, using a different technology, such panels are intended to
mimic the shading lattice-work ‘mashrabiya’ [18].

Let us assume that the x3-axis of the elementary lattice in
figure 1 is perpendicular to the building façade to be shaded,
and that such a façade is placed at the node = -x 2.00 m.3

By inserting shading panels in correspondence with the tri-
angular facets 1-4-3 and 2-4-3 of the elementary lattice, and
replicating such a structure over space as shown in figure 4,
we can form mashrabiya-like shading screens that can be
opened and closed by actuating a single string for each ele-
mentary module.

The shading mechanism played by the generic ‘eye’ of
such screens is graphically illustrated in figures 4(a)–(b). It
assumes that the actuated strings are unstretched in corre-
spondence with the open configuration of the eye, and subject
to an axial strain  = 6.25%¯ in correspondence with the fully-
closed configuration. Such a mechanism has been numerically
studied by integrating equation (8) through an explicit fourth-
order Runge–Kutta scheme with step size eD = 0.01%. An
animation of the mechanism in figure 4 is given in the sup-
plementary material. The force vectors depicted in figure 4 are
proportional to the amplitude of the elongations of the actu-
ated strings.

Figure 5. Elementary Venetian blind lattice in 2D.
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4. Venetian blind tensegrity screens

Figure 5 shows a planar lattice that mimics a Venetian blind.
It is composed of a rigid members (thick black lines), and a
chain-string (thin green line), which is pin-jointed to the rigid
member, and is externally constrained by two fixed hinges.
The rigid member corresponds to a slat (e.g. equipped with a
PV module [12]). We insert internal hinges at the mid-spans
of the segments composing the chain-string to account for
zero bending rigidity of such members, which are transver-
sally unstable in absence of prestress (see figure 3). It is not
difficult to prove that the lattice in figure 5 is kinematically
indeterminate of degree three, and statically indeterminate of
degree two. On using the notation shown in figure 5, we
characterize the mechanisms of such a structure through three
displacement parameters d ,1 d ,2 and d ,3 and its state of pres-
tress through the tensile forces t1 and t ,2 which respectively
run along the external and internal branches of the chain-
string (figure 5).

Let us order the free components of an arbitrary virtual
displacement of the lattice of figure 5 into the following

vector with eight entries T= ¼u u u u, , , ,1 1 4   4  1 2 1 2[ ] with ui1
and ui2

respectively denoting the horizontal and vertical
displacement components of node i. Assuming that all the
string segments show equal axial stiffness k, we obtain the
material and geometric stiffness matrices of such a structure
as follows
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where = +s h ℓ .2 2 An inspection of equations (26) and (27)
reveals that the structure in figure 6 is superstable when
nonzero tensions t1 and t2 are applied to the external and
internal branches of the chain-string, Such forces are indeed
able to ‘stabilize’ the mechanisms depicted in figure 5, in such
a way that it results ⋅ >K u u 0G M M in correspondence with
all such mechanisms =M 1, 2, 3 .( ) In particular, one can
tailor the state of prestress of the structure (i.e., the values of t1
and t2 under zero external forces) to the expected values of the
horizontal forces that the structure is expected to carry (e.g.,
to the maximum wind-pressure).

A first actuation strategy of the lattice under examination
is obtained by applying elongation rates  ē with opposite
signs to the diagonal elements 1-2-5 and 1-3-6 of the chain-
string, and setting to zero the elongation rates of all the
remaining string segments. Such an elongation rate vector ē
produces a nodal velocity vector q associated with an infini-
tesimally small rotation of the slat 1-7. By integrating the
vector q over time, over the current configuration of the lat-

tice, we obtain the motion ò= q q td ,
t

0
which is associated

with a finite rotation of the slat 1-7. The actuation mechan-
isms under examination can be enforced by letting the nodes
5 and 6 to work as fixed pulleys (or drums) driven by an
external motor, in such a way that the length decrease (or
increase) of segments 1-2-5 of the chain-string is balanced by
a length increase (or decrease) of segments 6-3-1. In such a
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case, the chain-string is composed of a continuous cable with
constant length. A three-dimensional version of the actuation
strategy under examination is shown in figure 6, with refer-
ence to a three-slat Venetian blind system obtained by piling
up three slat elements. Figure 6 illustrates that such an
actuation mechanism leads to design wind-stable blinds with
orientable slats, which can be controlled by a motor con-
nected to a single pulley for each chain-string. It requires
limited contact surfaces and friction effects (between the
chain and the grooves of the pulleys). The force vectors
depicted in figure 6 are proportional to the amplitude of the
forces carried by the strings in correspondence with the
examined configurations, assuming equal force densities in
the top diagonal element of the external branch of the chain
string, and in the internal branch of the chain string.

A slat-rail mechanism can be instead employed to pro-
duce the vertical deployment (or vertical collapse) of the
blind, which may be required, e.g., to operate maintenance
operations on the façade served by the structure. Such a
mechanism is produced by releasing the pre-tension t applied
to the chain string, applying vertical displacements to internal
extremities of the slats along guiding rails, and applying a
final rotation to the packed slats (figure 7). It is worth
observing that such a mechanism is necessary only in
occurrences of singular maintenance interventions.

5. Future perspectives

The use of tensegrity structures for the construction of
renewable energy supplies requires attention, because of the
special ability of such structures to convert the strain energy
stored in cables into electrical energy [9], and their easy
integration with solar and/or acoustical panels, which can be
identified with rigid members of the structure. It is worth
noting that the operation of the ‘mashrabiya’ shading screens
presented in section 3 can be powered by the renewable
energy derived from photovoltaic panels and/or microeolic

power generators. Their aim is to markedly mitigate air
conditioning consumption resulting from direct exposure to
solar rays, reducing carbon dioxide emissions. The morphing
screen analyzed in section 3 requires minimal storage of
internal energy [25], and reduced operation costs (because of
the lighter friction between parts and reduced mass) com-
pared, for instance, to the piston-actuated technology adopted
by Aedas Architects [18]. Similarly, the wind-stable Venetian
blind screens analyzed in section 4 require light friction
effects and reduced contact surface areas when operating in
sun-tracking mode compared, e.g., to more conventional slat-
rail mechanisms [15–17]. We base our claims on the eco-
nomical convenience of the above structures, over more
conventional renewable energy supplies, on qualitative but
solid arguments, that are inspired by the lightweight nature,
reduced friction effects between parts (concentrated at the
nodes), and the morphing abilities of tensegrity systems.

Future extensions of the present study will deal with the
design of bioinspired skins of energy-efficient buildings [30–
32], which will combine morphing abilities with prestress-
stability. Such structures will be able to orient solar panels
toward the sun, to adjust the thickness of ventilated walls,
and/or to form innovative microeolic power generators
(figure 8). They will assemble tensegrity units of various
shapes and materials. Each unit will be equipped with sensors
and actuators in correspondence with selected elements,
which will be connected by wires or wireless devices to a data
transfer system. It will operate in two basic regimes: energy
harvesting mode (EH mode), and control mode (CT mode). In
the EH mode, the elongation of the cables will rotate an
external generator, creating power to be used for the operation
of the building. In the CT mode, an external motor will adjust
the tension of the cables and/or the length or the orientation
of the rigid elements, by controlling the actuators inserted into
the unit (figure 8). The results of the present study will serve
as seminal work for the design of the actuation mechanisms of
such structures, and the analysis of their stability. We plan to
fabricate reduced scale models of morphing and stable skins

Figure 6. Sun-tracking actuation mechanism of a Venetian blind lattice with tensegrity architecture.
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of smart buildings via additive manufacturing. An experi-
mental validation phase will investigate the mechanical
response and the control of such models. It will lead to an
evaluation of the scalability of the proposed solutions and the
associated economic benefits.

Additional future research lines may regard the optimal
design of polyhedral envelopes [9, 33] of energy-efficient
buildings, to be carried out by combining parametric design
approaches with energy-optimization techniques.

6. Concluding remarks

We have presented an application of morphing and super-
stable lattices with tensegrity architecture to design adaptable
shading screens for energy efficient buildings. We have
designed ‘origami’ screens exhibiting morphing ‘eyes’, which
are opened and closed by controlling the elongation in a
limited number of cables. We have also designed a super-
stable tensegrity structure that replicates a wind-stable
Venetian blind. All the tensegrity structures analyzed in the
present work offer portable applications for small spans, and
can be assembled for prefabricated component parts in the

case of large spans. Future directions of the study presented in
this work are drawn in section 5.
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