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A B S T R A C T

This work studies the mechanics of novel origami solar modules with tensegrity architecture for integration
in the dynamic solar façades of energy-efficient buildings. The analyzed modules are deployed by adjusting
the rest lengths of cables attached to given nodes, so as to form a tensegrity origami. Their stiffness is tuned
by adjusting the pretension of the actuation cables, when the deployment motion is locked. The insertion of
solar thermal or photovoltaic panels into the rigid elements of the module makes it possible to form positive-
energy solar systems. The work studies the kinematics and the mechanics of the investigated structures through
analytic and numerical methods. Two folding motions are examined: to open and close the modules and to
track sun rays. The rapid prototyping of a physical mock-up permits an experimental validation of the force–
displacement response in a given configuration of the sun-tracking motion. A procedure for the computation
of the fundamental vibration modes and vibration frequencies of a quadrangular solar module is also given,
and the expected response of the system under wind loading is outlined.
1. Introduction

The energy efficiency of ‘green’ buildings can be achieved by both
minimizing heat and air conditioning consumption and by using en-
ergy harvesting techniques from renewable sources (solar, wind, and
geothermal) (Çiner and Dogan-Saglamtimur, 2019; Chen et al., 2022;
Ala-Juusela et al., 2021; Awadh, 2017). The building’s envelope plays
a fundamental role in determining its response to periodic and excep-
tional modifications to the surrounding environment. Since most build-
ings are taller than they are wide, architects and engineers pay special
attention to the design of vertical façades that combine eye-catching
shapes with energy harvesting capabilities and environmental bene-
fits (Attoye et al., 2017; Li and Cui, 2021; Bakhshoodeh et al., 2022;
Mir, 2011). Solar façades often form the envelope to environment-
responsive buildings (Attoye et al., 2017; Li and Cui, 2021). A photo-
voltaic (PV) solar façade or shading device uses conventional PV cells
and/or thin-film solar materials to form architectural modules of vari-
ous textures, translucency, and colors (refer, e.g., to façades composed
of dye-sensitized solar cells) that transform solar irradiation into elec-
tricity (Attoye et al., 2017). Rooftop PV systems and solar-thermal
modules (Li and Cui, 2021) are also employed. The wide category of
Building Integrated Photovoltaics (BIPV) (Attoye et al., 2017; Vassil-
iades et al., 2022) encompasses several solutions for integrating PV
cells into the envelope of energy efficient buildings (nearly zero or
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positive-energy buildings, see Ala-Juusela et al. (2021) for definitions
and concepts).

Origami systems are deployable thin-walled structures that can
change their shape by folding and unfolding. Due to their highly
adaptive character, such systems have been extensively investigated
recently for a variety of uses (see, e.g., the comprehensive review
presented in Fonseca et al. (2022), and the references). Their methods
of forming deployable membranes (Miura, 1985; Seffen, 2012), mul-
tistable structures (Li and Pellegrino, 2020; Lu et al., 2023a), systems
with high packing capacity (Lu et al., 2023b) and mechanical meta-
materials combined with on-demand deployability and collapsibility
merit attention (Schenk and Guest, 2013; Zhai et al., 2018; Pratapa
et al., 2018). Origami-inspired systems find applications in robotics,
foldable architecture, medicine, and engineering (Fonseca et al., 2022;
Miura, 1985; Salazar et al., 2017; Liu et al., 2023). The dynamic curtain
walls that form the piston-activated and umbrella-shaped sunscreens
of the Al Bahar towers in Abu Dhabi are well-known examples of
origami-inspired designs of building façades (Armstrong et al., 2013;
Karanouh and Kerber, 2015). Each screen is a triangulated origami
structure that can fold perpendicularly to the building façades (the
shading wall is two meters from the building façade). Building façades
based on kaleidocycle origami rings have been proposed and optimized
to enhance the natural lighting in the interior of a building (Elghazi
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Fig. 1. Frontal views of quadrilateral and octagonal versions of the solar eye module, with illustration of the primary folding motion.
et al., 2014; Wagdy et al., 2015). Pesenti et al. (2015) analyzed several
different origami patterns, comparing their potential for applications on
adaptive façades with shape memory alloy (SMA) activation. Andreozzi
et al. (2016) conducted a study on the level of lighting indoors due to
different degrees of deployment of an adaptive origami façade. Chen
et al. (2019) have investigated the use of shape memory polymers to
form origami sheets endowed with deployable solar panels. Recently,
lightweight and low-energy consumption tensegrity redesigns of the
origami façades of the Al Bahar towers, employing stretching and
contraction of elastic cables by electro-mechanical actuators to activate
the opening–closing mechanism of origami sunscreens have been for-
mulated (Fraternali et al., 2015b; Babilio et al., 2019; Miranda et al.,
2020). Tensegrity structures have found exciting applications to form
deployable systems, such as, for example, robots (Karnan et al., 2017),
bridges and mats (Tibert and Pellegrino, 2003). As general references,
one can see the admirable textbooks by De Oliveira and Skelton (2009)
and Miura and Pellegrino (2020).

This work studies the mechanics of novel origami modules using
tensegrity architecture, shaped like ‘solar eyes’. Such systems can be
employed to tessellate curtain walls, glazing panels, windows, sun-
screens, rooftops, and/or active building skins that show enhanced
solar energy harvesting capacity. The analyzed solar eyes are equipped
with PV or solar-thermal (T) panels that permit the production of
electrical energy or air/water heating for the building. The solar eye
module may have a generic polygonal shape and can exhibit two
different folding motions or deformation histories. A primary folding
motion of the solar module is similar to that analyzed in Fraternali
et al. (2015b), Babilio et al. (2019), Miranda et al. (2020), but it is ac-
tivated by a completely different cable mechanism, which has led us to
produce an unprecedented concept: a tensegrity origami with arbitrary
polygonal shape. A secondary folding motion is superimposed on the
primary motion to endow the module with sun-tracking capacity and to
optimize the diffusion of natural light into the interior of the building.
Such a motion was not included in the solar modules with fixed polyg-
onal geometry studied in Fraternali et al. (2015b), Babilio et al. (2019),
Miranda et al. (2020). Both folding motions are activated by changing
the rest lengths of the cables forming the module. These lengths can
be controlled either manually (by cranks) or through low-consumption
electric motor winches. The module entails considerable economic
advantages compared to the modules with electro-mechanical actuators
presented in Miranda et al. (2020), making the BIPV systems analyzed
2

in this work particularly attractive from an energy point of view and po-
tentially of positive energy type (Ala-Juusela et al., 2021). The structure
of the paper is as follows. We begin by presenting the conceptual design
of a solar eye with an arbitrary polygonal geometry (Section 2). Next,
we illustrate the special case of a quadrilateral module in Section 3 by
describing the unit cell structure, the primary and secondary folding
motions, and the rapid prototyping techniques employed to fabricate a
physical mock-up (see also Supplementary Materials). Sections 4 and
5 illustrate the kinematics of the folding motions of the solar eye,
while Section 6 studies the stiffness properties of the system when
the folding motions are locked. We end in Section 7 by describing a
procedure for the computation of the fundamental vibration modes and
vibration frequencies of a quadrangular solar eye. This procedure leads
us to identify the possible types of response of the system under wind
loading. Finally, concluding remarks and directions for future work are
presented in Section 8.

2. Design principles of tensegrity-origami modules

The solar modules analyzed in this work exhibit a projection with
a generic polygonal shape on the plane parallel to the building façade.
We denote such a projection, in correspondence to the unfolded
(‘closed’) configuration of the system, with the name ‘base polygon’,
and let 𝑝 denote the number of sides of this polygon. As shown in
Fig. 1, the solar module is formed by the collection of 𝑝, foldable
‘macro-triangles,’ which are delimited by the segments joining the
vertices of the base polygon with its center. In turn, each macro-
triangle is composed of two elementary ‘micro-triangles’ housing PV
or 𝑇 panels, which fold out of the plane when opening and closing
the screen (‘sunscreen panels’). The activation cables governing this
(‘primary’) folding motion connect the vertices of the folded macro-
triangles to the center (opening cables) and to the corners (closing
cables) of the base polygon. These cables are joined to a ‘bus cable’
running along the perimeter of the base polygon, so that the opening
and closing mechanisms of the different micro-triangles can be operated
simultaneously (refer to Section 3 for more details). Solar façades
that tessellate origami modules with different geometries are shown
in Fig. 2.

The folding motion/deformation process of the solar module is
obtained by simply adjusting the rest lengths of the cables without
stretching them, as opposed to the module studied in Miranda et al.
(2020) that is folded by elastically deforming the perimeter cables.
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Fig. 2. Partially closed (left) and partially open (right) configurations of origami solar facades with different textures. The textures of the two top panels are composed of modules
with identical shapes. Those of the two bottom panels are instead formed by composite assemblies of modules with different polygonal shapes.
The change of the rest length can be obtained by using low energy-
consumption electric winches or motors or manually through crank
winches (Fig. 1). When the rest length of the ‘primary motion acti-
vation cables’ is kept fixed by locking the activation winches/motors,
the system is in a stable configuration, since the perturbation of this
configuration is contrasted by the elastic and prestress-induced (or ‘ge-
ometric’) stiffness of the cables (Fraternali et al., 2015b). On the other
hand, when the change of the rest lengths of the cables is permitted by
unlocking the activation winches/motors, the unit exhibits a rigid-body
folding (or ‘opening’) motion out of plane (cf. Fig. 1).

The sun-tracking ability of the module is made possible by in-
troducing a secondary folding motion of the micro-triangles plates,
which allows these elements to rotate about the ‘diagonal’ edges (or
‘legs’) connecting the perimeter vertices with the center of the unit
(see Fig. 3). The variation of the dihedral angle 𝜃 comprised between
the plane of the supporting frame of the generic micro-triangle (‘base
plane’) and the plane of the rotated micro-triangle plate (‘folded plane’)
is guided by two bars forming a scissor-type tensegrity structure con-
necting these planes (the term ‘scissor’ refers to the configuration of
3

the structure in the almost closed configuration, see Fig. 3). Each bar
has one extremity connected to a ball joint attached to the folded
plane, which is placed at a distance 𝑐 from the diagonal edge of the
micro-triangle (Fig. 3). The other extremity of the bar is attached to a
guiding cable lying on the base plane. One of the two bars of the scissor
structure is attached to an opening cable at its bottom extremity (the
red cable in Fig. 3), while the other bar is connected to a closing cable
(the brown cable in Fig. 3). These two cables are joined to a looped bus
cable (the green cable in Fig. 3), in such a way that the opening and
closing motion of the micro-triangle can be actuated through a unique
controller.

Hereafter, we refer to the cables shown in Fig. 3 as ‘secondary
motion activation cables’. It is worth noting that the two bars of the
scissor tensegrity point to different edges of the folded micro-triangle,
which are opposite the diagonal edge. Such bars exhibit symmetrical
motions with respect to the central axis of the structure when the micro-
triangle is folded, being placed parallel to the supporting frame in the
unfolded (or closed) configuration and orthogonal to such a frame in
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Fig. 3. Illustration of the secondary folding motion of a micro-triangle.
Fig. 4. Deformation of the base cable of the scissor tensegrity under the action of
external forces.

the fully folded (or open) configuration (see Fig. 3). The secondary
folding motion is controlled by changing the rest lengths of the base
cables of the scissor tensegrity upon again using energy-consumption
electric winches or motors or crank winches, as in the case of the pri-
mary motion. When the actuation winch/motor is locked and a suitable
pre-tension is applied to the base cables, the secondary folding motion
is stabilized by forcing the rest length of such members to be fixed, so
that any perturbations of the folded configuration are contrasted by the
material and geometric stiffness of the cables (Fraternali et al., 2015b).
Under the action of external forces (e.g., wind forces), the bars forming
the scissor tensegrities will bend the secondary cables of the stabilized
system to create a tensegrity equilibrium configuration (see Fig. 4 and
Section 6.2).

3. The special case of a quadrilateral module

Let us now focus on the special case of a quadrilateral solar eye
module, which is composed of four macro-triangles and eight micro-
triangles, with the latter hosting PV and/or 𝑇 panels (the black ele-
ments in the illustrative Fig. 5). The solutions and techniques presented
with reference to this module can be easily generalized to modules with
different polygonal geometries.

The opening and closing cables governing the primary folding mo-
tion of the quadrilateral module (i.e., the primary activation cables)
run through guiding pulleys that are placed in the four corners of the
base perimeter, in the center of the module, and in correspondence
to the sliding blocks along the diagonal edges (Fig. 6). Each sliding
4

Fig. 5. Illustrative isometric view of the quadrilateral module.

block runs along a diagonal track and is connected to an opening and
a closing cable that activate the primary folding motion of two micro-
triangles, placed on opposite sides with respect to a diagonal segment.
Overall, we have a total of four sets of opening and closing cables
that activate the primary folding motion. All such activation cables are
joined to a unique bus cable running along the base perimeter, which is
in turn connected to a winch/motor, so that the primary folding motion
can be activated simultaneously in correspondence to all the macro-
triangles of the unit. The activation of the secondary folding motion is
as described in the previous section.

A demonstrative mock-up of a quadrilateral module was assembled
in the Rapid Prototyping Laboratory (RPL) of the University of Salerno
using ordinary 3D printers, metallic parts, DC motors, and motor con-
trollers (Fig. 7). The mock-up is contained in square with a 290.22-mm
edge and is composed of eight right micro-triangles with a hypotenuse
of 183 mm and maximum height above the base supporting frame
of 89.2 mm. The reader is referred to Supplementary Materials for a
detailed description of the operation of the physical mock-up.

4. Kinematics of the primary folding motion

Let  denote the generic macro-triangle composing the unit cell
of a solar module with generic polygonal shape, which we suppose
to be isosceles with apex angle 0 < 𝛼 < 𝜋 (Fig. 8). The analogous
module of the systems studied in Miranda et al. (2020) shows a fixed
value of such an angle, which is equal to 2𝜋∕3. We take the unfolded
(flat) configuration of such an element as reference, and we introduce
a Cartesian frame with origin at node 0 in Fig. 8 and unit vectors
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Fig. 6. Opening–closing mechanism of the primary folding motion of a quadrilateral module obtained by changing the rest length of the activation cables.
Fig. 7. (a) 3D view of the fabricated mock-up of a quadrilateral module. (b–f) Frames extracted from videos of the opening and closing mechanisms of the primary (b–c) and the
secondary (d–f) folding motions (see Movies S1–S3 of Supplementary Materials).
{𝐞1, 𝐞2, 𝐞3}, such that 𝐞1 is aligned with a diagonal edge (or leg) of  ; 𝐞2
is orthogonal to 𝐞1 and lies in the plane of the unfolded configuration;
and 𝐞3 is orthogonal to such a plane (Fig. 8).

We study the primary folding deformation (or quasi-static motion)
of  under the following displacement constraints: node 0 is constrained
to move along the positive 𝐞 axis; node 1 is constrained to move along
5
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the 0–1 segment of the unfolded configuration; node 2 is constrained
to move in the plane formed by 𝐞3 and the bisector of the angle
𝛼 encompassed by the macro-triangle in the unfolded configuration,
with negative displacement component along the 𝐞3 axis; and the
displacement vector of node 3 is obtained by rotating that of node 1
by the angle 𝛼 about 𝐞 . In addition, we restrict our attention to a rigid
3
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Fig. 8. Reference configuration of the generic macro triangle  ..

origami motion by complementing the above displacement constraints
with the following rigidity constraints:

𝐿0𝑖 = 𝓁0𝑖 , 𝑖 = 1, 2, 3 (1)

𝐿2𝑗 = 𝓁2𝑗 , 𝑗 = 1 or 𝑗 = 3 (2)

𝐿𝑖𝑗 and 𝓁𝑖𝑗 being the Euclidean distances between two nodes 𝑖 and 𝑗 in
the reference configuration and the folded configuration, respectively.
Such quantities are computed as follows:

𝐿𝑖𝑗 =
√

(

𝐗𝑖 − 𝐗𝑗
)

⋅
(

𝐗𝑖 − 𝐗𝑗
)

, (3)

𝓁𝑖𝑗 =
√

(

𝐱𝑖 − 𝐱𝑗
)

⋅
(

𝐱𝑖 − 𝐱𝑗
)

, (4)

where 𝐗𝑖 and 𝐱𝑖 are the position vectors of the generic node 𝑖 ∈
{0, 1, 2, 3} in correspondence to the reference configuration and the
folded configuration, respectively. It is easily recognized that it results
in 𝐿01 = 𝐿03 = 𝐿, 𝐿21 = 𝐿23 = 𝐿 sin 𝛼∕2, and 𝐿02 = 𝐿 cos 𝛼∕2 (Fig. 8).

Let now 𝐑𝛼 = 𝐑(𝛼) denote the rotation tensor defined as follows:

𝐑(𝛼) ∶= cos 𝛼
(

𝐞1 ⊗ 𝐞1 + 𝐞2 ⊗ 𝐞2
)

+ sin 𝛼
(

𝐞2 ⊗ 𝐞1 − 𝐞1 ⊗ 𝐞2
)

+ 𝐞3 ⊗ 𝐞3 ,
(5)

which rotates the vectors lying in the 𝐞1 − 𝐞2 plane of an angle 𝛼
counterclockwise. It is easily observed that it results in (Fig. 8)

𝐗0 = 𝟎 , (6)

𝐗1 = 𝐿𝐞1 , (7)

𝐗2 = 𝐿 cos 𝛼
2

(

cos 𝛼
2
𝐞1 + sin 𝛼

2
𝐞2
)

, (8)

𝐗3 = 𝐑𝛼𝐗1 , (9)

and that the assumed displacement constraints allow us to write

𝐱0 = 𝐗0 + 𝑎0𝐿𝐞3 , (10)

𝐱1 = 𝐗1 − 𝑎1𝐿𝐞1 , (11)

𝐱2 = 𝐗2 − 𝑎2𝐿
(

cos 𝛼
2
𝐞1 + sin 𝛼

2
𝐞2
)

− 𝑎3𝐿𝐞3 , (12)

𝐱3 = 𝐑𝛼𝐱1 , (13)

where

𝑎 ≥ 0 , 0 ≤ 𝑎 ≤ 1 , 0 ≤ 𝑎 ≤ cos 𝛼 , 𝑎 ≥ 0 . (14)
6

0 1 2 2 3
Fig. 9. (a) Plot of 𝜀max vs. 𝛼. (b) Illustration of the fully folded configuration.

The dimensionless scalar parameters 𝑎𝑖 (𝑖={0,… , 3}), which appear
in Eqs. (10)–(14), are to be determined using the rigidity constraints.
For further use, we set

𝐿13(1 − 𝜀) = 𝓁13 , (15)

where 𝜀 is a non-negative scalar parameter that describes either the
change of the rest length of the closure cable 1–3 of  (deployment
phase) or the opposite of the engineering strain characterizing the
stretching of such a cable (stabilization phase). Upon taking squares of
both sides of Eqs. (1)–(2) and moving all terms to the left side, it is easy
to show that the rigidity constraints can be reduced to the following
system of nonlinear algebraic equations

𝑎20 + 𝑎1
(

𝑎1 − 2
)

= 0 , (16)
(

𝑎0 + 𝑎3
)2 + 𝑎2

(

𝑎2 − 2 cos 𝛼
2

)

= 0 , (17)

𝑎21 + 𝑎22 + 𝑎23 + 𝑎1
(

cos 𝛼 − 2𝑎2 cos
𝛼
2
− 1

)

= 0 . (18)

We add the following equation

𝜀2 + 2
(

𝑎1 − 𝜀
)

− 𝑎21 = 0 , (19)

to Eqs. (16)–(18), which follows from taking squares of both sides of
Eq. (15) and moving all terms to the left side. The Eqs. (16)–(19) admit
eight sets of solutions for the scalar parameters 𝑎𝑖, but only one of such
set of solutions matches the constraints (14), namely

𝑎0 =
√

𝜀 (2 − 𝜀) , (20)

𝑎1 = 𝜀 , (21)

𝑎2 =
𝜀
2

sin 𝛼 + 2 cos 𝛼
2

1 − (1 − 𝜀) sin 𝛼
2

, (22)

𝑎3 =
√

𝜀 (2 − 𝜀) sin 𝛼
2

1 − 𝜀 − sin 𝛼
2

1 − (1 − 𝜀) sin 𝛼
2

. (23)

The maximum value of 𝜀, which we denote 𝜀max, corresponds to
the fully folded configuration of  . Let 𝑎2,max denote the value of 𝑎2
obtained by setting 𝜀 = 𝜀max into Eq. (22). Using the third constraint
(14), we easily obtain

𝑎2,max = cos 𝛼
2
, (24)

which implies, from Eq. (22)

𝜀max = 1 − sin 𝛼
2
. (25)

Fig. 9 shows the plot of the 𝜀max vs. 𝛼 law given by Eqs. (25), while
Fig. 10 shows plots of the solutions (20)–(23), with the 𝑎2 vs. 𝜀 and the
𝑎3 vs. 𝜀 laws determined for selected values of 𝛼. It is worth computing
the limiting values of 𝑎 , 𝑎 and 𝜀 for 𝛼 → 0 and 𝛼 → 𝜋. Using
1 2 max
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Fig. 10. (a) Plots of the displacement parameters 𝑎𝑖 vs. 𝜀, as given by Eqs. (20)–(23). The solid black curve plots 𝑎0 vs. 𝜀; the dash–dotted red line gives 𝑎1 as a function of 𝜀;
the dashed magenta curves and the solid blue curves respectively plot the 𝑎2 vs. 𝜀 and the 𝑎3 vs. 𝜀 laws, which correspond to the following values of 𝛼, from left to right: 4𝜋∕5,
2𝜋∕3, 𝜋∕2, 𝜋∕3, 𝜋∕5, 𝜋∕10. (b) Illustration of the geometric meaning of the 𝑎𝑖 parameters.
Eqs. (20)–(23) and (25), it is easily shown that it results in 𝑎2 → 𝑎1,
𝑎3 → 0, and 𝜀max → 1, for 𝛼 → 0. On the other hand, for 𝛼 → 𝜋, we
obtain 𝑎2 → 0, 𝑎3 → −𝑎0, and 𝜀max → 0.

We conclude this section by observing that we can give a com-
pact expression to the primary folding deformation of a micro-triangle
forming  . Let us examine, e.g., the folding deformation of the

▵
012

micro-triangle by introducing the following 3 × 3 matrices

𝐗̂ =
{

𝐗̂1 − 𝐗̂0 𝐗̂2 − 𝐗̂0 𝐗̂4 − 𝐗̂0
}

,

𝐱̂ =
{

𝐱̂1 − 𝐱̂0 𝐱̂2 − 𝐱̂0 𝐱̂4 − 𝐱̂0
}

,
(26)

where 𝐗̂𝑖 and 𝐱̂𝑖 denote the column vectors collecting the Cartesian
components of the vectors 𝐗𝑖 and 𝐱𝑖 (𝑖 = 0,… , 4), respectively, and
we have set

𝐗4 = 𝐗0 +
(𝐗1 − 𝐗0) × (𝐗2 − 𝐗0)

𝑆
, (27)

𝐱4 = 𝐱0 +
(𝐱1 − 𝐱0) × (𝐱2 − 𝐱0)

𝑠
, (28)

with

𝑆 = ‖(𝐗1 − 𝐗0) × (𝐗2 − 𝐗0)‖ (29)

and

𝑠 = ‖(𝐱1 − 𝐱0) × (𝐱2 − 𝐱0)‖ . (30)

Here, × denotes the symbol of cross product between vectors. It is easily
shown that we can write

𝐱̂𝑖 = 𝐱̂0 + 𝐑̂′(𝐗̂𝑖 − 𝐗̂0) , (𝑖 = 1, 2) (31)

𝐑̂′ being the rotation matrix defined as (Sumner and Popovic, 2004)

𝐑̂′ = 𝐱̂𝐗̂−1 . (32)

Proceeding in the same way, one describes the primary folding
deformation of the second micro-triangle

▵
023 forming  . Fig. 11 shows

two particular folded configurations of such elements. Upon introduc-
ing the second order rotation tensor 𝐑′, which is represented by the
7

Fig. 11. (a) Partially folded (open) configuration of  . (b) Fully folded configuration.

matrix 𝐑̂′ in the Cartesian frame {𝐞1, 𝐞2, 𝐞3}, we can write Eq. (31) into
the following (absolute) vector form:

𝐱𝑖 = 𝐱0 + 𝐑′(𝐗𝑖 − 𝐗0) , (𝑖 = 1, 2) . (33)

5. Kinematics of the secondary folding motion

The secondary folding motion of the generic micro-triangle, say,
e.g., the micro-triangle

▵
023 shown in Fig. 12, carries the position vectors

𝐱𝑖 into new position vectors 𝐲𝑖 (𝑖 = 0, 2, 3), such that

𝐲𝑖 = 𝐑′′𝐱𝑖 , (34)

𝐑′′ denoting the tensor associated with a rotation of an angle 𝜃 about
the axis 𝐱3−𝐱0 (Fig. 12). It is worth noting that 𝐲0 and 𝐲3, respectively,
coincide with 𝐱 and 𝐱 , for any value of 𝜃, while 𝐲 differs from 𝐱 ,
0 3 2 2
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Fig. 12. Geometry of the secondary folding motion of the micro-triangle
▵

023. (a) Global view. (b) Close-up of the folded plate.
for any 𝜃 ≠ 0. We now describe the deformation of the bars forming
the scissor structure, which connects the supporting frame joining the
points 𝐱0, 𝐱2 and 𝐱3 to the folded plate with vertices 𝐲0, 𝐲2 and 𝐲3.
For the sake of simplicity, let us assume that the two bars of the
scissor structure have negligible thickness and can be described as line
segments. During the secondary folding motion, such members move
symmetrically with respect to the normal to the base cable passing
through its midpoint, and therefore the deformation law of the bar
shown in Fig. 12(b) also fully determines the deformation law of the
other bar. Let 𝑎, 𝑏, and 𝑐 denote the length of the bar, the distance
between the ball joint placed on top of the bar and the border of the
folded micro-triangle (measured in the direction of the segment 𝐱3-𝐱0),
and the perpendicular distance between the segment 𝐱3-𝐱0 and the base
cable. The total length of the base cable is given by

𝐿𝑐 = 𝐿 − 2𝑐
sin 𝛼

. (35)

In order to guarantee that the bar occupies a horizontal placement in
the fully closed configuration of the micro-triangle, the variable 𝑎 must
satisfy the following limitation

𝑎 ≤ 𝐿𝑐 − 𝑏 . (36)

where we are assuming 𝑏 ≪ 𝐿𝑐 . The current configuration of the bar
under examination is described by the abscissa 𝑝 of its bottom extremity
measured along the base cable (‘base coordinate’), which is shown in
Fig. 12(b).

By simple geometry it is possible to write

𝑎2 − 𝑝2 = 2𝑐2 − 2𝑐2(cos 𝜃) , (37)

which leads us to obtain 𝑝 as a function of 𝜃

𝑝(𝜃) =
√

𝑎2 + 2𝑐2(cos 𝜃 − 1) , with − 𝑏 ≤ 𝑝 ≤ 𝑎 . (38)

In the fully closed configuration, it results in 𝜃 = 0, implying 𝑝 = 𝑎.
Conversely, in the fully open configuration, it results in 𝑝 = 0 (see
Fig. 3, and Fig. S9), and one obtains the maximum folding angle 𝜃max
as follows:

𝜃max = arccos
(

1 − 𝑎2

2𝑐2

)

. (39)

The above equation shows that it is possible to reach the desired value
of 𝜃max by suitably designing the values of 𝑎 and 𝑐, making use of the
formula

𝑐 = 𝑎
√

, (40)
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2(1 − cos 𝜃max)
By inverting Eq. (38), we get

𝜃(𝑝) = arccos
(

𝑝2 − 𝑎2 + 2𝑐2

2𝑐2

)

. (41)

Fig. 13 plots the 𝜃 vs. 𝑝 law given by Eq. (41), on considering 𝑎 = 1
and different values of 𝑐.

We now compute the second base coordinate 𝑞 shown in Fig. 12,
obtaining

𝑞 = 𝐿𝑐 − 𝑏 − 𝑝 , with 0 ≤ 𝑞 ≤ 𝐿𝑐 . (42)

By combining Eqs. (38) and (42), one determines 𝑞 as a function of 𝜃

𝑞(𝜃) = 𝐿𝑐 − 𝑏 −
√

𝑎2 + 𝑐2(cos 𝜃 − 1) . (43)

6. Stabilization of folding motions

The present section examines the response of the solar eye module
when the system is stabilized by keeping the rest lengths of the cables
fixed (activation winches/motors locked). We separately examine the
stabilization of the primary and secondary folding motions in Sec-
tions 6.1 and 6.2, respectively. We compute the force–displacement
response of a suitable portion  of the module when a time–history
of a given displacement component is prescribed (always keeping
the activation winches/motors in the locked position). In the case of
the secondary folding motion, we validate the theoretical predictions
against the results of experimental tests run on a physical model at the
RPL of the University of Salerno (cf. Section 6.2). We wish to point out
that the systems studied in the present work exclusively derive their
stiffness properties from the elasticity of bars and cables, while the
response of the systems studied in Miranda et al. (2020) is significantly
influenced by the mechanical properties of the external actuators. The
deformation of the structures analyzed hereafter is actually mainly due
to the stretching of the cables, which are markedly more flexible than
the bars.

Let 𝐪 describe the vector collecting the free displacement compo-
nents of the unconstrained nodes of  from a given reference configu-
ration. Assuming that such nodes are not subject to external forces, we
write the competent equilibrium equation as follows

𝑔𝑟(𝐪) =
𝑀
∑

𝑘𝑚 (𝓁𝑚(𝐪) − 𝓁𝑚)
𝜕𝓁𝑚 = 0 , (44)
𝑚=1 𝜕𝑞𝑟
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Fig. 13. Opening angle 𝜃 as a function of the base coordinate 𝑝, for 𝑎 = 1 and different values of 𝑐. The insets show the configuration of the micro-triangle in the fully open
placement (𝜃 = 𝜃max).
where 𝑘𝑚 is the stiffness coefficient of the generic bar or cable forming
 (𝑚 = 1, . . . , 𝑀); 𝓁𝑚 is the rest length of such a member; 𝓁𝑚 is
its deformed length; and 𝑞𝑟 is the generic entry of 𝐪 (𝑟 = 1, . . . ,
𝑄) (Fraternali et al., 2015b). A deformation history of  is obtained by
imposing that a given subvector 𝐪𝑝 of 𝐪 varies with time 𝑡 according to a
prescribed function 𝐮(𝑡). The equilibrium problem of  can be solved by
making use of the extended system of equations (Fraternali et al., 2015a)

{

𝐠(𝐪(𝑡))
𝐪𝑝 − 𝐮(𝑡)

}

= 𝟎 , (45)

𝐠 denoting the vector collecting all the residuals 𝑔1,… , 𝑔𝑄.
It is useful to introduce a discretization of the deformation history

into time steps 𝑡1,… , 𝑡𝑆 . Examining the incremental equilibrium prob-
lem relative to the step 𝑡𝑠 → 𝑡𝑠+1, we let 𝐪̄ denote an initial guess of
𝐪(𝑡𝑠+1), which is such that it results in 𝐪̄𝑝 = 𝐮(𝑡𝑠+1). We also set 𝐠̄ = 𝐠(𝐪̄),
and we introduce the subvectors 𝐪𝑎 and 𝐠𝑎, which are the complements
of 𝐪̄𝑝 and 𝐠̄𝑝 with respect to 𝐪̄ and 𝐠̄, respectively. A correction 𝜟𝒒𝑎 to
𝐪̄𝑎 is computed via the linear system of equations

𝐊𝑇 ,𝑎𝑎 𝜟𝒒𝑎 = −𝐠𝑎 , (46)

where 𝐊𝑇 ,𝑎𝑎 is the submatrix of the tangent stiffness matrix with entries
𝐾𝑇

𝑖𝑗 = 𝜕𝑔𝑖∕𝜕𝑞𝑗 , which is associated to 𝐠𝑎 and 𝐪𝑎. We keep iterating the
Newton–Raphson correction algorithm (46) until the norm of 𝜟𝒒𝑎 gets
lower than 10−6 𝓁0𝑚𝑖𝑛 , where 𝓁0𝑚𝑖𝑛 is the minimum value of 𝓁 among
all the members of  in the configuration at time 𝑡 = 0.

6.1. Stabilization of the primary motion

Let us take the fully folded configuration (𝜀 = 𝜀max) of a right macro-
triangle  ≡  as reference for a deformation ruled by a displacement
history 𝑢(𝑡) of 𝐱0 along the 𝐞3 axis (Fig. 14). For 𝛼 = 𝜋∕2 (right macro-
triangle, see Fig. 8), such a process is assumed to take place while 𝐱1 is
constrained to move along the 𝐞1 axis; 𝐱3 is constrained to move along
the 𝐞2 axis; and the rest lengths of the opening and closing cables are
kept fixed (Fig. 6).

We first consider a linear model of the response of  , which
is obtained by writing Eq. (46) at the initial time step (𝑡 = 𝑡 ).
9

1

Fig. 14. Illustration of the mechanical model employed for the study of the
stabilization of the primary folding motion.

Next, we predict the geometrically nonlinear response of  through
a Mathematica®code that implements the path-following procedure
described in the previous section.

Since we model a motion directed downward of 𝐱0, the opening
cables are stretched during the deformation process under examination.
In contrast, the closing cables are engaged only if they are preliminarily
stretched through the application of a prestrain 𝑝0 = (𝓁0 − 𝓁)∕𝓁, which
we assume is applied to both the opening and closing cables (through
the bus cable). The closing cables remain active up to the time step
in correspondence of which they become slack, due to the progressive
increase of 𝑢. We let 𝓁0 and 𝓁 respectively denote the lengths of
the cables in the reference configuration and the rest configuration.
The roles played by the opening and closing cables are reversed in
correspondence to a deformation process that originates from the flat
configuration and moves the vertex 𝐱0 upward. The opening cables
connect the 𝐱1 and 𝐱3 nodes to a node 𝐱4 constrained to be at rest in
correspondence to the projection of 𝐱0 onto the 𝐞1-𝐞2 plane (Fig. 14).

The closing cables instead connect 𝐱1 and 𝐱3 to the nodes 𝐱5 and
𝐱 . The latter are at rest in correspondence to the vertices of  placed
6
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Box I.
e

long the 𝑥 ad 𝑦 axes in the fully open configuration. The application of
prestrain 𝑝0 to the opening and closing cables induces the following

re-tensioning forces 𝐹𝑐 and 𝐹 ′
𝑐 in these members (Fig. 14)

𝑐𝑝 = 𝐹 ′
𝑐𝑝

= (𝐸𝐴)𝑐 𝑝0 , (47)

here (𝐸𝐴)𝑐 is the axial stiffness of the cables (i.e., the product of
he Young modulus of the material times the cross-section area). The
ars shown in Fig. 14 describe the supports of the plates that form
he micro-triangles of  (see Fig. S7 of Supplementary Materials), and
re assumed to exhibit an axial stiffness (𝐸𝐴)𝑏. Let 𝑢𝑥𝑖 , 𝑢𝑦𝑖 , 𝑢𝑧𝑖 denote
he Cartesian components of the displacement of the generic node 𝐱𝑖
rom the reference configuration of Fig. 14. The vector of the nonzero
isplacement components of the system under consideration is given
y 𝐪 = {𝑢𝑧0 , 𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦2 , 𝑢𝑧2 , 𝑢𝑦3}.

.1.1. Linearized response
We now examine the case with 𝑝0 = 0 (𝐹 ′

𝑐 = 0). It is easily verified
hat, in this case, the equilibrium equations of the system in Fig. 14 can
e written as follows

= 𝐀𝐟 − 𝐰 = 𝟎 , (48)

here 𝐟 is the vector of the axial forces in the members 1–4, 3–4, 0–1,
–2, 0–2, 0–3, 2–3 (assumed positive in tension); 𝐰 is the vector of the
xternal nodal forces; and 𝐀 is the equilibrium matrix given by

=
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. (49)

he introduction of elastic constitutive equations in the cables and bars
eads us to write

1 = 𝑘𝑐
(

‖(𝐱1 + 𝑞2 𝐞1) − 𝐱4‖ − 𝓁1,4
)

,

2 = 𝑘𝑐
(

‖(𝐱3 + 𝑞6 𝐞2) − 𝐱4‖ − 𝓁3,4
)

,

𝑓3 = 𝑘𝑏
(

‖(𝐱0 + 𝑞1 𝐞3) − (𝐱1 + 𝑞2 𝐞1)‖ − 𝓁0,1
)

,

𝑓4 = 𝑘𝑏
(

‖(𝐱1 + 𝑞2 𝐞1) − (𝐱2 + 𝑞3 𝐞1 + 𝑞4 𝐞2 + 𝑞5 𝐞3)‖ − 𝓁1,2
)

, (50)
𝑓5 = 𝑘𝑏

(

‖(𝐱0 + 𝑞1 𝐞3) − (𝐱2 + 𝑞3 𝐞1 + 𝑞4 𝐞2 + 𝑞5 𝐞3)‖ − 𝓁0,2
)

,

𝑓6 = 𝑘𝑏
(

‖(𝐱0 + 𝑞1 𝐞3) − (𝐱3 + 𝑞6 𝐞2)‖ − 𝓁0,3
)

,

𝑓7 = 𝑘𝑏
(

‖(𝐱2 + 𝑞3 𝐞1 + 𝑞4 𝐞2 + 𝑞5 𝐞3) − (𝐱3 + 𝑞6 𝐞2)‖ − 𝓁2,3
)

,

with 𝑘𝑐 = (𝐸𝐴)𝑐∕𝓁𝑐 and 𝑘𝑏 = (𝐸𝐴)𝑏∕𝓁𝑏, where 𝓁𝑐 and 𝓁𝑏 denote the rest
lengths of the current cable and bar, respectively. The use of Eqs. (50)
into (48) leads us to compute the tangent stiffness matrix of the system
𝐊𝑇 ,0 = {𝜕𝑔𝑖∕𝜕𝑞𝑗} in correspondence to the reference configuration of
Fig. 14, obtaining Eq. (51) (see Box I) with 𝐵 = (𝐸𝐴)𝑏 and 𝐶 = (𝐸𝐴)𝑐 .

Assuming small displacements from the reference configuration, we
now transform the equilibrium problem (48) into the following linear
elastic problem

𝐊𝑇 ,0 𝐪 = 𝐰 . (52)
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In the limit 𝐵 → ∞, we obtain the following solution

𝐪0 = 𝐹 𝐿

2
√

2𝐶
{−1, 1, 1, 1,−1, 1} (53)

for the case of a single vertical force 𝐹 applied to node 𝐱0 (pointing
downward). In correspondence to the same loading condition, we also
to predict that the force acting in the opening cables is equal to

𝐹 0
𝑐 = 𝐹

2
. (54)

Let 𝐹𝑐,𝑓 denote the breaking force of the cables. According to Eq. (54),
the value 𝐹𝑓 of 𝐹 that produces the breakage of the cables should be
qual to 2 𝐹𝑐,𝑓 . We will see in the next section, however, that the 𝐹𝑐∕𝐹

ratio significantly grows with the magnitude of displacements exhibited
by the structure from the reference configuration. Such a phenomenon
may cause the failure of the strings for values of 𝐹 significantly lower
than 2 𝐹𝑐,𝑓 .

6.1.2. Response in the large displacement regime
The present section examines the response of the macro-triangle

 shown in Fig. 14 in the large displacement regime, making use
of the path-following procedure in displacement control illustrated
in Section 6. We assume that the vector 𝐪𝑝 is composed of the single
entry 𝑢𝑝 ≡ 𝑢𝑧0 , which is prescribed to vary with time according to a
linear time history 𝑢(𝑡), which features 𝑢 = 0 at the initial time step
and 𝑢 = 𝑢max =

√

𝜀max
(

2 − 𝜀max
)

𝐿 = 𝐿∕
√

2 at the final step (cf. Sec-
tion 5). The employed numerical model makes use of the geometry
and members’ sizes of a simplified version of the small-scale mock-up
analyzed in Section 3 and Supplementary Materials, being formed by
two isosceles right micro-triangles with hypotenuse length 𝐿 = 183 mm.
This model will be employed as a portion of a quadrangular module in
Section 7. The opening and closing cables are made of monofilament
nylon fishing line wire with a 0.40 mm diameter, 1.0 MPa Young
modulus and 𝐹𝑐,𝑓 = 21.57 𝑁 breaking force. The bars forming the
system are instead made of steel with 210 GPa Young modulus, and
exhibit a 3 mm × 5 mm rectangular cross section. Fig. 15(a) shows the
predicted force 𝐹 vs. displacement 𝑢 response of the macro-triangle, in
correspondence to different values of the prestrain 𝑝0 (a time history
with 5000 steps was employed to construct such curves). The force 𝐹
was identified with the quantity 𝑔𝑝 that is associated to 𝑢𝑝 through
Eq. (44). The plot in Fig. 15(a) relates 𝐹 to the breaking force of
the cables 𝐹𝑐,𝑓 , and refers the displacement 𝑢 to the stroke 𝑢max. The
dashed portions of the curves labeled (ii) in Fig. 15(a) are theoretical,
since they correspond to forces in the cables greater than the breaking
force 𝐹𝑐,𝑓 . The portions labeled (i) instead correspond to cable forces
not greater than the breaking force 𝐹𝑐,𝑓 . Panel (b) of Fig. 15 shows a
deformed configuration of the system, while panel (c) gives the plot of
the 𝐹𝑐∕𝐹 ratio when 𝑢∕𝑢max varies from 0 to 0.8.

The plots given in Fig. 15(a) highlight that the 𝐹 −𝑢 curve exhibits a
slope (i.e., a tangent stiffness) that progressively reduces in amplitude
for growing values of 𝑢. It would theoretically lead the system to a
limit-point-buckling mode (Budiansky, 1974), if the cables exhibit a

sufficiently large breaking force. The value of the force 𝐹 corresponding
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Fig. 15. (a) Numerical results for the curves relating 𝐹∕𝐹𝑐,𝑓 to 𝑢∕𝑢𝑢𝑚𝑎𝑥 in correspondence to the stabilization of the primary folding motion of a reduced scale mock-up of a
macro-triangle, at varying values of the cable prestrain 𝑝0. The solid (i) portions of the 𝐹 − 𝑢 curves refer to the actual response branches, since along such branches the cables are
loaded by tensile forces lower than the breaking load 𝐹𝑐,𝑓 . The dashed potions (ii) are instead theoretical, since they refer to values of 𝐹 that induce forces in the cables above
the breaking load. (b) Deformed configuration of the system. (c) Plot showing the variation of the 𝐹𝑐∕𝐹 ratio with the vertical displacement of the top node, for 𝑝0 = 0.
to such a buckling event is hereafter referred to as 𝐹𝑙. The results
presented in Fig. 15(a) show that the condition 𝐹 = 𝐹𝑙 occurs for
𝑢 = 𝑢𝑙 varying from 0.34 𝑢max (𝑝0 = 0) to 0.36 𝑢max (𝑝0 = 0.03). This
means that the buckling event takes place at about 1/3 of the stroke
of the top vertex 𝐱0. The results in Fig. 15(a) also indicate that the
𝐹 − 𝑢 curves slightly move upward for growing values of 𝑝0, due to the
presence of stiff branches near 𝑢 = 0, which are induced by the initial
engagement of the closing cables, for nonzero values of 𝑝0. In the case of
the mock-up under examination, 𝐹𝑓 assumes the values of 1.34 𝐹𝑐,𝑓 (at
𝑢 = 0.208 𝑢max) and 1.46 𝐹𝑐,𝑓 (at 𝑢 = 0.160 𝑢max) respectively for 𝑝0 = 0
and 𝑝0 = 3%. Similarly, in the same model, 𝐹𝑙 assumes the values of
1.54 𝐹𝑐,𝑓 and 1.77 𝐹𝑐,𝑓 for 𝑝0 = 0 and 𝑝0 = 3%, respectively. It is worth
noting that the above values of the 𝐹𝑓∕𝐹𝑐,𝑓 ratio are significantly lower
than the value of 2 predicted by the linear analysis presented in the
previous section. For 𝑝0 = 0, the plot given in Fig. 15(c) indeed shows
that the ratio between the force 𝐹𝑐 acting in the opening cables and the
external force 𝐹 markedly grows above 0.5 for 𝑢 slightly larger than
zero, and that such a ratio assumes the value 0.744 at 𝑢 = 0.208 𝑢max.

If the external loads applied to  (typically wind forces (Miranda
et al., 2020)) are expected to produce forces in the cables greater than
𝐹𝑓 , one should adopt suitable protection strategies of the solar module,
by using, e.g., motion stoppers formed by springs with suitable rest
lengths, which are placed at the extremities of the sliding tracks shown
in Fig. 6 (see also Supplementary Materials).

6.2. Stabilization of the secondary motion

We conducted a numerical study on the stabilization of the sec-
ondary folding motion on a physical model of a micro-triangle, which
retains the main features of the micro-triangles of the demonstrative
mock-up (cf. Section 3 and Supplementary Materials). Our theoretical
predictions were validated against experimental tests conducted at the
RPL of the University of Salerno.

6.2.1. Physical model and experimental setup
Let us analyze the micro-triangle shown in Fig. 16, which exhibits

the following geometrical properties, using the symbols introduced in
Section 5: 𝑎 = 60 mm, 𝑏 = 0 mm, 𝑐 = 41.05 mm, 𝐿∕

√

2 = 116.14 mm.
A physical sample was built with such a geometry, using a support
frame with 3 mm × 5 mm rectangular cross-section bars, and the
11
Fig. 16. Geometry of the tested sample of a micro-triangle (dimensions in mm).

pins of the scissor structure showing 2.8 mm × 1.5 mm rectangular
cross-section. Such members where 3D printed in ‘Matte Black Steel’
by Shapeways®(210 GPa Young modulus). The foldable plate was 3D
printed in gray ABS at RPL with 3 mm thickness. We used ABS instead
of Matte Black Steel for this element to reduce its mass, which is
not taken into consideration in the simulations presented hereafter.
The pins of the scissor structure are connected to a looped bus cable
made of a nylon wire with 0.4 mm diameter, which is identical to that
mentioned in the previous section.

The supporting frame was screwed to an optical table and a loading
test was run to measure the stiffness of the system in the stabilized
configuration. The latter was obtained by constraining the rest length
of the bus cable, which was also screwed against the supporting frame.
We measured the variation 𝛥𝑑 of the distance 𝑑 between the nodes 𝐲2
and 𝐱2 shown in Fig. 16, due to the application of a loading condition
that produces the progressive closure of the foldable plate. Such a plate
was assumed to occupy an initially folded configuration forming an
angle of 52 deg with the horizontal plane, before the application of
the external load. We let 𝑑0 denote the value of 𝑑 in correspondence to
such a configuration. The base cables were prestressed by connecting
them to two external baskets loaded with calibration weights (‘prestress
baskets’). The connection between each cable and the corresponding
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Fig. 17. Illustrative scheme of the loading test carried out on a reduced scale micro-triangle (a–b), and pictures of the physical sample under testing (c).
prestress basket was realized through metallic bars with 1 mm diameter
forming a pyramid structure (Fig. 17(a)). Two values of the loads on
the prestress basket were analyzed: 𝐹𝑐,𝑝 = 250 gf and 𝐹𝑐,𝑝 = 500 gf.
By referring the above values of the prestress force 𝐹𝑐,𝑝 to the breaking
force of the cables 𝐹𝑐,𝑓 = 21.57 N, we obtain 𝐹𝑐,𝑝 = 0.114 𝐹𝑐,𝑓 and 𝐹𝑐,𝑝 =
0.227 𝐹𝑐,𝑓 , respectively. As anticipated, after applying the prestress
load, the rest lengths of the base cables were locked (by screwing
them against the supporting frame) and the prestress load baskets
were removed (Fig. 17(b)). Next, the 𝐲2 node was loaded by applying
calibration weights on a ‘loading basket’ connected to 𝐲2 through a
PowerPro® braided Spectra fiber with 0.76 mm passing through the
supporting frame, as shown in Fig. 17. The total weight applied to
the loading basket is transferred to 𝐲2 through a force 𝐹 acting in the
Spectra cable. We measured the displacement 𝛥𝑑 = 𝑑0 −𝑑 by recording
the variation of the vertical position of the reference plate attached to
the loading basket, through a laser sensor (Fig. 17(a,b)). We applied
calibration weights on the loading basket with steps of 20/50 g, and
we recorded the vertical position of the loading plate at the end of each
loading step. A picture of the physical sample under testing is shown
in Fig. 17(c).

6.2.2. Mechanical model and force–displacement response
We introduced the mechanical model shown in Fig. 18(a) to predict

the response of the physical model described in Section 6.2.1. The pan-
els (b) and (c) of this figure illustrate two configurations of the physical
model under testing. We let 𝐱𝑖 and 𝐲𝑖 indicate the position vectors
occupied by the nine nodes shown in Fig. 18(a) in the reference and the
deformed configurations, respectively (see Supplementary Materials for
the expressions of the 𝐱𝑖 vectors). The nodes 0–4 are at rest during the
deformation under consideration (𝐲𝑖 ≡ 𝐱𝑖), while the nodes 5–7 exhibit
a rotation about the 𝑥-axis of angle 𝜃 variable from 52 deg (reference
configuration) through zero, which implies

⎛

⎜

⎜

⎝

𝑦𝑥𝑖
𝑦𝑦𝑖
𝑦𝑧𝑖

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑋𝑥𝑖
𝑋𝑦𝑖
𝑋𝑧𝑖

⎞

⎟

⎟

⎠

, (𝑖 = 5, 6, 7) (55)

𝑋𝑥𝑖 , 𝑋𝑦𝑖 and 𝑋𝑧𝑖 denoting the Cartesian coordinates of the 𝑖th node
in the fully closed configuration (𝜃 = 0). The Cartesian components
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of the displacements of nodes 5–9 form the vector 𝐪 of the nonzero
displacements, while the displacement components of nodes 5–7 form
the subvector of the prescribed displacements 𝐪𝑝. Finally, the dis-
placement components of nodes 8 and 9 form the subvector 𝐪𝑎 =
{𝑢𝑥8 , 𝑢𝑦8 , 𝑢𝑧8 , 𝑢𝑥9 , 𝑢𝑦9 , 𝑢𝑧9}. The deformable members of the system in
Fig. 18(a) are the cables 8–4, 8–3, 9–3, 9–4, and the bars 6–9 and
7–8. The remaining elements undergo rigid body motions or stay at
rest during the deformation process under consideration. The cables 8–
4 and 8–3 are overlapped to the cables 9–4 and 9–3 in the reference
configuration, but it is worth noting that such members form two
separate sets of elements that exhibit different deformed configurations.
In the physical model the same cables are slightly offset in the 𝑦-
direction, as shown in Figs. 18(b),(c). The problem to be considered
for the computation of 𝐪𝑎 is formed by the equilibrium equations of
nodes 8–9, which are written as follows

𝐠8 = 𝑓3,8
𝐲3 − 𝐲8
𝓁3,8

+ 𝑓0,8
𝐲0 − 𝐲8
𝓁0,8

+ 𝑓7,8
𝐲7 − 𝐲8
𝓁7,8

= 𝟎 , (56)

𝐠9 = 𝑓0,9
𝐲0 − 𝐲9
𝓁0,9

+ 𝑓3,9
𝐲3 − 𝐲9
𝓁3,9

+ 𝑓6,9
𝐲6 − 𝐲9
𝓁6,9

= 𝟎 , (57)

where 𝑓𝑖,𝑗 and 𝓁𝑖,𝑗 denote the axial force and the current length of
the member joining nodes 𝑖 and 𝑗, respectively. By grouping the above
equilibrium equations, we write

𝐠 =
{

𝐠8
𝐠9

}

= 𝟎 . (58)

Let us now make use of the constitutive equations 𝑓𝑖,𝑗 = 𝑘𝑖,𝑗 (‖𝐲𝑖 −
𝐲𝑗‖ − 𝓁𝑖,𝑗 ), with 𝑘𝑖,𝑗 = (𝐸𝐴)𝑐∕𝓁𝑐 in the cables and 𝑘𝑖,𝑗 = (𝐸𝐴)𝑏∕𝓁𝑏
in the bars. On accounting for such relations and Eqs. (55), we are
able to express the residual vector 𝐠 as a function of 𝐪. Due to the
nonlinear nature of the resulting system of Eqs. (58), we employ the
path-following procedure presented in Section 6 for its solution. We
apply a displacement history that lets 𝜃 linearly decrease from 52 deg
to zero through 100 steps of 5.2 deg each.

At the end of each time step, we compute the current value of the
force 𝐹 acting on node 5, by setting to zero the resultant moment of
the external forces acting on the micro-triangle

▵
015 about the support
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Fig. 18. Illustration of the mechanical and physical models employed for the study of the stabilization of the secondary folding motion. (a) Reference configuration of the
mechanical model (see Supplementary Materials for the node coordinates). (b) Close-up picture of the reference configuration of the physical sample. (c) Deformed configuration
of the physical sample under testing.
axis 0–1. Such an equation is written as follows
(

(

𝐲6 − 𝐲0
)

× 𝑓6,9
𝐲6 − 𝐲9
𝓁6,9

+
(

𝐲7 − 𝐲0
)

× 𝑓7,8
𝐲7 − 𝐲8
𝓁7,8

−
(

𝐲5 − 𝐲0
)

× 𝐹
𝐲5 − 𝐲2
𝓁5,2

)

⋅ 𝐞1 = 0 . (59)

Panel (a) of Fig. 19 shows a comparison between predicted (nu-
merical) and experimental 𝐹∕𝐹𝑐,𝑓 vs. 𝛥𝑑∕𝑑0 curves obtained for the
examined values of the prestress force 𝐹𝑝,𝑐 .

As in the case of the stabilization of motion 1, we use dashed lines
to mark the portions (𝑖𝑖) of the 𝐹 − 𝑑 curves that correspond to forces
in the cables greater than 𝐹𝑐,𝑓 . Panel (b) of Fig. 19 shows a deformed
configuration of the system under study, while panel (c) illustrates the
variation of the force ratio 𝐹𝑐∕𝐹 with the displacement variable 𝛥𝑑∕𝑑0,
for 𝐹𝑝 = 0.114 𝐹𝑐,𝑓 . Here 𝐹𝑐 denotes the maximum axial force acting
in the cable elements. We observe the presence of a stiffening-type
response branch of the 𝐹 − 𝛥𝑑 curve (tangent stiffness increasing with
increasing values of the displacement control variable) for small values
of 𝛥𝑑, which is followed by a softening branch.

The numerical model predicts the occurrence of a limit-point buck-
ling mode at the end of such a softening phase, similarly to what
we observed in the previous section (it is worth remarking that the
experimental tests were conducted in force control, while the numerical
simulations were run in displacement control). In the present case,
such an event would occur for 𝛥𝑑∕𝑑 ≈ 1 (𝜃 ≈ 0). The results
13

0

given in Fig. 19(a) show that the theoretical predictions of the force–
displacement response match the experimental results rather well. For
𝐹𝑝 = 0.114 𝐹𝑐,𝑓 the numerical model predicts the achievement of the
failure load 𝐹𝑓 = 0.438 𝐹𝑐,𝑓 at 68% of the stroke that takes 𝑑 to
zero. Differently, for 𝐹𝑝 = 0.227 𝐹𝑐,𝑓 , the numerical model predicts
𝐹𝑓 = 0.432 𝐹𝑐,𝑓 at 61% of the stroke. The plot in Fig. 19(c) shows
that the ratio between the maximum force in the cables 𝐹𝑐 and the
external force 𝐹 is initially rather high, for small displacements and
small values of 𝐹 , and next decreases down to values comprised in
the range [2.28,2.40], for 𝛥𝑑 varying from 50% to 80% of the stroke
(assuming 𝐹𝑝 = 0.114 𝐹𝑐,𝑓 ).

If, in the event of extreme loading conditions, the forces applied
to the system are expected to overcome the failure load of the cables
(due, e.g., to high winds), one can protect the folded micro-triangles
by closing them, like in the case of retractable awnings equipped with
anemometers (Goodman and Meier, 2013).

7. Dynamic response and wind loading

Let us analyze the dynamic response of the quadrilateral system
shown in Fig. 20, which occupies a semi-closed configuration of the
solar eye (𝜀 = 0.5 𝜀max). Such a configuration is hereafter assumed as
reference for a study of the effects of upwind loading, which considers
the wind acting perpendicular to the base of the module (i.e., wind
loading perpendicular to a building façade/rooftop equipped with solar
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Fig. 19. (a) Comparison between theoretical predictions and experimental observations of the force–displacement curve analyzed for the stabilization of the secondary folding
motion, for different values of the prestress force 𝐹𝑝 in the base cable. (b) Deformed configuration of the system. (c) Plot showing the variation of the 𝐹𝑐∕𝐹 ratio with 𝛥𝑑∕𝑑0, for
𝐹𝑝 = 0.113 𝐹𝑐,𝑓 .
eyes). The reason for this choice is that the semi-closed configuration
is more exposed to the analyzed loading condition, as compared to the
fully open and fully closed configurations of the solar eye. One easily
realizes, indeed, that the fully open (or fully folded) configuration
analyzed in Section 6.1 shows a reduced (theoretically zero) projected
surface area under upwind loading, while the fully closed configuration
is protected by the supporting frame against wind-induced vibrations
(cf. Figs. 6–7). Assuming the action of high or moderately high winds,
we safely suppose that the secondary folding motion of the micro-
triangles is not active (see our considerations at the end of the previous
section). Upwind loading tends to produce a downward displacement of
the central node 0 of the system in Fig. 20 (i.e., a negative displacement
component of this node along the 𝑧-axis). We therefore equip our
mechanical model with only the opening cables 1–4, 3–4, 6–4, 8–
4, and suppose that the closing cables are not reactive, due to the
absence of prestress. An opposite situation (closing cables active and
opening cables not reactive) should be considered in the presence of
a downwind loading condition, assuming again, for simplicity, zero
prestress of the cables. The vectors of the coordinates of the vertices
of the macro-triangle 0-1-2-3 are given by

𝐱0 =
{

0, 0, 1
2

√

5
2
−
√

2𝐿

}

,

𝐱1 =
{1
4

(

2 +
√

2
)

𝐿, 0, 0
}

,

𝐱2 =
⎧

⎪

⎨

⎪

⎩

𝐿

4 +
√

2
, 𝐿

4 +
√

2
, −

√

5 − 2
√

2𝐿

8 + 2
√

2

⎫

⎪

⎬

⎪

⎭

,

𝐱3 =
{

0, 1
4

(

2 +
√

2
)

𝐿, 0
}

,

(60)

and it is not difficult to generalize the above equations to obtain the
position vectors of the remaining nodes shown in Fig. 20. The node 4
is at rest in correspondence to the origin of the global Cartesian frame
𝑥, 𝑦, 𝑧.

We wish to study the dynamic response of the system shown in
Fig. 20 under small, wind-induced vibrations from the reference con-
figuration. The vector of the free displacement components 𝐪 is formed
in the present case by the vertical displacement component of node 0;
the displacement components along the 𝑥-axis of nodes 1 and 6; the
displacement components along the 𝑦-axis of nodes 3 and 8, and the
displacement components along the 𝑥, 𝑦, 𝑧 axes of nodes 2, 5, 7 and
9, for a total of 17 kinematic variables. The tangent stiffness matrix
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of the system in the reference configuration (i.e., the matrix 𝐊𝑇 ,0) is
given by the assembly of the 𝐊𝑇 ,𝑒 matrices of the four macro-triangles
shown in Fig. 20. Let 𝐪1 = {𝑢𝑧0 , 𝑢𝑥1 , 𝑢𝑥2 , 𝑢𝑦2 , 𝑢𝑧2 , 𝑢𝑦3} denote the vector
of kinematic variables pertaining to the 0-1-2-3 macro-triangle. Making
use of an approach similar to that followed in Section 6.1.1, it is
easily shown that the matrix 𝐊𝑇 ,1 of such an element has the following
expression

𝐊𝑇 ,1 = 1
𝐿

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 𝑘16
𝑘22 𝑘23 𝑘24 𝑘25 𝑘26

𝑘33 𝑘34 𝑘35 𝑘36
𝑆𝑦𝑚 𝑘44 𝑘45 𝑘46

𝑘55 𝑘56
𝑘66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (61)

where

𝑘11 =
1
196

(

309 + 26
√

2
)

𝐵 ,

𝑘12 = 𝑘16 =
1
8

√

7 + 4
√

2𝐵 ,

𝑘13 = 𝑘14 =
1
49

√

430 − 104
√

2𝐵 ,

𝑘15 = − 1
49

(

16 + 31
√

2
)

𝐵 ,

𝑘22 = 𝑘66 =
1
392

(

363 + 296
√

2
)

𝐵 −
(

2
√

2 − 4
)

𝐶 ,

𝑘23 = 𝑘46 = − 1
196

(

108 + 99
√

2
)

𝐵 ,

𝑘24 = 𝑘36 =
1
98

(

30 + 3
√

2
)

𝐵 ,

𝑘25 = 𝑘56 = − 1
392

√

645 − 156
√

2𝐵 ,

𝑘26 = 0 ,

𝑘33 = 𝑘44 =
1
196

(

44 + 171
√

2
)

𝐵 ,

𝑘34 =
1
49

(

6
√

2 − 38
)

𝐵 ,

𝑘35 = 𝑘45 = − 1
192

√

2351 − 1328
√

2𝐵 ,

𝑘55 =
1
98

(

123
√

2 − 44
)

𝐵 .

(62)

Here the symbols 𝐵 and 𝐶 have the same meaning introduced in
Section 6.1.1. The 𝐊𝑇 ,𝑒 matrices of the three remaining macro-triangles
have expressions identical to 𝐊𝑇 ,1 with respect to the corresponding
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Fig. 20. (a) Three-dimensional view of the mechanical model of a quadrilateral system. (b) Disassembling of the system into four macro-triangles.
local Cartesian frames {𝑥𝑖, 𝑦𝑖, 𝑧𝑖} (see Fig. 20(b)). Passing on to analyze
the mass matrix of the system, we let 𝑚 denote the overall mass of a
micro-triangle. We lump such a mass in correspondence to the vertices
of this element, which leads us to consider the following mass matrix
of the generic macro-triangle

𝐌𝑒 = 1
3
𝑚

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (63)

The assembling of the element matrices 𝐌𝑒 gives rise to the global
mass matrix 𝐌. The free vibration problem of the structure shown in
Fig. 20 is studied via modal analysis, making use of the eigenvalue
problem

𝐊𝑇 ,0 𝜱 = 𝐌 𝜱 𝜴2 , (64)

where 𝜴2 is the diagonal matrix collecting the squares 𝜔2
𝑖 of the angular

vibration frequencies of the single modes, and 𝜱 is the matrix of the
vibration modes (see, e.g., Bathe and Wilson (1973)). We agree to order
the modes by increasing values of the vibration frequencies.

We now analyze the special case of the reduced scale mock-up of the
solar eye, assuming 𝐿 = 183 mm and considering the member properties
that have been illustrated in Section 6.1.2. In addition, we suppose
𝑚 = 0.197 kg, which corresponds to the mass of an isosceles right
micro-triangle made of steel with hypotenuse length 𝐿 = 183 mm and
3 mm thickness (mass density 7.85 g/cm3). The first vibration mode is
illustrated in Fig. 21, and one observes that such a mode corresponds
to a vibration frequency 𝜈1 = 5.77 Hz. It tends to activate the primary
folding of the structure, being contrasted by the elastic stiffness of
the opening cables (Fig. 21). The higher order vibration modes of the
system under examination are associated to frequencies much greater
than 𝜈1 (it results, e.g., 𝜈2 = 178 𝜈1). This is due to the fact such
modes activate the deformation of the stiff steel frames supporting the
foldable panels, while the first mode activates the deformation and the
elastic response of the nylon cables. We illustrate some of the higher
order vibration modes in Fig. S13 of Supplementary Materials. The
results presented in Fig. 21 were computed through a Mathematica®
code that solves Eq. (64), and were validated against the finite element
simulation presented in Supplementary Materials.

It is worth observing that the first natural vibration frequency of
a single nylon cable pinned at the extremities, which features a mass
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density of 1.14 g/cm3, 0.40 mm diameter and 259 mm length, is
approximately equal to 50 Hz, under a tensile force of only 0.1 N. We
obtained such a result making use of the formula 𝜈𝑐 = 1∕(2

√

2𝐿)
√

𝑇 ∕𝜌,
that gives the fundamental transverse vibration frequency of a pinned
cable with

√

2𝐿 length. Here, 𝑇 is tensile force in the cable and 𝜌 is the
linear mass density of the material (Shabana, 1996).

Wind loading is a fluctuating action that is expected to lead to
a resonant-type response when the structure and/or its parts exhibit
natural frequencies below 1 Hz (Holmes, 2018). When instead such
frequencies are considerably larger than 1 Hz, as in the case of the
mock-up of the solar eye analyzed above, one can reasonably model
wind loading as a quasi-static (‘background’) action. In this context,
a static approach ruled by the provisions of international standards
as, e.g., the Eurocode 1, EN 1991-1-4:2005 (European Committee for
Standardisation, 2005) can be convenient. The study of a resonant
response can be conducted, when needed, by generalizing available
techniques for large span roofs to building façades equipped with solar
eyes (Su et al., 2018). The analysis of such effects, as well those deriving
from cross-wind loading, cladding loads and the aerodynamic response
of the solar panels attached to the solar eye (Wittwer et al., 2022)
is beyond the scope of the present work, and is addressed to future
research.

8. Concluding remarks

We have presented the design, modeling and prototyping of novel
solar modules with tensegrity architecture that can be employed to
tessellate positive-energy solar façades and rooftops with various tex-
tures and architectures (Fig. 2). These solar eyes can assume an arbi-
trary polygonal shape (Fig. 1), and can be integrated into the build-
ing façade/rooftop (or parts of these building elements) to form PV
cladding systems, solar glazing and windows, and/or adaptive sun-
screens, to cite but a few examples Vassiliades et al. (2022), Jayathissa
et al. (2017), Alotaibi (2015), Freitas and Brito (2019). The origami-
type shape-morphing mechanisms make it possible to operate them by
simply adjusting the rest-lengths of the actuation cables, through low
energy-consumption electric winches, or also manually, using crank
winches. The introduction of the secondary folding motion, the actu-
ation strategy of the primary and secondary folding motions through
the simple change of the rest lengths of the cables, and the arbitrary
polygonal shape of the unit cell markedly distinguish the current solar
module from the origami modules studied in Fraternali et al. (2015b),
Babilio et al. (2019), Miranda et al. (2020).
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Fig. 21. First vibration mode of the system in Fig. 20 equipped with the dimensions and mechanical properties of the solar eye mock-up (left: 3D view; right: top view; the
dashed lines indicate the reference configuration; the node displacements have been graphically amplified for illustration purposes).
We have shown that it is possible to stabilize the primary and
secondary folding motions of the analyzed systems by locking the
rest lengths of the actuation cables, thus providing suitable stiffness
properties against external loads (say, e.g., wind forces). We have also
studied the dynamic response of a quadrilateral module through modal
analysis, and we have outlined the available procedures to predict
the effects of wind loading on such a system. The origami solar eyes
can be protected against extreme loading conditions using additional
restraining tools, whose design and modeling is left to future work.
We also address detailed studies on the mechanical response of the
analyzed structures under seismic and/or wind loading, examining
experimental loading conditions and conditions drawn from historical
records, to future research. The aim will be to detect the effective
dynamic properties of such systems and their adaptation to variable
loads and displacement capacities. The models developed in this work
will be further generalized to account for vibration properties, the
balance between import and export energies, as well as deployment-
and/or sun tracking-algorithms in a large displacement regime, as a
means of designing optimized operation strategies.
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