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Abstract The present study deals with the experimental anal-
ysis and mechanical modeling of tensile behavior of brain soft
tissue. A transversely isotropic hyperelastic model recently
proposed by Meaney (2003) is adopted and mathematically
studied under uniaxial loading conditions. Material param-
eter estimates are obtained through tensile tests on porcine
brain materials accounting for regional and directional differ-
ences. Attention is focused on the short-term response. An
extrapolation of tensile test data to the compression range
is performed theoretically, to study the effect of the hetero-
geneity in the tensile/compressive response on the material
parameters. Experimental and numerical results highlight the
sensitivity of the adopted model to the test direction.

1 Introduction

Biomechanical modeling of the human head is a task of great
interest for both medical and engineering reasons, which are
mainly related to the development of computer simulations of
traumatic brain injuries under impact loads (focal and diffuse
injuries); virtual reality and robotic techniques in neurosur-
gery; design and efficiency assessment of helmets and other
protective tools.

This topic involves several research aspects, including:
formulation of constitutive equations for biological brain mate-
rials and particularly for soft brain tissue, accounting for
directional properties, age effects, time-dependent behavior,
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and regional heterogeneities (see, e.g., Miller and Chinzei
1997, 2002; Arbogast and Margulies 1998, 1999; Miller et
al. 2000; Miller 2001; Bilston et al. 2001;Prange and Mar-
gulies 2002; Gefen and Margulies 2004); definition of auto-
matic procedures for brain topology reconstruction from im-
age data (cf., Bartesaghi and Sapiro 2001; Ramon et al. 2004);
and formulation of detailed finite element models of the hu-
man head (see Huang et al. 1999, 2000; Zhang et al. 2001;
Kleiven 2002; Mota et al. 2003).

Brain matter consists of a base matrix (neurons and extra-
cellular components: gray matter) crossed by a network of
neural tracts (or axonal fibers) in the so-called white matter.
The fibers are highly uniaxially oriented in the corpus callo-
sum (where they pass from one to the opposite brain hemi-
sphere), and arranged in a more disordered pattern, having
always a preferential axis, in the corona radiata.

Mechanical properties of human brain tissue have been
measured by several authors, both in vitro and in vivo. Con-
cerning in vitro experiments, in recent years researchers have
focused their attention on uniaxial and shear testing (Miller
2001; Miller and Chinzei 1997, 2002; Arbogast et al. 1997;
Arbogast and Margulies 1998; Bilston et al. 2001; Prange
and Margulies 2002). In vivo indentation tests have also been
carried out (Miller et al. 2000; Gefen and Margulies 2004)
to study the effects of blood pressure in vasculature on the
mechanical response of brain. Commonly, experiments are
conducted on porcine brain tissues, which have been found
to have some similarities with human brain material.

A wide dispersion of results between different authors
has been found, with material properties varying up to an
order of magnitude, in relation to testing conditions, prepara-
tion of samples, and differences in regional, directional, age,
and post-mortem conditions of brain tissues. In most cases,
experimental results have been correlated with rubber-like
hyperelastic constitutive models, obtaining material parame-
ter estimates for elastic formulations of isotropic Ogden-type
models (Ogden 1984).

The present paper deals with the experimental verification
of a transversely isotropic model, which appeared recently
in the literature for brain tissue (Merodio and Ogden 2003).
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Several tensile tests on porcine samples are presented, con-
sidering tissues coming from various brain regions and with
different axonal fiber orientations. Attention is focused on
short- or middle-term tissue response under impact/accel-
eration loading, disregarding viscous effects. Indeed, such
effects have been found to have a limited influence on the
short-term response of brain tissue under impact actions (cf.,
e.g.,Aida 2000).A two-level procedure for fitting experimen-
tal data is presented and used in order to obtain Meaney’s
model parameter estimates. The given results are in good
agreement with those obtained by Miller and Chinzei (2002)
through uniaxial tests on cylindrical samples (isotropic mod-
eling). A central topic of the paper is the discussion about the
difference of the tissue behavior in tension and in compres-
sion (cf., e.g., Miller and Chinzei 2002). We found remark-
ably different parameter estimates by considering only tensile
and combined tensile-compressive behaviors, with different
signs of stretch exponents in the two cases.

2 Tensile tests on porcine brain tissue

In order to obtain quantitative and qualitative information
about regional and directional properties of brain tissue mate-
rial, several tensile tests were carried out on tissue samples,
using porcine brain matter.

One of the practical difficulties in conducting uniaxial
tension tests on brain tissue is placing the samples in the
testing machine in a reliable and repeatable way. Miller and
Chinzei (1997, 2002) solved the problem by extracting short
cylindrical samples and gluing them to the plates of the ten-
sile testing machine. The main shortcoming of their method
is the identification of material parameters by relating exper-
imental data to an analytic solution of finite elasticity that
refers to the extension of a short cylinder (Miller 2001).

Instead we dealt with standard tensile tests on prismatic
samples that were accurately excised from porcine brains
through surgical techniques. In this section, we describe the
procedures we adopted to overcome inherent difficulties con-
nected with tensile testing of soft biological tissues. We chose
quite long samples (4–6 cm) in order to realize uniaxial load-
ing conditions in the specimen central region, and also to
accurately locate the direction of fibers within the sample.
An analogous result cannot be obtained through cylindrical
samples, in which gray and white matter are mixed.

2.1 Specimen preparation

Brain characteristics A total of six swine brains (Fig. 1a),
extracted from adult animals (age between 1 and 2 years),
were collected from a slaughter house in three different lots
(2–2–2).A pig head was also taken and subjected to magnetic
resonance (Fig. 1c, d).

Storage The brains were stored in a physiological solution
and kept at a temperature of 3–7◦C. Transportation to the

laboratory took half an hour. Experiments were completed
within 5–6 h post-mortem.

Shape of samples Samples were taken from different regions
of the brain to assess regional and directional properties of
the brain tissue (see below). The samples were cut with a lan-
cet into strip shapes, approximately 4–6 cm long, 1 cm wide,
and 0.2–0.5 cm thick. Obtaining an exact strip shape is diffi-
cult since the brain material is very soft and adheres, upon
contacting, to any body. Therefore, the areas of the sample
cross sections we used to convert load into stress must be
understood as averages.

Nature of tissues To assess regional and directional proper-
ties of the brain tissue, the following different brain materials
were tested:

(1) pure gray matter from motor strip (number of samples:
ns = 12);

(2) white matter from the corpus callosum with axonal fibers
along the longitudinal direction (aligned with load; ns =
6);

(3) white matter from the corona radiata with fibers in the
longitudinal direction (ns = 12);

(4) white matter from the corona radiata with fibers in the
transverse direction (ns = 12).

Mass density was slightly greater in white matter than in gray
matter (1,039 g/cm3 in white matter and 1,036 g/cm3 in gray
matter).

2.2 Experimental setup

Testing machine The machine employed for testing was an
INSTRON 4301. The mounted load cell allowed measure-
ment of axial force in the range 0.02–5 N, with an error of
less than 0.1% of the maximum load.

Recording The experiments were documented by taking CCD
camera images to ensure that during loading samples did not
slip between the platens. Tests were conducted in displace-
ment control, and load–displacement plots were automati-
cally produced.

Placing of the samples To prevent slip of samples from the
grips (cf., Fig. 1b) and to preserve integrity of brain material,
we operated as follows:

– strips were continuously moistened with a physiological
solution before the placing in the testing machine, and
during the whole test;

– the strips were wrapped in tissue paper at the ends before
insertion into the grips;

– grips were tightened manually;
– the no-slip condition was checked by visual inspection

during testing and also on inspecting the CCD recording.
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Fig. 1 View of one of the porcine brains tested, where the removal of a strip of gray matter from the motor strip is visible (a); image of a strip
under testing (b); magnetic resonance images (3 T) of a swine head (c, d): c coronal; d sagittal. Regional flags: 1=motor strip; 2=corpus callosum;
3=corona radiata

Temperature Tests were conducted at room temperature
(20–25◦C).

Loading history A displacement rate of 0.5 mm/s, correspond-
ing to a strain rate of about 0.01/s, was fixed for all tests. This
rate was low enough to minimize inertia effects. Tests were
continued until failure or slipping of the samples from the
grips. Only one load cycle was allowed. No preconditioning
was performed due to the extreme delicacy and adhesiveness
of brain tissue (cf., Miller and Chinzei 2002).

2.3 Test results

The load–displacement plots were converted into nominal
stress S versus longitudinal stretch λ curves, by dividing the
applied force by the (averaged) initial cross-sectional area,
and the relative displacement between the platens by the ini-
tial length of the samples, respectively.

The initial cross-sectional area was determined by aver-
aging two measurements carried out in correspondence with
the central region of the specimen.

Figure 2a–d shows the S–λ curves obtained by averag-
ing experimental data for each of the conducted test (see
above). The graphs include standard deviation bars. The ratio
between standard deviation and mean value of S (coefficient

of variation), for any fixed value of λ, ranged between 0.2 and
0.4 between the different tests, with lower values for small
stretches. The ranges of λ in Fig. 2 correspond to the stretch
intervals for which all the tests for a given material were car-
ried out successfully until material failure or sample slipping
from machine grips occurred.

3 Meaney’s model for brain tissue

Due to its peculiar nature, the mechanical behavior of brain
tissue is expected to be sufficiently well described through
an unidirectional fiber reinforced composite model, and, in
particular, by means of a transversely isotropic hyperelastic
model.

Recently, Merodio and Ogden (2003) has proposed a
transversely isotropic model which consists of a first-order
Ogden model augmented by a I4-type reinforcing term (cf.,
Spencer 1984; Holzapfel 2000; Ogden 2003). It deals with
the following strain-energy function

W = 2µ

α2

(
λα

1 + λα
2 + λα

3 − 3
)

+2kµ

β2

(
I

β/2
4 + 2I

−β/4
4 − 3

)
, λ1λ2λ3 = 1, (1)



56 F. Velardi et al.

Fig. 2 Averaged nominal stress against longitudinal stretch in simple tension tests on different brain porcine samples. Error bars indicate standard
deviation

where λ1, λ2, λ3 are the principal stretches of the (incom-
pressible) material, and I4 coincides with the square of mate-
rial stretch in the fiber direction.

In Eq. 1, µ is the infinitesimal shear modulus of the unre-
inforced material (no fibers); α and β are parameters; k(> 0)
is a coefficient which measures the increase of stiffness of
the material in the fiber direction. The case with k = 0 cor-
responds to the gray matter tissue.

Meaney suggests to set β = α, which is motivated by the
fact that experimental results on white matter tissues show
small changes of α with the test direction (cf., Prange and
Margulies 2002).

Subsequently, we briefly examine the mathematical prop-
erties of the Meaney model under uniaxial loading, following
the approach adopted in (Merodio and Ogden 2005). We deal
with the strain-energy function (α = β)

W = 2µ

α2

(
λα

1 + λα
2 + λα

3 − 3
)

+2kµ

α2

(
I

α/2
4 + 2I

−α/4
4 − 3

)
, λ1λ2λ3 = 1, (2)

assuming that the load is applied along the X2-axis of a given
Cartesian frame X1, X2, X3 and that fibers can be aligned
along either X2 or X1.

We use the short-hand notation λ for the stretch in the
loading direction (λ ≡ λ2), and the symbols S and T for
the first Piola-Kirchoff stress tensor and the Cauchy stress
tensor, respectively. Such tensor fields are derived from the
strain-energy function through (see, e.g.,Ogden 1984)

S =
3∑

i=1

(
∂W

∂λi

− pλ−1
i

)
v(i) ⊗ u(i);

T =
3∑

i=1

(
λi

∂W

∂λi

− p

)
v(i) ⊗ v(i), (3)

u(i) and v(i) being the eigenvalues of the right and left stretch
tensors U and V, respectively.

Obviously, under uniaxial loading along the X2-axis, the
unique nonzero components of S and T are S(≡ S22) and
T (≡ T22), respectively.
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Fig. 3 Plots S/µ against stretch λ in the fiber direction for α = −5 and k = 0, 0.5, 5, 20 (a); k = 2 and α = −5, 2, 5 (b)

Fig. 4 Plots of S/µ against stretch λ in the direction orthogonal to the fibers for k = 0, 0.5, 5, 20 and α = 5 (a); α = −5 (b)

For uniaxial load in the fiber direction, upon imposing
Sij = 0 for (i, j) �= (2, 2) and enforcing the incompressibil-
ity constraint (J = 1), it is easy to obtain

λ1 = λ3 = λ−1/2, p = 2µλ−α/2

α
, I4 = λ2; (4)

W = 2µ (1 + k)

α2

(
λα + 2λ−α/2 − 3

)
,

S = 2µ (1 + k) λ−1−α/2
(
λ3α/2 − 1

)

α
,

T = λS = 2µ (1 + k) λ−α/2
(
λ3α/2 − 1

)

α
. (5)

It is not difficult to verify that S (as well as T ) is a monotonic
function of λ, for any value of k, approaching −∞ for λ → 0
and +∞ for λ → ∞.

The response of the material is illustrated in Fig. 3, which
shows plots of S/µ against λ for several values of k and α.

Let us now consider the case of uniaxial load orthogonal
to the fibers (fibers aligned along X1). Differently from the
previous case, here we have λ1 = λ3 = λ−1/2 if and only if
k = 0 (excluding the meaningless case α=0).

By writing λ3 = 1/λ1λ (due to incompressibility) and
imposing Sij = 0 for (i, j) �= (2, 2), we get the following
relation between λ1 and λ

λ1

[
λα

1 + k
(
λα

1 − λ
−α/2
1

)]1/α

= λ−1 (6)

which cannot be solved analytically for λ1 except for special
values of α. It is instead possible to numerically determine λ1
as a function of λ, once α and k are given and inadmissible
roots of Eq. 6 (λ1 < 0) are discarded. Under uniaxial loading
orthogonal to the fibers, it can then be shown that the stretch
in the fiber direction exhibits a limiting nonzero minimum
value (limiting contractive stretch) for α > 0 and k �= 0.
Differently, the same stretch exhibits a finite maximum value
(limiting extensional stretch) for α < 0 and k �= 0.

Once λ1 = λ1(λ) has been numerically determined for
given α and k, it is possible to express p, I4, W, S, and T
as functions of λ. The dependence of S/µ on λ is shown in
Fig. 4 for several values of α and k. As can be seen S is rather
insensitive to k in the tensile range for α > 0 (cf., Fig. 4a), or
in the compressive range for α < 0 (Fig. 4b). In each case,
the effects of the transverse reinforcement are very weak for
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Table 1 Uniaxial response in the direction of the fibers (a) and orthogonal to the fibers (b) using the model by Meaney (2003), i.e. eq. (2).
Different values for α, k and λ are displayed, while �% denotes the normalized difference in percent (see the text)

S/µ (load ‖ fibers)
(a)

k = 0 k = 2 k = 10
�%

λ α = −5 α = 5 α = −5 α = 5 α = −5 α = 5

0.80 −1.239 −0.709 −7.438 −4.258 −26.033 −14.902 +74.7
0.90 −0.411 −0.316 −2.467 −1.896 −8.634 −6.635 +30.1
1.20 +0.392 +0.618 +2.351 +3.709 +8.229 +12.981 −36.6
1.30 +0.510 +0.983 +3.060 +5.897 +10.710 +20.638 −48.1

S/µ (load ⊥ fibers)
(b)

k = 2 k = 10

λ α = −5 α = 5 �% α = −5 α = 5 �%

0.80 −1.333 −0.977 +36.4 −1.355 −1.209 +12.1
0.90 −0.465 −0.405 +14.8 −0.484 −0.462 +4.8
1.20 +0.527 +0.675 −21.9 +0.632 +0.690 −8.4
1.30 +0.718 +1.043 −31.2 +0.915 +1.056 −13.3

low values of k(0 < k � 5) and moderately large values of
λ(0.8 � λ � 2).

In Tables 1a and b, we examined the effects of the sign of
the stretch exponent α on the material response, both in the
direction of the fibers (Table 1) and in the direction orthog-
onal to the fibers (Table 2). We considered two values of α
(−5 and 5), and recorded S/µ for selected values of λ, in
compression (λ = 0.8, 0.9) and in tension (λ = 1.2, 1.3).

For loading parallel to the fibers, the normalized differ-
ence � = (S|α=−5 − S|α=+5)/ S|α=+5 between the two
examined responses is independent of the value of the strength-
ening parameter k (cf., Eq. 52). Such a difference ranges from
about +75% for λ = 0.80 to about −48% for λ = 1.30 (see
also Fig. 3b). Differently, for loading orthogonal to the fibers,
� depends on k and decreases as k increases (cf., Fig. 4).

Miller and Chinzei (2002) and Prange and Margulies
(2002) have experimentally validated a first order, isotropic
(k = 0), and viscoelastic formulation of model 2. It is known
that policonvexity of the isotropic model holds if |α| > 1
(cf., Ball 1977; Ciarlet, 1998). Miller and Chinzei estimated
µ0 = 842 Pa (instantaneous value of µ) and α ≈ −4.7 (con-
stant in time) for porcine brain tissue using uniaxial tests.
Instead Prange and Margulies obtained several different esti-
mates for µ0 and α through shear tests on swine tissues ob-
tained from various brain regions. For adult porcine samples,
they found µ0-values varying between 180 and 290 Pa and
α-values varying between 0.03 and 0.075, in relation to the
different nature of the tissues (gray or white matter), regional
origin (thalamus, corona radiata, corpus callosum) and rela-
tive position of axonal fibers with respect to test direction (in
white matter and mixed white/gray matter samples).

4 Material parameter estimation

In the case of uniaxial (tensile and/or compressive) loading
parallel to fibers, it is possible to fit test data (nominal stress

vs. fiber stretch) to model 52 and estimate (1 + k) µ and α.
Successively, it is possible to estimate µ, and thus also k,
through uniaxial tests transverse to the fiber direction, tak-
ing (1 + k)µ and α as fixed. In this second phase, due to the
impossibility of obtaining an analytic expression for the Mea-
ney model, one could fit data to the Ogden model. This can
be acceptable for moderately large stretches (see Section 3).
Alternatively, one could use the fitting procedures proposed
by Ogden et al. (2004) for multiple data sets.

For gray matter (from motor strip), we fitted the isotro-
pic formulation of model 52(k = 0) to the tensile test data
in Fig. 2a (mean S–λ curve), employing the Levenberg–Mar-
quardt optimization algorithm (see, e.g., Twizell and Ogden
1983), which is available under the add-on package <Sta-
tistics—“NonlinearFit”> of Mathematica

©R
(Wolfram 1999).

We obtained the following estimates for the material param-
eters: µ = 319.28 Pa, α = 3.50 (cf., Fig. 5a). For white
matter from the corpus callosum under uniaxial load aligned
with fibers, we fitted the Meaney model to data in Fig. 2b,
obtaining (1 + k)µ = 502.12 Pa, α = 2.38 (cf., Fig. 5b).
Since we did not test brain material from this region under
load transverse to the fibers, we were not able to estimate µ
and k separately in this case. Finally, for white matter from the
corona radiata, we employed the two-level fitting procedure
as described above, to estimate the complete set of material
parameters µ, α, and k. In detail, first we fitted model 52 to the
data in Fig. 2c, obtaining (1+k)µ = 378.55 Pa, α = 6.84
(Fig. 5c). Then, we fitted the isotropic model with α = 6.84 to
the data in Fig. 2d, obtaining µ = 136.82 Pa, which implies
k = 1.77 (Fig. 5d).

In order to evaluate the influence of the different brain
material responses under tensile and compressive loadings
on parameter estimation, we also addressed an extrapola-
tion of the data presented in Fig. 2 in the compression range
λ ∈ (0.8, 1.0). To this end, we adopted the model in Table 2
for the response of the brain material in compression, which
was deduced from Fig. 4 of Miller and Chinzei (2002). In
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Fig. 5 Fits of the augmented Ogden model to simple tension tests (Levenberg–Marquardt nonlinear fit method)

Table 2 Theoretical model used to extrapolate tensile data to the com-
pression range

(
S̄ = S|λ=1.2

)

λ S22 / S̄22
0.80 −4.20
0.85 −2.60
0.90 −1.30
0.95 −0.67

Table 2, S̄ denotes the value of S at λ = 1.2. The fitting of
the extended test data to the Meaney model, conducted as
described above, leads us to new estimates of the material
parameters, which are displayed in Fig. 6.

As can be seen quite different estimates of µ, α, and k may
be obtained with respect to pure tension data (cf., Figs. 5, 6),
and negative values of α may be found. The results in Fig. 6
agree well with those given by Miller and Chinzei (2002).
The values of α obtained in pure tension are not very far
from +5.0, while those corresponding to the complete uni-
axial response are not far from −5.0. Hence, data given in
Tables 1 and 2 are useful to predict the (remarkable) error that
would occur in a finite element model by using tensile mate-
rial constants for the computation of the complete (tensile

and compressive) brain response due to impact/acceleration
loading.

5 Concluding remarks

In this work we have discussed the mechanical behavior of
soft brain tissues. We have focused our attention on trans-
versely isotropic constitutive equations, regional differences,
directional properties, and tensile testing. Fitting procedures
for material parameter estimation have been proposed and
employed in practice, obtaining estimates for porcine brain
materials under pure uniaxial tension and combined uniax-
ial compression-tension. In the latter case, tensile test data
were associated to a theoretical model of the compressive
response, deduced by other available experimental studies
(Miller and Chinzei 2002).

The results obtained highlight the sensitivity of mate-
rial parameters to test conditions. In particular, the exponent
α of the principal stretches appearing in the strain-energy
function changed the sign passing from simple tension (α >
0) to compression-tension loads (α < 0). All the estimates
obtained for α fall within the range |α| > 1.White matter was
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Fig. 6 Fits of the augmented Ogden model to complete uniaxial load data (*: tensile experimental data extrapolated in compression, see Table 2)

found to be stiffer than gray matter, and, within the former,
the corpus callosum showed higher shear modulus than the
corona radiata.

It is evidently necessary to adopt models with at least two
terms for the isotropic part, one describing the response of
the brain matrix tissue in tension and the other the response
in compression, and at least one term for the fiber reinforc-
ing part. Refinements of the Meaney model are obtained by
dealing with strain energies of the form

W =
N∑

n=1

µn

αn

(
λ

αn

1 + λ
αn

2 + λ
αn

3 − 3
)

+
R∑

r=1

(
νrI

βr

4 + ξrI
γr

4 − νr − ξr

)
, λ1λ2λ3 = 1, (7)

where N and R are positive integers and µn, αn, νr , ξr , βr , γr

are material parameters.
Significant developments are expected in future studies,

with reference to a mathematical analysis of model 7 under
general loading conditions (cf., Merodio and Ogden 2002,
2003, 2005); fitting of multiple experimental data relative to
indentation, uniaxial, and shear tests; time-dependent behav-
ior; tissue damage; and large-scale assessment of material
models through finite element modeling of the human head.
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