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Abstract

In this paper, a fully variational constitutive model of soft biological tissues is formulated in the finite strain regime. The model

includes Ogden-type hyperelasticity, finite viscosity, deviatoric and volumetric plasticity, rate and microinertia effects. Variational

updates are obtained via time discretization and pre-minimization of a suitable objective function with respect to internal variables.

Genetic algorithms are used for model parameter identification due to their suitability for non-convex, high dimensional optimization

problems. The material behavior predicted by the model is compared to available tests on swine and human brain tissue. The ability of

the model to predict a wide range of experimentally observed behavior, including hysteresis, cyclic softening, rate effects, and plastic

deformation is demonstrated.

r 2008 Elsevier Ltd. All rights reserved.

Keywords: Biological tissues; Variational; Ogden; Plasticity; Shear; Volumetric damage; Finite strain; Cavitation; Genetic algorithms; Hyper elasticity;

Viscosity; Microinertia
1. Introduction

Soft biological tissues exhibit complex mechanical
behavior, characterized by large strains, rate-sensitivity,
hysteresis, solid/fluid behavior, residual stresses, and
permanent deformation. They consist of cells, extracellular
components, vascular network, and water. One important
example is brain tissue, which exhibits extremely soft
behavior and is often modeled using hyperelastic or
hyperviscoelastic constitutive equations (Prange and
Margulies, 2002; Miller and Chinzei, 1997, 2002; Miller
et al., 2006; Meaney, 2003; Brands et al., 2002; Velardi et al.,
2006). Hyperelastic or viscoelastic anisotropic models for
arterial tissues have been proposed by Holzapfel, Ogden and
Gasser in a series of recent studies (Holzapfel et al., 2000;
Holzapfel, 2001; Gasser et al., 2006). Some authors have
analyzed plasticity, hysteresis, permanent deformation and
biphasic (solid/fluid) behavior of soft biological tissues
(Bergström and Boyce, 2001; Gasser and Holzapfel, 2002;
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Franceschini et al., 2006). Variationally consistent finite
viscoelastic models for rubber-like materials have been
proposed by several authors (Govindjee and Reese, 1997;
Reese and Govindjee, 1998; Fancello et al., 2006). It is often
assumed that biological tissues exhibit mechanical aniso-

tropy, due to the presence of reinforcing fibers in the
extracellular matrix (Prange and Margulies, 2002; Meaney,
2003; Ogden, 2003; Gasser et al., 2006; Velardi et al., 2006).
Nevertheless, some authors argue that ‘‘very soft tissue do
not bear mechanical load and do not exhibit directional struc-
ture (provided that a large enough sample is considered . . .)’’
(see Miller, 2005 and references therein).
Two of the major recognized causes of physiological

damage to living tissues are tensile and shearing structural
failures caused by relative motions within the tissues
(Stoyanovski and Grozeva, 2005). For example, referring
to head traumas, linear forces resulting from straight
ahead acceleration–deceleration impact can be associated
with focal lesions and tensile (cavitation) injuries. Those
may occur at the site of contact (coup injury) or distant,
usually opposite the site of contact (contre-coup injury)
(Lubock and Goldsmith, 1980; Hardy et al., 1994;
Nusholtz et al., 1996; Brennen, 2003; Johnson and Young,
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2006). Rotational forces produced by rotational accele-
ration–deceleration traumas can instead lead to shearing
injuries in the brain parenchyma, between tissue planes of
varying densities (diffuse axonal injury) (Strich, 1956;
Adams and Graham, 1984; Perles and Rewcastle, 1967).

In view of all the above requirements in the modeling of
soft biological tissues, herein we present a fully variational
phenomenological constitutive model with the ability to
capture all of the following:
�
 Rate and microinertia effects.

�
 Complex viscous behavior via a flexible number of

viscoelastic mechanisms capable of representing finite
viscosity.

�
 Hysteresis, deviatoric and volumetric plasticity.

�
 Strong non-linearity, different behavior in tension and

compression, preconditioning and cyclic softening.

�
 Thermal softening and adiabatic heating via thermal

updates.

�
 Void growth and shrinkage during the process of

cavitation (El Sayed et al., 2007).

The rheological representation of the model consists of an
elastoplastic network acting in parallel with several visco-
elastic networks. Quasi-incompressible Ogden-type potentials
govern the elastic behavior, both in the elastoplastic (which
accounts for both deviatoric and volumetric plasticity) and
viscoelastic branches. The Ogden model was chosen
because it can reduce to either the Neo-Hookean model
(N ¼ 1, a ¼ 2), or the Mooney–Rivlin model (N ¼ 2,
a1 ¼ 2, a2 ¼ �2). This indeed shows that the Ogden model
is a practical choice in this framework due to its generality
and capability to reproduce simpler existing models, if
needed, in such an easy fashion. Cyclic stress softening is
reproduced through a combination of elastoplastic and
viscoelastic responses. Deviatoric plasticity allows for
representing shearing-type injuries, while volumetric plas-
ticity is intended to reproduce cavitation injuries, being
related to the expansion of spherical voids or bubbles in a
plastically incompressible matrix (El Sayed et al., 2007). As
the pressure reaches a critical value in tension, the material
is allowed to yield and exhibit volumetric strain softening.
Ortiz and Molinari (1992) analyzed the dynamic expansion
of a single spherical void in an infinite rigid plastic medium
under the action of remote hydrostatic tension. They
reported that if the initial void radius increases by at least
one order of magnitude, the void growth is dominated by
microinertial effects, whereas the effect of rate dependence
of the material and the plastic dissipative effects play a
secondary role. High accelerations sustained by the
material particles in the vicinity of voids result in
significant inertial effects, particularly for materials with
low strain-rate sensitivity (Molinari and Mercier, 2001).
The presented model accounts for microinertia (see Section
2.4). This particular feature is utilized in the simulation of
traumatic brain injury (El Sayed et al., 2007) where
volumetric damage as a result of a high strain rate impact
is evident. Viscous deformation of the viscoelastic networks
allows one to reproduce transient deviatoric and volu-
metric damage to the tissue.The model is formulated in an
isotropic framework and is intended to mimic the presence
of reinforcing fibers through regional dependence of
mechanical properties (Prange and Margulies, 2002).
The number of model parameters is a function of the

number of active Ogden terms and relaxation mechanisms,
and therefore a significant number of parameters may need
to be identified. This requires the use of advanced
techniques for the calibration of model parameters based
on experimental data, hence we propose a procedure based
on genetic algorithms (GA), which have been proved to be
well suited for multimodal non-convex optimization
(Schmitt, 2004). Several sets of experimental data are
compared with model predictions, showing the ability of
the model to reproduce the observed behavior of soft
biological tissues. Monotonic and cyclic tests on brain
tissue are examined, which involve complex behavior such
as cyclic hysteresis, cyclic softening, rate effects, and plastic
deformation.
The current constitutive model is applied to the finite

element simulation of diffuse axonal injury and cavitation
damage associated with traumatic brain injury in El Sayed
et al. (2007).

2. Constitutive model

Let F denote the deformation gradient at an arbitrary
point of the material, and let

F ¼ FeFp ¼ Fe
1F

v
1 ¼ � � � ¼ Fe

MFv
M (2.1)

be its multiple multiplicative decomposition, where M is a
positive integer that defines the number of viscoelastic
(Maxwell-type) relaxation networks that the model pos-
sesses, and that act in parallel with an elastoplastic
equilibrium network; Fe;Fe

1; . . . ;F
e
M are the elastic parts

of F; Fp is the plastic deformation gradient; and Fv
1; . . . ;F

v
M

are the viscous deformation gradients.
The thermo-mechanical behavior of the material derives

from the additive potential

A ¼ AepðF;Fp;Zp;TÞ þ AveðF;Fv
i ;Z

v
i Þ, (2.2)

where Aep and Ave are elastoplastic and viscoelastic
contributions, correspondingly; Zp is a vector of plastic
internal variables; Zv

i are vectors of viscous internal
variables (i ¼ 1; . . . ;M); and T is the absolute temperature.
The first Piola–Kirchhoff stress P, and the thermody-

namic forces Yp and Yv
i conjugate to Zp and Zv

i follow
from

P ¼
qA

qF
, (2.3)

Yp ¼ �
dA

dZp , (2.4)

Yv
i ¼ �

dA

dZv
i

. (2.5)
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The free energy is assumed to have the additive structure

AepðF;Fp;Zp;TÞ þ AveðF;Fv
i ;Z

v
i Þ

¼W eðFFp�1;TÞ þW pðZp;TÞ

þ
XM
i¼1

W e
i ðFFv�1

i ;TÞ þ r0CvT 1� log
T

T0

� �
, (2.6)

where W e is the elastic strain-energy density associated
with the elastoplastic branch; W p is the plastic stored
energy; W e

i ði ¼ 1; . . . ;MÞ are the elastic strain-energy
densities corresponding to the viscous relaxation mechan-
isms; r0 is the mass density per unit undeformed volume;
Cv is the specific heat per unit mass at constant volume and
T0 is the reference temperature.

The internal variables Fp, Zp and Fv
i , Zv

i are closely
related to each other by the means of suitable differential
equations or flow rules to be introduced later.

2.1. Ogden-type hyperelasticity

It is assumed that the elastic strain energies admit a
decomposition into deviatoric and volumetric parts.
Furthermore, it proves convenient for the constitutive
updates to introduce the logarithmic elastic strain measures

ee ¼ 1
2
logðFeTFeÞ ¼ 1

2
logðFp�TCFp�1

Þ, (2.7)

ee
i ¼

1
2
logðFe

i
TFe

i Þ ¼
1
2
logðFv

i
�TCFv

i
�1
Þ, (2.8)

ee ¼ devðeeÞ; ye
¼ trðeeÞ, (2.9)

ee
i ¼ devðee

i Þ; ye
i ¼ trðee

i Þ, (2.10)

where C is the right Cauchy–Green deformation tensor
ðC ¼ FTFÞ, and devð�Þ and trð�Þ are the deviator and the
trace operators, respectively. Thus, the elastic strain-energy
density decompositions are

W eðee;TÞ ¼W e;volðye;TÞ þW e;devðee;TÞ, (2.11)

W e
i ðe

e
i ;TÞ ¼W e;vol

i ðye
i ;TÞ þW e;dev

i ðee
i ;TÞ, (2.12)

with

W e;volðye;TÞ ¼
k
2
½ye
� aðT � T0Þ�

2, (2.13)

W e;devðee;TÞ ¼
X3
j¼1

XN

n¼1

mn

an

ð½expðee
j Þ�

an � 1Þ, (2.14)

W e;vol
i ðye

i ;TÞ ¼
ki

2
ðye

i Þ
2, (2.15)

W e;dev
i ðee

i ;TÞ ¼
X3
j¼1

XNi

n¼1

mi;n

ai;n
ð½expðee

i;jÞ�
ai;n � 1Þ. (2.16)

In (2.11)–(2.16), k and ki (i ¼ 1; . . . ;M) are bulk moduli; mn

and mi;n are shear moduli associated with the Ogden
potentials (Ogden, 1984) adopted for deviatoric elasticity;
an and ai;n are dimensionless real parameters; N is the
number of Ogden terms considered for the time-infinity
behavior; Ni is the number of Ogden terms selected for the
ith relaxation mechanism; ee

j and ee
i;j ðj ¼ 1; 2; 3Þ are the

eigenvalues of ee and ee
i , respectively.

Polyconvexity of the Ogden models requires the follow-
ing according to (Ball, 1977; Ciarlet, 1998):

mnan40; janj41; 8n ¼ 1; . . . ;N, (2.17)

mi;nai;n40; jai;nj41; 8n ¼ 1; . . . ;Ni; 8i ¼ 1; . . . ;M.

(2.18)

For convenience, let

m0 ¼
1

2

XN

n¼1

mnan þ
XM
i¼1

XNi

n¼1

mi;nai;n

 !
, (2.19)

m1 ¼
1

2

XN

n¼1

mnan (2.20)

denote the consistent shear moduli in the small strain
regime, which correspond to initial and long term
behaviors, respectively.

2.2. Deviatoric and volumetric plasticity

The plastic stored energy is also assumed to admit an
additive decomposition into volumetric and deviatoric
parts as

W pðZp;TÞ ¼W p;volðyp;TÞ þW p;devð�p;TÞ, (2.21)

where

Zp ¼ fyp; �pg, (2.22)

in which yp
X0 and �p

X0 are effective volumetric and
deviatoric plastic strains, respectively. The flow rule that
relates Zp and Fp is assumed to be

_FpFp�1 ¼ _ypNp þ _�pMp, (2.23)

where Mp and Np are second order tensors subject to the
normality constraints

trðMpÞ ¼ 0; Mp �Mp ¼ 3
2
; Np ¼ �1

3
I . (2.24)

Irreversibility of plastic flow requires

_�pX0; _yp
X0. (2.25)
2.2.1. Deviatoric plasticity

The deviatoric plastic behavior is modeled via the
hardening power law

W p;devð�p;TÞ ¼
n s0ðTÞ�

p
0

nþ 1
1þ

�p

�p
0

� �ðnþ1Þ=n

, (2.26)

where n is the hardening exponent, s0ðTÞ is the yield
stress, and �p

0 is the reference deviatoric plastic strain.
Furthermore, the yield stress is assumed to be a function
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of temperature

s0ðTÞ ¼ s0ðT0Þ 1�
T � T0

Tm � T0

� �l

, (2.27)

where T0 is the reference temperature, Tm is the melting
temperature and l is the thermal softening exponent.
2.2.2. Volumetric plasticity

We assume that the volumetric plastic behavior is related
to the expansion or collapse of spherical voids in a
plastically incompressible matrix (Ortiz and Molinari,
1992; Weinberg et al., 2006; Weinberg and Ortiz, 2005).
The initial void volume fraction of the body in the
undeformed configuration is given by

f 0 ¼ Nv
4pa3

0

3
, (2.28)

where Nv is the void density (number of voids per unit
undeformed volume); and a0 is the initial void radius.

Neglecting the elastic volume change of the voids, the
plastic volumetric deformation can be expressed as a
function of the void radius

Jp ¼ 1� f 0 þNv
4pa3

3
; f ¼

f 0 þ Jp � 1

Jp , (2.29)

where Jp is the determinant of Fp, and a is the void radius
in the deformed configuration. For purely volumetric
deformations the flow rule (2.23) becomes

d

dt
log Jp ¼ trðNpÞ_yp

¼ �_yp, (2.30)

which implies

_yp
¼

d

dt
log Jp

����
����, (2.31)

which in turn means that the internal variable yp represents
a measure of the accumulated volumetric plastic deforma-
tion. By introducing the expression of the stored energy of
a single spherical void in a power-law hardening material
(Ortiz and Molinari, 1992), and integrating the energies
stored by each void (dilute limit), we obtain

W p;volðyp;TÞ ¼
ns0ðTÞ�

p
0

nþ 1
Nv

4pa3

3
gðyp; nÞ, (2.32)

where

gðyp; nÞ ¼

Z 1=f

1

1þ
2

3�p
0

�

�log
x

x� 1þ f 0=ðf 0 þ exp yp
� 1Þ

�ðnþ1Þ=n

dx.(2.33)

2.3. Evolution laws—rate effects

Evolution laws for the internal variables are obtained
variationally by assuming the existence of differentiable
kinetic potentials cðYp;Fp;TÞ and fiðY
v
i ;F

v
i ;TÞ such that

_Zp ¼
qc
qYp ;

_Zv
i ¼

qfi

qYv
i

ði ¼ 1; . . . ;MÞ, (2.34)

where Zp ¼ fyp; �pg, Zv
i ¼ f�

v
i;1; �

v
i;2; �

v
i;3g, _�v

i;j being the
eigenvalues of dv

i ¼
_Fv

i Fv�1
i , while Yp ¼ fY p;Zpg and Yv

i ¼

fsv
i;1;s

v
i;2;s

v
i;3g are the thermodynamic forces defined in the

appendix.
The dual kinetic potentials c�ðFp; _Zp;TÞ, f�i ðF

v
i ;
_Z

v

i ;TÞ
are introduced via the Legendre transformations

c�ðFp; _Zp;TÞ ¼ sup
Yp
fYp � _Zp � cðYp;Fp;TÞg, (2.35)

f�i ðF
v
i ;
_Zv

i ;TÞ ¼ sup
Yv

i

fYv
i �
_Zv

i � fðYv
i ;F

v
i ;TÞg

ði ¼ 1; . . . ;MÞ, (2.36)

that in turn satisfy

Yp ¼
qc�

q _Zp
; Yv

i ¼
qf�i
q _Zv

i

. (2.37)

The dual kinetic potentials may also be decomposed into
deviatoric and volumetric components

c�ðFp; _Zp;TÞ ¼ c�;volðJp; _yp;TÞ þ c�;devð_�p;TÞ, (2.38)

f�i ðF
v
i ;
_Z

v

i ;TÞ ¼ f�;voli ð_y
v

i ;TÞ þ f�;devi ð_ev
i ;TÞ, (2.39)

where

c�;volðJp; _yp;TÞ ¼
m2s0ðTÞ_�

p
0

mþ 1
Nv

4pa3

3
ð1� f 1=m

Þ
2 _a

_�p
0a

����
����
ðmþ1Þ=m

,

(2.40)

c�;devð_�p;TÞ ¼
m2s0ðTÞ_�

p
0

mþ 1

_�p

_�p
0

� �ðmþ1Þ=m

, (2.41)

f�;voli ð _yv
i ;TÞ ¼

Zvoli

2
_yv
i

2
, (2.42)

f�;devi ð_ev
i ;TÞ ¼

X3
j¼1

XNi

n¼1

Zdevi;n

ai;n
ð½expð_ev

i;jÞ�
ai;n � 1Þ. (2.43)

In (2.40) and (2.41) m is the rate-sensitivity exponent;
_�p
0 is the reference plastic strain rate; and the void
radius a is regarded as a function of Jp through (2.29).
The rates _J

p
and _yp are related through (2.31). In (2.42)

and (2.43) Zvoli and Zdevi;n are the volumetric and deviatoric
viscous coefficients, respectively ði ¼ 1; . . . ;M; n ¼ 1;
. . . ;NiÞ. Non-Newtonian viscosity may be modeled
by assuming that these coefficients are deformation
dependent.

2.4. Microinertia

The microinertia attendant to the plastic expansion of
voids is regarded as dissipated energy in a system of shell-
like particles with variable mass (Ortiz and Molinari, 1992;
Weinberg et al., 2006). Reformulation of this problem into
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brain tissue by Miller and Chinzei (2002).
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an equivalent system of particles with constant mass leads
to a microkinetic energy of the form (Weinberg et al.,
2006):

Lðb; _bÞ ¼
3

2
rv0

_b
2
; rv0

¼ r0Nv
4pa3

0

3
; b ¼

2

5

a5=2

a
3=2
0

. (2.44)

The introduction of microinertia effects a change in the
thermodynamic stress Tp

Tp ¼ FeT P � A;Fp þ
qL

qFp �
d

dt

qL

q _Fp

� �
. (2.45)

The reader should refer to the appendix for details on the
incremental updates.

3. Parameters identification via GA

We present in this section a parameter identification
method via GA. The identification procedure assumes that
a collection of Ne experimental results is available for
model parameter identification, through a data set of the
form

f½xe
i ; ȳ

e
i �i¼1;...;Ne

p
ge¼1;...;N

e

, (3.1)

where xe
i are experimental observations of a suitable strain

measure x, and ȳe
i are the corresponding recordings of a

stress measure y, and Ne
p is the number of data points for

experiment e. The best-fit values of selected parameters

p ¼ ffpmgm¼1;...;Pg (3.2)

are sought, under simple bounds of the form

p 2 D ¼ ½plb
1 ; p

ub
1 � � � � � � ½p

lb
P ; p

ub
P �. (3.3)

If p is assigned, numerical simulations of the experiments
can be employed to get a set of predictions

ffxe
i ; y

e
i ðpÞgi¼1;...;Ne

p
ge¼1;...;N

e

, (3.4)

and their fitting performance can be evaluated through the
fitness function

f ðpÞ ¼ max
i
jye

i ðpÞ � ȳe
i j, (3.5)

which is an L1 norm of the residuals ye � ȳe. This leads to
the multivariate minimization problem

min
p2D

f ðpÞ, (3.6)

which is expected to be non-convex and affected by
multiple local optima (Ogden et al., 2004).

GAs are well suited for the minimization of non-convex
objective functions due to their ability to explore the entire
search space looking for a global minima (Schmitt, 2004).

We adopt a steady-state GA, where a population of
individuals is created sampling the search space. A
temporary population is created at every generation and
added to the previous one. The worst individuals are
removed in order to maintain the size of the population
constant. The roulette-wheel selection method was utilized
with scaled fitness scores. Any individual has a probability
p of being chosen where p is equal to the fitness of the
individual divided by the sum of the fitnesses of all the
individuals in the population. An initial population of
500–1000 individuals was used along with a mutation
percentage of 0.01 and a crossover percentage of
0.6. Although the algorithm was set to terminate after
200–500 generations, it started to converge to a minima,
which could be local or global, after approximately 80
generations.
4. Model validation

4.1. Monotonic tests on brain tissue

Uniaxial tests performed by Miller and Chinzei (2002)
on short cylindrical samples of swine brain tissue are
considered. These tests were performed in both tension and
compression (Fig. 1), under different strain rates (moder-

ately high, intermediate and slow strain rates). Brain
samples were extracted between the arachnoid membrane
and the ventricle surface of the swine brains, with a 30mm
diameter and a 13mm height, in order to measure averaged

isotropic properties of the tissue.
The experimental results by Miller and Chinzei (2002)

can be summarized into five stress–strain curves (Miller
et al., 2006), relating the first Piola–Kirchhoff traction Pz

(vertical force divided by the undeformed cross-sectional
area) with the mean stretch l (current sample height 2h

divided by the initial height 2H, cf. Fig. 1). Two curves are
in tension (_l ¼ 0:64; 0:64� 10�2 s�1), and three in com-
pression (_l ¼ 0:64; 0:64� 10�2; 0:64� 10�5 s�1).
A first set of parameter estimates was obtained through a

viscoelastic fitting model (ve), ignoring the plastic part of
the equilibrium network. We considered two relaxation
mechanisms, one term Ogden models, and independent
tensile and compressive responses. The selected fitting
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parameters are

p ¼ fm1; a1; t1; m1;1; a1;1; t2;m2;1; a2;1g ðP ¼ 8Þ, (4.1)

where

ti ¼
Zdevi;1

mi;1

ði ¼ 1; 2Þ (4.2)

denote the relaxation times of the viscous networks.
The tensile–compressive GA estimates are shown in the

first two columns of Table 1. The positive fm; ag pairs in
tension ðNe ¼ 2Þ, negative pairs in compression ðNe ¼ 3Þ,
and significantly higher shear moduli m0, m1 in compres-
sion confirm the well known notion in the literature of the
heterogeneous tensile–compressive nature of brain tissue
Table 1

GA material parameter estimates for (Miller and Chinzei, 2002)

monotonic tests on brain tissue

Ten. ve Comp. ve Global ve Global ve/ep

t ¼ 1

m1 (Pa) 106.4 �147.6 �45.8 �30.6

a1 1.89 �2.95 �5.79 �8.00

m1 (Pa) 100.4 218.2 132.6 122.2

t1 (s) 4.68 4.31 0.18 0.19

m1;1 (Pa) 106.4 �481.6 �66.9 �53.2

a1;1 1.89 �2.39 �17.99 �19.09

t2 (s) 62.43 598.81 499.20 490.30

m2;1 (Pa) 106.4 �144.0 �74.4 �68.9

a2;1 1.89 �4.56 �6.32 �6.42

m0 (Pa) 301.34 1122.7 969.9 851.8

s0 (Pa) – – – 315.28

�p0 – – – 0.30

f (Pa) 23.13 158.56 255.32 180.17

0.7 0.8 0.9 1.1 1.2 1.3 1.4 1.5
�

-2000

-1000

300

Pz [Pa]

� = 0.64 s-1

experimental
tens-comprve

0.7 0.8

� = 0.

-3000

Fig. 2. Independent tension–compression viscoelasti
(Miller and Chinzei, 2002; Prange and Margulies, 2002;
Meaney, 2003; Velardi et al., 2006). A comparison between
experimental and fitting stress–strain curves is shown in
Fig. 2.
Further estimates were obtained for the mixed tensile–

compressive response ðglobal response: Ne ¼ 5Þ, alterna-
tively considering a pure viscoelastic (ve), and a viscoelas-
tic/elastoplastic (ve/ep) model. In the first case we
proceeded as before, while in the second we activated the
plastic section of the time-infinity network, assuming

p ¼ fm1; a1; t1;m1;1; a1;1; t2; m2;1; a2;1;s0; �
p
0g ðP ¼ 10Þ (4.3)

(plastic rate effects were deactivated).
The global GA estimates are shown in the third and

fourth columns of Table 1, while the corresponding fitting
curves are depicted in Fig. 3. It can be observed that the
global response is best fitted with negative fm; ag pairs, and
that the inclusion of plastic behavior significantly increases
the fitness performance.
Miller and Chinzei (2002) estimated m0 ¼ 156Pa,

m1 ¼ 842Pa, a1 ¼ a1;1 ¼ a2;1 ¼ �4:7, through a simplified
‘‘finite linear’’ viscoelastic modeling, accounting for large
deformations and small perturbations away from thermo-
dynamic equilibrium. Those results are in good agreement
with the global GA estimates of Table 1. The same authors
estimated t1 ¼ 0:50 s and t2 ¼ 50:0 s, that is, a second
relaxation time about 10 times smaller than our global
estimates (t2 	 500 s, cf. Table 1). It is worth noting that
our finite viscoelastic model converges more rapidly toward
thermodynamic equilibrium than finite linear viscoelastic
theories (Reese and Govindjee, 1998). This implies that
larger relaxation times are needed in order to extend the
viscous effects over time.
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Table 2

GA material parameter estimates for Franceschini et al. (2006) tests on

specimens of brain white matter

Compression–

tension

Tension–

compression

Three

cycles

t ¼ 1

m1 (Pa) �297.29 �659.71 �69.81

a1 �2.98 �30.0 �40.0

m1 (Pa) 442.96 9895.96 1396.11

t1 (s) 19.81 2.13 0.57

m1;1 (Pa) �223.89 �133.37 �610.73

a1;1 �6.31 �2.02 �23.76

t2 (s) 211.17 207.57 7.62

m2;1 (Pa) 2.05 109.30 �4.95

a2;1 21.55 15.26 �1.00

t3 (s) – – 24.58

m3;1 (Pa) – – 74.67

a3;1 – – 1.00

m0 (Pa) 1171.41 10864.3 8691.45

s0 (Pa) 1273.64 81.32 91.64

�p0 1.0e�4 0.176 7.6e�4

n 10.0 7.51 1.78

_�p0 – – 0.01

m – – 14.35
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4.2. Cyclic uniaxial tests on brain tissue

A final set of estimates was obtained considering the
cyclic quasistatic uniaxial tests performed by Franceschini
et al. (2006) on human brain tissue excised during autopsy.
We examined two one-cycle compression–tension (first
compression and then tension) and tension–compression
tests (Franceschini et al., 2006, Fig. 1), and a multi-cycle
test (Franceschini et al., 2006, Fig. B.3) performed on
prismatic specimens of white matter harvested from
different brain regions. In the latter case, we analyzed the
first three cycles of a 20 cycle test, activating three
viscoelastic networks and plastic rate effects.

The GA material parameter estimates and a comparison
between experimental and fitting curves are illustrated in
Table 2 and Figs. 4 and 5. It is evident from the figures that
our model is able to capture hysteresis, strong non-
linearity, different behavior in tension and in compression,
relaxation, preconditioning and cyclic softening of brain
tissue. The results of Table 2 show that human brain
samples analyzed by Franceschini et al. (2006) manifest
higher initial and long term shear moduli in comparison
with the pig brain samples tested by Miller and Chinzei
(2002) (cf. Table 1).
5. Discussion and conclusions

We have demonstrated the ability of the presented
material model to reproduce the behavior of swine and
human brain tissue. The model combines finite viscoelas-
ticity and finite elastoplasticity, decoupling of volumetric
and deviatoric responses. The viscoelastic response is
described through Ogden-type models including volumetric
deformation. Deviatoric plasticity allows for reproducing
shearing injures, like e.g. diffuse axonal damage in brain
tissue. Volumetric plasticity is related to the expansion
of voids or bubbles in the material (Ortiz and Molinari,
1992), as physically observed in soft biological tissues
undergoing crazing, cavitation or both. Those specific
features of the model are demonstrated by El Sayed et al.
(2007).
The large number of material parameters required by the

model demanded a systematic approach for their identifi-
cation. We formulated an identification procedure based
on genetic algorithms, and the flexibility and versatility of
this method was demonstrated by calibrating parameters
for brain tissue under different loading conditions.
The model presented herein is primed for use in the

simulation of impact and wave induced damage in
biological tissues. We address the application of this model
to traumatic brain injury in a separate publication
(El Sayed et al., 2007). Future work may include extending
the model to anisotropy to account for directional
mechanical response of tissues crossed by oriented or
slightly dispersed fibers.
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