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a b s t r a c t

This article is concerned with the mechanical properties of dense, vertically aligned CNT

foams subject to one-dimensional compressive loading. We develop a discrete model

directly inspired by the micromechanical response reported experimentally for CNT

foams, where infinitesimal portions of the tubes are represented by collections of

uniform bi-stable springs. Under cyclic loading, the given model predicts an initial

elastic deformation, a non-homogeneous buckling regime, and a densification response,

accompanied by a hysteretic unloading path. We compute the dynamic dissipation of

such a model through an analytic approach. The continuum limit of the microscopic

spring chain defines a mesoscopic dissipative element (micro–meso transition) which

represents a finite portion of the foam thickness. An upper-scale model formed by a

chain of non-uniform mesoscopic springs is employed to describe the entire CNT foam.

A numerical approximation illustrates the main features of the proposed multiscale

approach. Available experimental results on the compressive response of CNT foams are

fitted with excellent agreement.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Since their discovery (Radushkevich and Lukyanovich, 1952; Oberlin et al., 1976; Iijima et al., 1995), carbon nanotubes
(CNTs) have been widely studied to understand their chemical, electrical and mechanical responses. Because of their
unique properties and their multiscale nature, forests of vertically aligned carpets of CNTs have been proposed for a variety
of applications ranging from protective packaging systems to new tactile sensors (Iijima, 1991; Veedu et al., 2006;
Daraio et al., 2004b; Majumder et al., 2005; Maheshwari and Saraf, 2008). The mechanical response of individual
nanotubes under axial and radial deformation and their bending/buckling modes, have been studied extensively using
experimental, theoretical and molecular-dynamics analysis (Iijima et al., 1995; Yakobson and Brabec, 1996; Falvo et al.,
1997; Belytschko et al., 2002; Arroyo and Belytschko, 2003; Pantano et al., 2004; Cao and Chen, 2006). The elastic
modulus E of individual carbon nanotubes has been reported to be very high: � 1 TPa (Pantano et al., 2004). However, in
experiments this value can vary widely, depending on the number of defects, the CNT microstructure and the synthesis
method followed.

The study of the mechanical properties of CNTs was later extended to bundles of nanotubes under pressure (Chesnokov
et al., 1999; Peters et al., 2000; Chan et al., 2003; Liu et al., 2005; Qi et al., 2003) and to CNT forests under nanoindentation
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(Mesarovic et al., 2007). The study of thin structural foams (Gibson and Ashby, 1998) for cushioning (Zhang et al., 2009),
energy dissipation (Teo et al., 2007) and protection (Liu et al., 2008) has received increasing attention for several practical
applications, including mitigation of explosive loading (Nesterenko, 2001). Nanotube-based films have been reported as an
excellent alternative to regular foams, exhibiting a super-compressible foam-like behavior under compressive cycling
loads (Suhr et al., 2007; Teo et al., 2007; Tong et al., 2008; Deck et al., 2007; Cao et al., 2005). Investigations on the dynamic
response of foam-like forests of CNTs under dynamic ball impacts have also been performed (Daraio et al., 2004a,b, 2006;
Misra et al., 2009). Available results show a strongly nonlinear response that appears to be very suitable for energy-
absorbing layered materials in noise and shock wave mitigation and as nonlinear springs for assembling nonlinear acoustic
crystals. The response of the CNT forests was also found to be strongly dependent on the forests’ microstructure (height,
density, alignment, etc.) and growth method. In certain cases the possible presence of plastic deformation and fracturing of
the tubes was reported (Daraio et al., 2004b).

Mechanical models consisting of chains of identical bi-stable springs have been extensively studied by several authors,
since they can describe a series of relevant nonlinear material behaviors (e.g., phase transformations, reversible pseudo-
plasticity, hysteresis, fracture), through the interplay between macroscopic and microscopic length scales (e.g. Ortiz, 1999;
Puglisi and Truskinovsky, 2000, 2002, 2005). It is well-known that such systems exhibit a ‘bumpy’ multi-well energy
landscape, allowing for multiple metastable equilibria (cf., e.g., Blesgen, 2007; Braides and Cicalese, 2007; Charlotte and
Truskinovsky, 2002, 2008; Ortiz, 1999; Puglisi and Truskinovsky, 2000, 2002). In particular, Pampolini and Del Piero (2008)
have recently found that they well-describe the hysteretic response of open-cell polyurethane foams under confined
compression tests.

In this article, we present a phenomenological model of the mechanical response of carbon nanotube foams under
compressive loading, which is inspired by some distinctive features of the micromechanical response reported earlier
(cf., e.g., Cao et al., 2005; Zbib et al., 2008; Misra et al., 2009; Hutchens et al., 2010). The given model makes use of
multiscale chains of lumped masses connected by nonlinear springs. It captures the ‘three-phase’ compressive deformation
response of CNT forests shown by a number of experimental studies. The compressive deformation response is
characterized by an initial elastic deformation, a non-homogeneous buckling (or plateau) regime, often featuring a
sawtooth-like profile, and a densification phase. This three-phase response, which is common for cellular materials (Gibson
and Ashby, 1998), is usually accompanied by marked hysteresis and strain localization in CNT structures. We show in
Section 3 that a series of bi-stable elastic springs (Fig. 1) described by the potential in Eq. (1) exhibits a similar stress–strain
response (Fig. 6), and through-the-thickness localization of the axial deformation (Fig. 7). The latter effect mimics the snap-
buckling events observed through Scanning Electron Microscope (SEM) in real CNT arrays (cf. Fig. 2 of Cao et al., 2005;
Fig. 3 of Hutchens et al., 2010). Such a model therefore appears to be effective in describing the microstructure rearrange-
ments taking place in compressed CNT foams, within a simple 1D framework.

We focus on the time-independent component of the hysteresis associated with the compressive loading/unloading of
CNT foams, which is essentially due to effects such as friction, entanglement and electrostatic interaction between
individual and bundles of carbon nanotubes (Suhr et al., 2007; Teo et al., 2007; Tong et al., 2008; Deck et al., 2007; Misra
et al., 2009; Cao et al., 2005). The macroscopic hysteresis is described as a rate-independent phenomenon induced by the
succession of infinitesimal viscous events at the microscopic scale (Puglisi and Truskinovsky, 2005). As a result, the
mechanical model presented in this work does not account for viscosity or other rate-dependent effects at the macroscopic
scale, which we address to future work.
Fig. 1. (a) Schematic diagram of a vertically aligned CNT foam, uniformly loaded in compression. (b) SEM of the as-grown carbon nanotube film showing

the alignment and the microstructural layering due to the growth process (Deck and Vecchio, 2005). (c) Modeling of a portion of a CNT foam as a

collection of microscopic mass-spring elements.



Fig. 2. Mechanical energy Vi of the generic microscopic (bi-stable) spring.

Fig. 3. Stress si versus strain ei relationship in the generic microscopic spring.
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Most of the available studies on bi-stable spring chains consider only two spatial-temporal micro–macro scales.
The formulation adopted in the present study introduces instead three different time-space scales: a ‘microscopic’ scale (of
the order of nanometers), associated with the individual bi-stable springs and an infinitesimal portion of the total foam
thickness Ltot; a ‘mesoscopic scale’ (of the order of micrometers), corresponding to the limit of an infinite series of
microscopic springs and representing a finite portion of Ltot; and a ‘macroscopic’ scale (of the order of millimeters),
describing the entire foam. We start with the derivation of a discrete 1D model at the microscopic level, showing N+1
particles having nearest neighbors connected by N uniform nonlinear springs. The discrete spring potentials are chosen to
allow the study of softening and strain localization of the tubes. This is discussed in Section 2. Here, we build on the
concept of bi-stable springs discussed by Puglisi and Truskinovsky (2000, 2002, 2005). In Section 3 we determine
analytically the continuum limit N-1 of the microscopic spring chain, by particularizing to the present case the analysis
presented in Puglisi and Truskinovsky (2005). Such a limit defines a mesoscopic dissipative element. In Section 4 we then
formulate an upper scale model of the entire CNT foam through an information-passing approach by superimposing
a finite number of mesoscopic dissipative springs with different mechanical properties. We account in this way for
inhomogeneities induced by the CNT growth process, which several authors think to be a leading cause of the discrete
folding/buckling events described above (Cao et al., 2005; Hutchens et al., 2010). The introduction of non-uniform
mechanical properties allows us to enrich the formulation given in Puglisi and Truskinovsky (2000, 2002, 2005), Pampolini
and Del Piero (2008) for bi-stable spring chains, modeling macroscopic hardening, instead of a perfectly ‘plastic’ response.
Hardening-type post-buckling regimes are commonly observed in compression tests on CNT foams (Cao et al., 2005; Misra
et al., 2009). We present in Section 5 a numerical micro–meso convergence study, and the fitting of mesoscopic model
parameters to different available experimental data on compressed CNT foams. We demonstrate that the proposed model
and its numerical implementation are capable of reproducing the physical behavior of real CNT foams with excellent
agreement. We end the article with a critical evaluation and discussion of the results and an outlook.
2. The mechanical model at the microscopic scale

We model a small-scale portion of a CNT array as a collection of N+1 lumped masses m0,y, mN piled up one over the
other (with N42). In this configuration, m0 is clamped at the bottom of the pile at the position x0=0, whereas mN is on top
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at position xN ¼ L40, referring to the unstressed reference configuration (Fig. 1c). The nearest neighboring mass points are
connected by N nonlinear microscopic springs. We assume that the reference configuration displays equal distances
hN :¼ L=N between the masses, and denote the axial displacement of the mass mi (positive upward) by uN

i (with uN
0 =0, see

Fig. 1c). We set uN :¼ fu
0
N , . . . ,uN

Ng.
For the mechanical energy Vi of the microscopic spring placed between nearest neighbors mi�1 and mi, we assume the

three-branch expression defined by

ViðeiÞ ¼

Vi
aðeiÞ ¼ �ki

0½eiþ lnð1�eiÞ�, e ioei
a,

Vi
bðe

iÞ ¼ c1þsi
aeiþ

1

2
ki

bðe
i�ei

aÞ
2, ei

areirei
c ,

Vi
cðeiÞ ¼ c2�ki

c½ei�ei
�þ lnð1�ðei�ei

�ÞÞ�, e i
c oe i,

8>>><
>>>:

ð1Þ

with ei ¼ ei�ei
0, where

ei ¼ eiðuNÞ ¼
ui�1

N �ui
N

hN
ð2Þ

is the strain measure associated with such a spring (positive in compression). In (1), the quantity ei
0Z0 determines the

value of ei corresponding to the first minimum of Vi (‘equilibrium’ or ‘initial’ strain); ki
040, ki

bo0, ki
c 40, ei

a40 and ei
c Zei

a

are constitutive parameters (five independent parameters); the constants c1o0 and c240 are such that Vi
aðei

aÞ ¼ Vi
bðe

i
aÞ,

Vi
bðe

i
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cðe
i
cÞ; and it results
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i
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a
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cþsi
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, ð3Þ
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with

si
a ¼ ki

0

ei
a

1�ei
a

, si
c ¼ s

i
aþki

bðe
i
c�e

i
aÞ: ð5Þ

The relationship

siðe iÞ ¼ Vi
u¼

ki
0
ei

1�e i , eioei
a,

si
aþki

bðe
i�ei

aÞ, ei
areire i

c ,

ki
cðe

i�ei
�Þ

1�ðe i�ei
�Þ

, ei
c oei

8>>>>><
>>>>>:

ð6Þ

defines the stress si acting in the spring connecting mi�1 with mi.
We deduce from (1) that Vi owes the two-well profile shown in Fig. 2. Accordingly, the stress–strain relationship (6) is

described by the non-monotone profile depicted in Fig. 3. It is worth noting that the mechanical response of the generic
microscopic spring encompasses two stable phases, for eioei

a (phase a) and ei4ei
c (phase c), respectively; and an

intermediate unstable phase b for ei
aZei

Ze i
c (spinodal regime). For future use, we set

Dsi :¼ si
c�s

i
a, e i

a :¼
ei

asi
c

si
aþei

aDsi
, ð7Þ

and let si
M denote the slope of the linear branch of the convex hull of Vi (Maxwell stress, see Fig. 3). We also convene to

denoting the value of ei where si ¼ si
M in phase a by ei

aM
, and the value of e i such that si ¼ si

M in phase c by ei
cM

. With
reference to the generic spring, Eq. (6)1 highlights that k0

i represents the elastic stiffness at zero stress in phase a ðei ¼ 0Þ.
On the other hand, Eq. (6)2 points out that kb

i represents the (constant) stiffness in the spinodal phase b, while Eq. (6)3

reveals that kc
i represents the stiffness at zero stress in phase c ðei ¼ ei

�Þ. By symmetric we name the case with kc
i =k0

i

and by ‘asymmetric’ the one with ki
caki

0. The meaning of the other quantities appearing in Eqs. (1)–(7) is illustrated in
Figs. 2 and 3.

3. Dynamic relaxation and hysteresis at the mesoscale

There are two fundamental characteristics reported experimentally in the bulk compressive response of dense vertically
aligned CNTs forests: (i) a good recovery of deformation even at large compressive strains after a sufficiently large recovery
time (Cao et al., 2005; Misra et al., 2009); and (ii) a strong hysteresis, observed in particular in as-grown foams, attributed
to several potential effects, including friction, entanglement and electrostatic interaction between individual and bundles
of carbon nanotubes (Suhr et al., 2007; Teo et al., 2007; Tong et al., 2008; Deck et al., 2007; Misra et al., 2009; Cao et al.,
2005). In the present section we will analyze such a dissipative behavior by studying a dynamic switching process at the
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microscopic scale between the phases (a) and (c) described in Figs. 2 and 3. This is in line with the ideas in Puglisi and
Truskinovsky (2002, 2005). Following Puglisi and Truskinovsky (2005), we name a response of the material plastic, if the
strain ei of a single spring exceeds ei

0þei
a. For a chain of N springs, this can be characterized by the occurrence of loading

and unloading stress plateaux. However, we notice that our analysis excludes accumulation of permanent deformation,
therefore the end point of one hysteresis cycle coincides with the start point of the next cycle. In this sense, the present
hysteresis model is time-independent. We will show in Section 5.2 that it is nevertheless capable of capturing a previously
accumulated permanent deformation (mechanical preconditioning), through suitable definition of the initial strains ei

0.
Within the current section, we rescale for simplicity L to unity, and assume that Vi is independent of the spatial position.

Accordingly, we drop the superscript i in front of the spring properties. This because we refer the following analysis to a
finite portion of the CNT foam, regarding such a mesoscopic element as the limit for N-1 of a series of N identical
microscopic springs. Furthermore, we restrict our attention to the case with kc=k0 (‘symmetric’ model), and e0 ¼ 0. For the
present analysis we require a certain smallness condition on ea and ec relating to strong pinning that disappears in the limit
N-1, see Puglisi and Truskinovsky (2002).

We define the mechanical energy of the foam as

ENðuNÞ ¼
1

N

XN

i ¼ 1

VðeiðuNÞÞ, ð8Þ

with the effective potential

VðeÞ ¼

�k0½eþ lnð1�eÞ� if eoea,

c1þsaeþ
kb

2
ðe�eaÞ

2 if earerec ,

c2�k0½e�e�þ lnð1�eþe�Þ� if ec oe:

8>>><
>>>:

Let s be the given total stress, coinciding at equilibrium with the stress in each individual spring ðs¼ s1 ¼ � � � ¼ sNÞ. The
total average strain is simply

eðuNÞ :¼
1

N

XN

i ¼ 1

eiðuNÞ:

We model plasticity by the gradient flow equations (Puglisi and Truskinovsky, 2005)

n_ei
ðuNÞ ¼ �

@FN

@ei
ðe1ðuNÞ, . . . ,eNðuNÞÞ, ð9Þ

with the total energy

FNðe1, . . . ,eNÞ :¼
1

N

XN

i ¼ 1

½VðeiÞ�sei�:

The evolution equation (9) lets ei evolve towards local minimizers of FN . We are interested in the limit n-0 which
amounts to infinitely fast evolution such that eðuNÞ attains a local minimizer of FN . First we construct the equilibrium
points. Inside the i-th spring element, the strain must satisfy the condition V uðeiÞ ¼ s. For given total stress s, there are at
most the three local minimizers

�ea ¼
s

k0þs
, �eb ¼

s�sa

kb
þea, �ec ¼

sð1þe�Þþk0e�
k0þs

¼ �eaþe�:

Let p, q, 1�p�q denote the phase fractions of the minimizers a, b, and c, which corresponds to having Np, Nq, N(1�p�q)
springs in phase a, b, and c, respectively.

As e/VðeÞ is concave in Regime b, if the elongation of a spring in the local minimum �eb is altered by an arbitrarily small
perturbation, it will move (according to the sign of the perturbation) to either �ea or �ec . In consequence, any system of N

springs with qa0 is unstable and we may in the following restrict to the case q=0.
From e¼ p�eaþð1�pÞ�ec we compute the equilibrium stress–strain relation to be

sðeÞ ¼ k0ðe�epÞ

1�ðe�epÞ
, ð10Þ

with

ep :¼ ð1�pÞe�,

that can in a natural way be identified with the plastic strain. From (10) we see that s only depends on the elastic strain
eel :¼ e�ep.

For the energy of the equilibrium configuration with Np springs in phase a we find

ÊpðeÞ ¼�k0
sðeÞ

k0þsðeÞ
þ ln

k0

k0þsðeÞ

� �� �
þð1�pÞc2 ¼�k0½ðe�epÞþ lnð1�ðe�epÞÞ�þð1�pÞc2:



Fig. 4. Overall stress–strain pattern for a chain with N=10 microscopic springs (left), and limit response for N-1 (right).
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Note that Êp has a finite number of local minimizers (depending on the remaining parameter p). As explained in Puglisi
and Truskinovsky (2005), the switching takes place between branches that differ in exactly one element in the phase state
and the succession of N such steps describes the transition from one homogeneous state to the next. Each of these steps can
be thought of as the combination of an elastic part and a plastic part.

The stress–strain curve of the foam follows a sawtooth pattern as illustrated in Fig. 4 (left). We denote by A
i

the end
point of the i-th branch. The A

i
are the final states of the elastic steps (B

i
-A

iþ1
) where the system remains on the same

metastable branch as long as possible. The plastic steps (A
i
-B

i
) are characterized by that the total strain is fixed and the

system switches between metastable branches that are neighbors ([Np]=1, and [Q] generically denotes the jump of a
quantity Q). These considerations lead to the representation

A
i
¼ e

Ai
,

k0ea

1�ea

� �
, B

i
¼ e

Ai
,
k0ðea�e�=NÞ

1þe�=N�ea

� �
, 1r irN

in the ðe,sÞ�diagram, where

e
Ai
:¼ eaþ

i�1

N
e�: ð11Þ

So we can compute that a plastic step is characterized by

½e� ¼ 0, ½Np� ¼ 1, ½s� ¼ � k0e�
Nð1�eaÞð1þe�=N�eaÞ

,

whereas an elastic step fulfills

½e� ¼ e�
N

, ½Np� ¼ 0, ½s� ¼ þ k0e�
Nð1�eaÞð1þe�=N�eaÞ

:

The evolution equation (9) lets ei evolve towards local minimizers of FN . Now we want to look at the energetics of the
plastic and the elastic regime. For an elastic step we have the energy difference

DÊN ¼ k0½lnð1�eaÞ�lnð1�eaþe�=NÞ�þ
k0e�þc2

N
:

In the same spirit, we calculate that for a system with NZ1 springs, the plastic dissipation is

DN :¼ k0½lnð1�eaþe�=NÞ�lnð1�eaÞ��
c2þk0e�

N
¼ k0

1

xN

e�
N
�

c2þk0e�
N

for a xN 2 ð1�ea,1�eaþe�=NÞ: ð12Þ

Clearly, xN-1�ea for N-1.
In one hysteresis cycle, there are N loading steps and N steps when the system is unloaded, so we have totally 2N steps

that dissipate energy. The total dissipated energy D in a cycle becomes in the limit N-1

D¼ lim
N-1

2NDN ¼
2k0e�ea

1�ea
�2c2

����
����: ð13Þ

We put the modulus here to ensure that the dissipation is positive.
The limit stress–strain pattern for N-1 is shown in Fig. 4. It corresponds to a ‘‘perfectly plastic’’ behavior with stress

plateaux at s¼ sa ¼ k0ea=ð1�eaÞ (loading plateau) and s¼ sc ¼ saþDs (unloading plateau). We emphasize again that this
ansatz only works for rate-independent plasticity where the energy only depends on start point and end point of the
evolution, but not on the evolution path itself. The limit dissipation (13) equals the area enclosed by the limit stress–strain
response. As already observed, we confer the behavior shown in Fig. 4 (right) to a mesoscopic spring element, which
represents a finite portion of the CNT foam thickness.
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4. Multiscale numerical modeling

We formulate in the present section a multiscale numerical model of a nonlinear mass-spring chain, where each spring
represents either a microscopic bi-stable element (cf. Section 2), or a mesoscopic dissipative element of the kind
introduced in the previous section. We introduce two different time scales: an external (slow) time t 2 ½t0,t1� ruling an
evolution law of the applied boundary conditions, and an internal (fast) time t 2 ½t0,t1� governing the dynamic relaxation of
the system for fixed t. Depending on the adopted model for the individual springs, we may have that the t corresponds to
the microscopic time scale (i.e. to the time ruling the microscopic behavior) and t to the mesoscopic time (micro–meso
transition), or, alternatively, that t corresponds to the mesocopic time and t to the macroscopic time (meso–macro
transition).

Let us denote a prescribed displacement time-history of the topmost mass mN by dðtÞ. We introduce a discretization
ft1, . . . ,tMg of the loading interval ½t0,t1� and compute the system response for fixed t¼ tk and d ¼ dðtkÞ, through
integration with respect to t of the evolution equations

mi €̂u
i

Nþg
i _̂u

i

N ¼ s
iþ1�si, i¼ 1, . . . ,N, ð14Þ

which generalize the gradient flow equations (9). In (14), û
i
N ¼ û

i
NðtÞ denote transient displacement histories of the masses

m0,y,mN at fixed t; si indicates the current stress in the ith spring (it is understood that it results si ¼ 0 for i4N); and
g1, . . . ,gN denote damping coefficients.

Since we are only interested in the final equilibrium configuration of the transient internal motion, we ‘overdamp’ such
a motion by introducing fictitious masses and damping factors in (14). In detail, we set the integration time step Dt to unity
and introduce fictitious masses mi ¼ akiDt2, with ki ¼ hNðV

iþViþ1Þ00 and aZ100. This ensures Dtr0:1
ffiffiffiffiffiffiffiffiffiffiffiffi
mi=ki

p
(i=1,y,N)

(Fraternali et al., 2010). Moreover, we let the generic gi be equal to the ‘critical’ damping defined by

gi ¼ 2
ffiffiffiffiffiffiffiffiffiffi
miki

p
: ð15Þ

The equations of motion (14) are associated with the initial conditions

û
i
Nðt¼ t0Þ ¼ ðu

i
NÞ
ðk�1Þ, i¼ 0, . . . ,N�1, û

N
Nðt¼ t0Þ ¼ d

_̂u
i

Nðt¼ t0Þ ¼ 0, i¼ 0, . . . ,N, ð16Þ

where (uN
i )(k�1) (i=1,y,N) are the displacements of the masses at the external time t¼ tk�1. Eqs. (14), (16) are numerically

integrated through a fourth-order Runge–Kutta integration scheme, up to an internal time t1 such that it results
jsiþ1�sijr10�6

jsNj for all i 2 f1, . . . ,N�1g. When the internal equilibrium is reached, we set k’kþ1 and re-iterate
problem (14).

For the micro–meso convergence study of Section 5.1, we consider the stress–strain law described by Eq. (6) and
illustrated in Fig. 3 for each microscopic spring. For the simulation of compression tests on real CNT foams, we instead
adopt non-uniform chains of mesoscopic springs characterized by a suitable numerical regularization of the stress–strain
Fig. 5. Hardening-type regularization of the mesoscopic response.
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pattern shown in Fig. 4. In detail, we introduce a ‘hardening’ type regularization consisting of the following stress–strain
law (Fig. 5)

si ¼

sða,iÞ ¼ ki
0ei=ð1�eiÞ, ðeio êa

i
Þ or ððêa

ioe ioei
aÞ and ðflagðk�1ÞacÞÞ,

sðd,iÞ ¼ si
aþki

hþ ðe
i�ei

aÞ, ðei
areir êi

cÞ and ðflagðk�1Þ
¼ aÞ,

sðe,iÞ ¼ si
aþDsiþki

h�ðe
i�e i

cÞ, ðêi
are ire i

cÞ and ðflagðk�1Þ
¼ cÞ,

sðc,iÞ ¼ ki
cðei�ei

�Þ=ð1�ðei�ei
�ÞÞ, ðei4 êc

i
Þ or ððei

c oeio êi
cÞ and ðflagðk�1ÞaaÞÞ,

8>>>>>><
>>>>>>:

ð17Þ

where for each t¼ tk (k=1, y, M), we set

flagðkÞ ¼

a, ðeio êa
i
Þ or ððêa

ioeioei
aÞ and ðflagðk�1ÞacÞÞ,

c, ðei4 êc
i
Þ or ððe i

c oe io ê i
cÞ and ðflagðk�1ÞaaÞÞ,

flagðk�1Þ, otherwise:

8>><
>>:

ð18Þ

The quantities ki
0,Dsi,ki

c ,ea
i ,ei

c ,ki
hþ and kh�

i in (17) are constitutive parameters (seven independent parameters), while êi
a

and êi
c are computed by solving for ei the equations

sða,iÞ ¼ sðe,iÞ, sðc,iÞ ¼ sðd,iÞ, ð19Þ

respectively. One gets back to a perfectly plastic mesoscopic response by setting the regularization (‘hardening’)
parameters kh +

i and kh�
i equal to zero. The quantities ei are given by (2) under the replacement of uN

i with û
i
N .

5. Applications

The present section deals with applications of the above numerical model to a convergence study and the fitting of
laboratory tests on the cyclic compression of CNT foams. In the first case, series of springs with constitutive Eq. (6) were
considered (model # 1: micro–meso transition), letting the total number of springs of the system increase progressively
(micro–meso transition). In the second case, springs corresponding to Eq. (17) were examined instead (model # 2: meso–
macro transition). The optimal fit of available experimental stress–strain curves was performed by varying the constitutive
parameters of Eq. (17) and the number of mesoscopic springs N. Depending on the value of N, a significant number of
parameters may need to be identified. This lead us to employ a fitting procedure based on genetic algorithms, which have
been proved to be well-suited for multi-modal non-convex optimization (cf. e.g. El Sayed et al., 2008; Fraternali et al.,
2010). In all the examined examples, we name global strain the quantity e¼ ðL�‘Þ=L, ‘ denoting the total deformed length of
the chain.

5.1. Convergence study and micromechanics of ‘plastic’ steps

We examined uniform chains with fixed length L¼ 860mm and increasing number of microscopic springs N, subject
to a complete loading–unloading compression cycle up to a global strain e¼ 0:85 (as in the experiments examined in
Section 5.2.2). We employed model #1 with kc=k0 (‘symmetric’ case); e0 ¼ 0; and the material properties listed in Table 1
of the Appendix for all the springs. Fig. 6 shows the numerically computed dissipation DN versus strain e and stress s
versus e responses of such a model for different numbers of springs (N=5, 10, 15 and 50). The s�e plot in Fig. 6 highlights
that the global stress–strain response alternates elastic steps and ‘plastic’ jumps of s at constant e, oscillating converging to
the ‘perfectly plastic’ mesoscopic behavior shown in Fig. 4. The DN�e plot in Fig. 6 instead shows that DN converges to the
limit dissipation defined in Eq. (13). The above results therefore confirm the theoretical predictions of Section 3. Selected
equilibrium configurations and a deformation animation (online version only) of the model with N=5 springs are given in
Fig. 7. One can easily recognize the configurations corresponding to the plastic steps of the microscopic chain, displaying
the snap of a single spring and the simultaneous elastic rearrangement of the remaining springs (cf., e.g., configurations 3
and 5 from the left). It is worth noting that the ordering of the springs is of no relevance in the present case. Therefore, the
succession of the spring snaps can indifferently proceed from the bottom to the top of the chain, as shown in Fig. 7, from
top to bottom, or in random sequence. In a real-world chain of springs, the parameters as k0 or ea would never be perfectly
identical and the small deviations of the different springs would break the symmetry and determine the ordering when the
springs snap.

5.2. Fitting of experimental results on compressed CNT foams

We examined the experimental results of a cyclic compression test on a doubly-anchored CNT foam run at the Graduate
Aerospace Laboratories of the California Institute of Technology, and the results given in Cao et al. (2005) on the cyclic
compression of a foam-like CNT film. We fit model # 2 both to the first loading/unloading cycle of the examined foams, and
to selected cycles following an initial mechanical preconditioning, employing the Breeder Genetic Algorithm (BGA)
presented in the Appendix. For the fit of the first cycles we assumed ei

0 ¼ 0 in each spring, while for the cycles following the



Fig. 6. Response of uniform chains of microscopic bi-stable springs with properties shown in Table 1 of the Appendix: DN dissipation (kJ/m2); s global

stress (MPa); e global strain (filled marks: loading; unfilled marks: unloading).
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foam preconditioning we set ei
0 ¼ e0 in each spring, e0 being the macroscopic (permanent or transient) strain observed at

zero stress at the end of the previous loading cycle. For the cycles following the preconditioning, we considered two
different fitting models: one accounting for hysteresis (numerical (1): Dsio0 in each mesoscopic spring), and the other
one without hysteresis (numerical (2): Dsi ¼ 0 in each mesoscopic spring). Since all the adopted fitting models account for
macroscopic time-independent behavior (cf. Section 3), our fitting results are independent of the strain rate actually
applied in the experiments.
5.2.1. Compression tests on a doubly-anchored CNT foam

We performed cyclic compression tests on vertically aligned multi-walled carbon nanotube forests (800mm in length
with sample area � 14 mm2) grown by chemical vapor deposition (CVD) using ferrocene and toluene as precursors. The
average diameter of the as-grown CNTs was � 50 nm. The as-grown CNT foams were partially anchored between two
polymer layers to provide structural support and sample transportability.



Fig. 7. Selected equilibrium configurations (left) and deformation animation (right-online version only) of the model described in Table 1 of the

Appendix, for N=5.
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For anchoring the CNT foams on a substrate we spin-coated polydimethylsiloxane (PDMS) on top of a glass slide at 800
RPM to get 502100mm thick films. Before curing the polymer we partially embedded the CNT-foams at 80 1C for 1 h. After
curing, the carbon nanotubes protruding from the substrate showed excellent vertical alignment with an average height of
� 750mm. The process was repeated turning the sample upside down to obtain a ‘doubly anchored’ system (i.e. sandwich
structure with polymer on both sides and the CNT foam in the middle). Typical experimental results obtained from cyclic
compression tests are shown in Fig. 8 (top).

We separately fit the first and the fourth stress–strain cycles shown in Fig. 8 to model # 2, considering the general
‘asymmetric’ case with ki

caki
0 (i=0,y,N�1) and a chain with N=4 springs. For the fourth cycle we accounted for an initial

strain e0 ¼ 0:20, which approximatively corresponds to the strain measured at zero stress at the end of the third loading
cycle (Fig. 8, top). The best fit parameters obtained through BGA optimization are given in Table 2 of the Appendix.
A comparison between best-fit and experimental overall stress–strain curves is shown in Fig. 8 (center and bottom). One
observes that the non-uniform dissipative mass-spring model is able to capture the real hysteretical behavior of the
examined CNT foam, both at their pristine state (first cycle) and after mechanical preconditioning (fourth cycle), through a
multi-plateaux overall stress–strain profile. In particular, Fig. 8-bottom and Table 2 of the Appendix show that the
response after preconditioning can be roughly described through a suitable non-dissipative model.

5.2.2. Compression tests on a foamlike CNT film

We fit a cyclic compression test given in Cao et al. (2005) for a CNT foam-like film with thickness L¼ 860mm. The
analyzed experiment performed 1000 loading/unloading cycles up to a global strain e¼ 0:85 (cf. Fig. 3B of Cao et al., 2005
and Fig. 3 of the Appendix). The fitting of the ‘symmetric’ formulation of model # 2 (kc

i =k0
i in each spring) to the first cycle

is presented in the Appendix. A dramatic improvement of the fitting ability of model # 2 was obtained by considering the
‘asymmetric’ case ðki

caki
0Þ. As shown in Table 4 of the Appendix, we were indeed able to reduce the fitting fitness to

0.808 MPa by using a BGA-optimized ‘‘asymmetric’’ multiscale model with 10 springs. Such a fitness value is markedly
lower than that obtained for the corresponding ‘‘symmetric’’ case (1.462 MPa, cf. Table 3 of the Appendix). We were also
able to optimally fit the 1000th cycle of the examined experiment to the ‘asymmetric’ model, obtaining a fitting fitness of
0.444 MPa through the BGA-optimized 5 spring model described in Table 4 of the Appendix. The excellent match between
numerical and experimental results for the present case is illustrated by Fig. 9, which compares predicted and measured
overall stress–strain responses. For the first cycle we observe that the numerical multi-plateaux response closely
approaches the continuous experimental recording as the number of mesoscopic springs increases from 5 to 10 (Fig. 9, top
and center). Regarding the 1000th cycle, we assumed e0 ¼ 0:14 (cf. Cao et al., 2005). Fig. 9, bottom shows that the
experimental stress–strain profile corresponding to the 1000th cycle is already excellently approximated by a 5 spring
model with dissipation (numerical (1)), and roughly described by an analogous model without dissipation (numerical (2)).
One observes from Tables 3 and 4 of the Appendix that the average value of the stiffness k0

i among all springs is
approximatively equal to the elastic modulus estimated by Cao et al. (2005) for the present CNT foam ð � 50 MPaÞ.

6. Discussion and outlook

In this article we derived a mechanical model describing the behavior of CNT foams under uniform compression,
through the concept of bi-stable springs presented in Puglisi and Truskinovsky (2000, 2002, 2005), which has been recently
applied to open-cell polyurethane foams (Pampolini and Del Piero, 2008).

The proposed model differs from other bi-stable mass-spring models available in the literature (refer e.g. to Blesgen,
2007; Braides and Cicalese, 2007; Charlotte and Truskinovsky, 2002, 2008; Ortiz, 1999; Puglisi and Truskinovsky, 2000,



Fig. 8. Fitting of compression tests on a doubly-anchored CNT foam (top) to non-uniform ‘asymmetric’ spring models (properties in Table 2 of the

Appendix).
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Fig. 9. Fitting of experimental compressive stress–strain curves of CNT foams (Cao et al., 2005) to non-uniform ‘asymmetric’ spring models (properties in

Table 4 of the Appendix).
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2002, 2005, and references therein), due to the presence of an intermediate, mesoscopic scale, placed in between the
microscopic scale of the bi-stable springs, and the macroscopic scale of the entire structure. The microscopic scale aims to
describing the dynamic snapping of the carbon nanotubes due to local buckling (Cao et al., 2005; Zbib et al., 2008; Misra
et al., 2009; Hutchens et al., 2010), while the mesoscopic scale is intended to describe the time-independent hysteretic
behavior of finite portions of the CNT foam. The latter typically follows from kinking, sticking and entanglement of the
tubes, friction and other microscopic dissipative effects (Suhr et al., 2007; Teo et al., 2007; Tong et al., 2008; Deck et al.,
2007; Misra et al., 2009).

Another relevant difference between the present model and most of the available bi-stable mass-spring models consists
of the fact that the current model accounts for non-uniform mesoscopic spring properties, while other models usually
consider uniform chains of bi-stable springs (see e.g. Puglisi and Truskinovsky, 2000, 2002; Pampolini and Del Piero, 2008).
Such a mechanical inhomogeneity allows us to account for hardening of the macroscopic response in the post-buckling
range (Cao et al., 2005; Misra et al., 2009).

The numerical results given in Section 5 demonstrated that our methods are capable of recovering available
experimental results on the compression of CNT foams with excellent agreement. We fitted the parameters of the
mesoscopic springs through a Breeder Genetic Algorithm, which is well-suited for global non-convex optimization. The
fitting of experimental stress–strain curves allowed us to recognize that non-uniform dissipative mass-spring models are
well-suited to capture the main features of the real compressive response of CNT foams, and specifically strain localization
due to CNT kinking and time-independent hysteresis. The latter was found to be relevant during loading/unloading from
the pristine state, and progressively decaying after mechanical preconditioning. By setting to zero the dissipation of the
model, we were led to obtain a rough, non-linearly elastic approximation of the examined experimental behaviors after
preconditioning.

The distinctive features of the multiscale model presented in this work highlight its potential use to describing the
mechanical behavior of multilayered systems composed of alternating CNT foams and anchoring polymeric films (Misra
et al., 2009). We will address such an extension of the current model in future work. Other future directions of the present
research might regard the description of permanent deformation through fatigue or damage mechanisms; the inclusion of
rate-dependent dissipative effects at the macroscopic scale; and the modeling of long-range interactions mimicking van
der Waals forces.
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