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Error Estimates for a Lumped Stress Method for Plane
Elastic Problems
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The variational properties and the convergence order of a
Lumped Stress Method (LSM) for 2D anisotropic elasticity are pre-
sented. Such a method can be thought of as a rational procedure to
approximate a plane continuous body by a truss-like structure. The
traction problem of plane elasticity is considered, making use of the
Airy stress function. Under suitable assumptions, the convergence
of the LSM is proved on using arguments of the mathematical the-
ory of mixed finite element methods. The given result is useful in
order to prove the accuracy of the discrete-continuum approxima-
tion in technical applications.
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1. INTRODUCTION
Mixed finite element methods are often used to approxi-

mate a given fourth-order boundary value problem with two
second-order problems (primal/dual approaches; see, e.g., [1–
10]), especially in the case of biharmonic boundary value prob-
lems (Airy’s formulation of isotropic plane elasticity; bending
of isotropic Kirchhoff plates; etc.).

In [1] Glowinski first proved the convergence of mixed
methods for the biharmonic problem. Subsequently, Ciarlet and
Raviart [2, 3] obtained the rate of convergence of mixed meth-
ods involving polynomials of degree k ≥ 2, while Scholtz in
[4, 5] deduced an analogous result for piecewise linear poly-
nomials. In [6–8] Davini and Pitacco have proposed a Lumped
Strain Method for Kirchhoff plates, obtaining convergence re-
sults through the mathematical theory of mixed methods [7], and
�-convergence theory [8].

A result for mixed approximations of general fourth-order
problems can be found in [10], where again polynomials of
degree k ≥ 2 are taken into consideration.

The present paper deals with the convergence proof of a
Lumped Stress Method (LSM) recently appeared in the liter-
ature for anisotropic 2D elasticity [11, 12].
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The LSM involves piecewise-linear approximations of the
primal variable (Airy’s stress function ϕ), which are defined on
a given triangulation of the body (primal mesh). It also makes use
of piecewise-constant approximations of the secondary, tensor-
valued variable, which coincides with the hessian of ϕ. The
latter is defined over a dual mesh.

Such a choice of approximating function spaces is based on a
pre-minimization procedure inspired by the relaxation strategies
discussed by Kohn et al. in [13, 14]. It leads to a complete decou-
pling of the dual problem from the primal one (unconstrained
mixed method, cf. Davini and Pitacco [6, 7]).

The physical meaning of the LSM, numerical convergence
studies and applications to relevant benchmark problems have
been presented in [11, 12]. It has been shown that such a method
offers the possibility to rationally approximate a continuous
body through a non-conventional truss-structure [12]. The skele-
ton of the primal triangulation can instead represent a truss struc-
ture, whose complementary energy is defined per dual elements.

In what follows, some preliminaries about mixed approaches
to fourth-order problems are given (Theorems 1, 2), and the
mathematical formulation of the LSM is presented. Moreover,
the convergence order of the method is obtained (Theorem 3),
assuming suitable regularity assumptions about finite element
meshes.

In the last section of the paper, the physical meaning of the
LSM is examined and numerical applications are presented.

Differently from topology optimization methods (refer, e.g.,
to Bendsøe and Sigmund [15]), the stress network in the LSM
is arbitrary and doesn’t need to follow the principal direction of
stress or other optimal directions.

Nevertheless, the association of such a method with opti-
mal design techniques awaits attention. The use of the LSM for
shape optimization of masonry structures has been presented in
[16, 17].

2. VARIATIONAL FORMULATIONS OF PLANE
ELASTICITY

2.1. Airy’s Formulation
Let us consider the traction problem of a plane, bounded and

simply connected open set �, owing a polygonal boundary ∂�.
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Throughout the paper, {ê1, ê2} denotes a Cartesian basis,
Greek indices are assumed to range over {1, 2}; summation con-
vention over repeated indices is employed; and use is made of
the two-dimensional alternator eαβ.

Let p denote the surface traction prescribed on ∂�; n̂ the
unit outward normal to ∂�; b the body force density (per unit
volume); and Ē a given field of initial strains (eigenstrains).

The equilibrium equations of � are the following

div T + b = 0 in �, (1)

Tn̂ + b = p on ∂�, (2)

where T = Tαβeα ⊗ eβ is the stress field.
The general solution of (1)–(2) can be expressed in terms of

the Airy stress function ϕ (see, e.g., Gurtin [18]) as

T = T∗ + WT HϕW, (3)

where T∗ is a particular stress field in equilibrium with b and p;
Hϕ is the hessian of ϕ

Hϕ = ∇(∇ϕ) = ϕ,αβêα ⊗ êβ; (4)

and W is the skew tensor with components Wαβ = eαβ. The
function ϕ must be such that ϕ(σ) = 0 and ∂ϕ

∂n (σ) = 0 on ∂�,
σ being the arc length along ∂�.

We assume that the fourth order compliance tensor

A = Aαβγδêα ⊗ êβ ⊗ êγ ⊗ êδ, (5)

is positive definite.
A variational formulation of the elastic problem is given by

the principle of minimum complementary energy. It can be stated
as

Find ϕ0 ∈ H 2
0 (�) such that

E(ϕ0) = inf
ϕ∈H 2

0 (�)
E(ϕ). (6)

where

E(ϕ) = 1

2

∫
�

Hϕ · A[Hϕ]da − l(ϕ). (7)

In (7),A is the transformed compliance tensor of components

Aαβγδ = eαμeβνeγρeδσ Aμνρσ; (8)

l(ϕ) is the linear functional

l(ϕ) = −
∫

�

Hϕ · WT (Ē + A[T∗])Wda; (9)

and

H 2
0 (�) =

{
ϕ ∈ H 2(�)/ϕ = 0,

∂ϕ

∂n
= 0 on ∂�

}
(10)

is the space of admissible stress functions, H m(�) denoting the
Hilbert space of functions which are square integrable together
with their distributional derivatives up to the mth order. We refer
the reader to [3, 9, 19, 20] for the mathematical background of
the present study.

On applying the Green formula, it is easy to transform the
linear functional (9) into the form

l(ϕ) =
∫

�

f ϕda, (11)

where

f = −eαμeβν

(
Ēαβ + AαβγδT ∗

γδ

)
,μν

. (12)

In what follows we will use the assumption f ∈ L2(�).
Notice that the functional (7) differs from the complementary

energy of � by the constant term 1/2
∫
�

T∗ · (Ē + A[T∗]) da.

2.2. Mixed Formulation
Let us introduce the intermediate variable ψψ = ψαβeα ⊗ eβ,

satisfying the constraint

ψψ = −Hϕ. (13)

A mixed formulation of (6) can be obtained on introducing
the functional

F((ϕ, ψψ)) = 1

2

∫
�

ψψ · A[ψψ] da − �((ϕ, ψψ)), (14)

defined over the function space

V = {
(ϕ, ψψ) ∈ H 1

0 (�) × (L2(�))4/β((ϕ, ψψ), q) = 0,

∀q ∈ (H 1(�))4 }
, (15)

where � : V → R denotes the following linear form

�((ϕ, ψψ)) = l(ϕ) =
∫

�

f ϕ da, (16)

while β : (H 1
0 (�) × (L2(�))4) × (H 1(�))4 → R denotes the

bilinear form

β((ϕ, ψψ), q) =
∫

�

∇ ϕ · div q da −
∫

�

ψψ · q da. (17)

In the following Theorem 1, we show that the equation
β((ϕ, ψψ), q) = 0 , ∀q ∈ (H 1(�))4 represents a variational
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formulation of the constraint (13) and the boundary condition
∂ϕ/∂n = 0 on ∂�. We also show that problem (6) is equivalent
to the following constrained minimization problem

Find (ϕ∗, ψψ∗) such that

F((ϕ∗, ψψ∗)) = inf
(ϕ,ψψ)∈V

F((ϕ, ψψ)). (18)

The symbols ‖ϕ‖m and |ϕ|m will be employed for the usual
norm and seminorm of the scalar function ϕ in the space H m(�),
respectively. Moreover, the notation

‖p‖m =
(

2∑
α,β=1

‖pαβ‖2
m

)1/2

, |p|m =
(

2∑
α,β=1

∣∣pαβ

∣∣2
m

)1/2

,

(19)

will be used to denote the norm and the seminorm of the tensor-
valued function p = pαβêα ⊗ êβ ∈ (H m(�))4.

Theorem 1. The constrained minimization problem (19) has
one and only one solution (ϕ∗, ψψ∗), ϕ∗ being coincident with
the solution ϕ0 of problem (6) and ψψ∗ = −Hϕ0.

Proof. Equipped with the product norm

‖(ϕ, ψψ)‖V = (|ϕ|21 + ‖ψψ‖2
0

)1/2
, (20)

the space V defined as in (15) is a Hilbert space.
Consider now the following symmetric bilinear form a : V×

V → R

a((ϕ, ψψ), (ϕ′, ψψ′)) =
∫

�

ψψ · A[ψψ′] da. (21)

Upon introducing the maximum characteristic value �max of
the positive definite tensor A (�max > 0), from the definition
(20) and the Cauchy-Schwartz inequality we get

|a((ϕ, ψψ), (ϕ′, ψψ′))| ≤ �max ‖(ϕ, ψψ)‖V ‖(ϕ′, ψψ′)‖V , (22)

and thus a is continuous on V .
Furthermore, the choice q = ϕ(ê1 ⊗ ê1 + ê2 ⊗ ê2), i.e.,

div q = ∇ϕ, in Eq. (17) gives

|ϕ|21 =
∫

�

∇ϕ · ∇ϕ da =
∫

�

(ψ11 + ψ22)ϕ da

≤
√

2 C(�) ‖ψψ‖0 |ϕ|1 , (23)

C(�) being the Poincarè constant. The substitution of Eq. (23)
into Eq. (20) leads us to write

‖(ϕ, ψψ)‖2
V ≤ (1 + 2C(�)2) ‖ ψψ‖2

0

≤ (1 + 2C(�)2)

�min
a((ϕ, ψψ), (ϕ, ψψ)), (24)

�min being the minimum characteristic value of A (�min > 0).

Hence, a is also coercive on V . On the other hand, since the
linear form l, defined as in Eq. (16), is continuous on V under
the assumption f ∈ L2(�), the existence and uniqueness of the
solution (ϕ∗, ψψ∗) of problem (18) follow from the Lax-Milgram
Lemma.

Now, observe that the following relation

∫
�

Hϕ∗ · q da = −
∫

�

∇ϕ∗ · div q da, (25a)

holds, in the sense of distributional derivatives, for any q ∈
(D(�))4, with D(�) = C∞

0 (�).
On the other hand, the couple (ϕ∗, ψψ∗) is an element

of the space V defined in Eq. (15), and hence it results
β((ϕ∗, ψψ∗), q) = 0 , ∀q ∈ (H 1(�))4 . Since D(�) ⊂ H 1(�),
from Eq. (17) we deduce

∫
�

∇ϕ∗ · div q da =
∫

�

ψψ∗ · q da , ∀q ∈ (D(�))4. (25b)

Formulae (25a,b) imply Hϕ∗ = −ψψ∗ ∈ (L2(�))4. Using this
results into the relation

∫
�

(∇ ϕ∗ · div q − ψψ∗ · q) da

= −
∫

�

(Hϕ∗ + ψψ∗) · q da +
∫

∂�

∇ϕ∗ ⊗ qn̂ dσ = 0, (26)

which holds for each q ∈ (H 1(�))4, we next deduce that ∇ϕ∗ =
0 on ∂�, that is ϕ∗ ∈ H 2

0 (�). Analogous considerations lead us
to conclude that each couple (ϕ, ψψ) ∈ V is such that ϕ ∈ H 2

0 (�)
and ψψ = −Hϕ.

Noticing that (ϕ∗, ψψ∗) is also solution of the variational equa-
tions

∫
�

ψψ∗ · A[ψψ] da =
∫

�

f ϕ da, ∀(ϕ, ψψ) ∈ V, (27)

which represent the optimality conditions of the functional F ,
we finally find

∫
�

Hϕ∗ · A[Hϕ] da =
∫

�

f ϕ da, ∀ϕ ∈ H 2
0 (�), (28)

and thus ϕ∗ coincides with the minimizer ϕ0 of the functional
E defined as in Eq. (7).

3. THE LUMPED STRESS METHOD
Consider a double partition of the domain �, that is a primal

mesh

�h = {�m, m ∈ {1, 2, . . . , M}}, (29)
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FIG. 1. Primal and dual meshes.

composed of triangular elements, and a dual mesh

�̂h = {�̂n, n ∈ {1, 2, . . . , N }}, (30)

formed by polygons which are built around each node of the
primal mesh �h . We assume that dual polygons �̂n divide into
two equal parts the edges of the primal triangles �m (Figure 1).

Here and in what follows, the index h refers to the mesh size,
defined as h = supm∈{1,2,...,M}{diam(�m)}, where diam(�m) =
max{|x − y| , x, y ∈ �m}.

We let Sh and Th denote the space of piecewise linear scalar
function defined over �h (polyhedral functions), and the space
of piecewise constant tensor-valued functions defined over �̂h ,
respectively. Moreover, we let S0h denote the subspace of Sh

consisting of polyhedral functions vanishing at the boundary of
�, that is: S0h = Sh ∩ H 1

0 (�).
Our numerical approach to the principle of minimum comple-

mentary energy (Lumped Stress Method or LSM), can be divided
into two steps [13, 14].

First, for a given ϕ̂ ∈ S0h , we solve the pre-minimization
problem

Find ψ̂ψ = ψ̂ψ(ϕ̂) ∈ Vϕ̂ such that

U (ψ̂ψ ) = inf
ψ̂ψ∈Vϕ̂

U (ψψ), (31)

where

U (ψψ) = 1

2

∫
�

ψψ · A[ψψ] da, (32)

and

Vϕ̂ = {ψψ ∈ (L2(�))4/β((ϕ̂, ψψ), q̂) = 0, ∀q̂ ∈ Th}. (33)

Next, we approach the unconstrained minimization problem

Find ϕ̂h ∈ S0h such that

Eh(ϕ̂h) = min
ϕ̂h∈S0h

Eh(ϕ̂), (34)

where

Eh(ϕ̂) = U (ψ̂ψ(ϕ̂)) − l(ϕ̂). (35)

Let us consider problem (31). Upon expressing a generic
q̂ ∈ Th as q̂ = ∑N

n=1 q̂(n) χn , χn being the characteristic
function of �̂n , we find (see the Appendix)

β((ϕ̂, ψψ), q̂) = −
N∑

n=1

q̂(n) ·
(∫

�̂n

Hϕ̂ da +
∫

�̂n

ψψ da
)

+
∑
b∈B

q̂(b) ·
∫

γb

∇ϕ̂ ⊗ n̂ dσ,

∀ ((ϕ̂, ψψ), q̂) ∈ (Sh × (L2(�))4) × Th, (36)

where γb = ∂�̂b ∩ ∂�, B denoting the set of the indices taken
by the boundary nodes of the mesh �h . Notice that the quantity∫
�̂n

Hϕ̂ da is well defined, since Hϕ̂ represents a linear Dirac
delta distributed over the skeleton of �h .

Using Eq. (36) in the definition (31), we deduce that the
elements of the space Vϕ̂ are the functions ψψ ∈ (L2(�))4 such
that

∫
�̂n

ψψ da =
{− ∫

�̂n
Hϕ̂ da if n ∈ I,

− ∫
�̂n

Hϕ̂ da + ∫
γn

∇ϕ̂ ⊗ n̂ dσ if n ∈ B,
(37)

I denoting the set of the indices taken by the interior nodes of
�h .

Now, consider that Jensen’s inequality and the spectral de-
composition of A yield

2U (ψψ) =
N∑

n=1

∫
�̂n

ψψ · A[ψψ] da

≥
N∑

n=1

1

ar (�̂n)

(∫
�̂n

ψψ da
) (∫

�̂n

A[ψψ] da
)

,

∀ψψ ∈ {(L2(�))4, (38)

where ar (�̂n) denotes the area of �̂n . In particular, Eq. (38)
holds with the sign of equality if ψψ ∈ Th . Combining Eqs. (37)
and (38), we deduce that the minimizer of U over Vϕ̂ is the
element ψ̂ψ of Th such that

ψ̂ψ = −Hhϕ̂ = −
N∑

n=1

Hhϕ̂(n)χn, (39)
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where

Hhϕ̂(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ar (�̂n)

∫
�̂n

Hϕ̂ da if n ∈ I,

1

ar (�̂n)

(∫
�̂n

Hϕ̂ da −
∫

γn

∇ϕ̂ ⊗ n̂ dσ

)
if n ∈ B.

(40)

Having solved problem (31), we are left with problem (34),
where now we have

Eh(ϕ̂) = 1

2

∫
�

Hhϕ̂ · A[Hhϕ̂] da − l(ϕ̂). (41)

By the positions (39)–(40) and the inequality of Eq. (38),
it follows that Eh(ϕ) ≤ E(ϕ) for each ϕ ∈ H 2

0 (�), E being
defined as in Eq. (3). In particular, the functional Eh allows us
to extend problem (6) to a functional space larger than H 2(�)
including polyhedral stress functions. In this sense, we refer to
the minimization of Eh as a relaxation of the original problem.

In order to prove the convergence of the LSM, it is useful to
view the discrete problem of (34) as a suitable approximation
of the mixed problem (19). As a matter of fact, our previous de-
velopments underlay that minimizing Eh over S0h is equivalent
to

Find (ϕ̂h, ψ̂ψh) ∈ Wh such that

F((ϕ̂h, ψ̂ψh)) = min
(ϕ̂,ψ̂ψ)Wh

F((ϕ̂, ψ̂ψ)), (42)

where Wh is the function space defined as

Wh = {(ϕ̂, ψ̂ψ) ∈ S0h × Th / β((ϕ̂, ψ̂ψ), q̂) = 0 , ∀q̂ ∈ Th}.
(43)

Actually problem (42) derives from an external approxima-
tionWh of the spaceV defined as in Eq. (15), since the multiplier
q̂ is chosen in Th , which is not contained in (H 1(�))4. Neverthe-
less, Th and the proper subspace (Sh)4 of (H 1(�))4 can be put
in 1-1 correspondence through the following linear mapping ϑh⎧⎪⎨

⎪⎩
ϑh q̂ ∈ (Sh)4, ∀q̂ =

N∑
n=1

q̂(n)χn ∈ Th,

ϑh q̂(Xn) = q̂(n), ∀n ∈ {1, 2, . . . , N },
(44)

xn being the position vector of the nth node of the primal mesh. In
particular, given an arbitrary (ϕ̂, ψ̂ψ) ∈ S0h × Th and an arbitrary
q̂ ∈ Th , it is easy to verify that (see the Appendix)

β((ϕ̂, ψ̂ψ), ϑh q̂) = β((ϕ̂, ψ̂ψ), q̂) + O(ψ̂ψ, ϑh q̂), (45)

where

∣∣O(ψ̂ψ, ϑh q̂)
∣∣ ≤ h ‖ψ̂ψ‖0 |ϑh q̂|1 . (46)

Thus, the approximation space (43) can be also defined as

Wh = {
(ϕ̂, ψ̂ψ) ∈ S0h × Th / β((ϕ̂, ψ̂ψ), q̂′) = O(ψ̂ψ, q̂′),

∀q̂′ ∈ (Sh)4}, (47)

and problem (42) can be regarded as an internal approximation
of the continuous problem (18), associated with a relaxation of
the constraint equation β((·, ·), ·) = 0.

4. EXISTENCE AND UNIQUENESS
Arguing as in Theorem 1, it is not difficult to prove the ex-

istence and the uniqueness of problem (42). We address this
question to Theorem 2.

Theorem 2. The discrete problem (42) has one and only one
solution (ϕ̂h, ψ̂ψh).

Proof. Define the norm

‖(ϕ̂, ψ̂ψ)‖Wh = (|ϕ̂|21 + ‖ψ̂ψ‖2
0

)1/2
, (48)

and observe that the couple (ϕ̂h, ψ̂ψh) is also solution of the
variational equations

a((ϕ̂h, ψ̂ψh), (ϕ̂, ψ̂ψ)) = �((ϕ̂, ψ̂ψ)) , ∀(ϕ̂, ψ̂ψ) ∈ Wh . (49)

That is,∫
�

ψ̂ψ · A[ψψh] da =
∫

�

f ϕ̂ da , ∀(ϕ̂, ψ̂ψ) ∈ Wh . (50)

Given an arbitrary (ϕ̂, ψ̂ψ) ∈ Wh , by choosing q̂′ = ϕ̂ (ê1 ⊗
ê1 + ê2 ⊗ ê2) in Eq. (47) and taking Eq. (46) into account, we
obtain ∣∣∣∣

∫
�

∇ϕ̂ · ∇ϕ̂ da −
∫

�

(ψ̂11 + ψ̂22)ϕ̂ da
∣∣∣∣

≤
√

2 h ‖ψ̂ψ‖0 |ϕ̂|1 , ∀(ϕ̂, ψ̂ψ) ∈ Wh, (51)

from which it is easy to deduce

|ϕ̂|1 ≤
√

2(C(�) + h)‖ψ̂ψ‖0, ∀(ϕ̂, ψ̂) ∈ Wh, (52)

and

‖(ϕ̂, ψ̂ψ)‖2
Wh

≤ α(h)
∫

�

ψ̂ψ · A[ψ̂ψ] da, ∀(ϕ̂, ψ̂ψ) ∈ Wh,

(53)
where

α(h) = 1 + 2(C(�) + h)2

�min
. (54)

Thus, the bilinear form a is coercive on Wh . Since, on the
other hand, it is easy to prove that both a and the linear form �
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given by Eq. (24) are continuous on Wh (see Theorem 1), the
thesis follows from the Lax-Milgram lemma. �

5. ERROR ESTIMATES
We can regard (ϕ̂h, ψ̂ψh) as a family of approximate solu-

tions of the minimization problem (19), since each value of h
is associated with a problem (42). Our present objective is to
prove that there exist families of solutions (ϕ̂h, ψ̂ψh) which con-
verge to the exact solution (ϕ∗, ψψ∗) of problem (19), in the
sense that eh = |ϕ0 − ϕ̂h |1 + ‖ψψ0 − ψ̂ψh‖0 → 0 as h → 0.
Moreover, upon assuming appropriate smoothness properties
on (ϕ∗, ψψ∗), we wish to find the rate of convergence of such
families of solutions, that is a real number r with the property
that there exists a constant C((ϕ∗, ψψ∗)) independent of h such
that eh ≤ C((ϕ∗, ψψ∗))hr . We recall that, by Theorem 1, ϕ∗ co-
incides with the solution ϕ0 of problem (6), and ψψ∗ coincides
with −Hϕ0. For further use, we set

ψψ0 = −Hϕ0, q0 = A[ψψ0] = −A[Hϕ0]. (56)

We begin by proving the following Lemma, that gives an
abstract estimate of the error eh .

Lemma 1. Suppose that the solution ϕ0 of problem (6) be-
longs to the space H m(�) ∩ H 2

0 (�) , with m ≥ 3. Then, for h
sufficiently small, there exist positive constants c1, c2, c3 inde-
pendent of h such that

eh = |ϕ0 − ϕ̂h |1 + ‖ψψ0 − ψ̂ψh‖0

≤ c1 inf
(ϕ̂,ψ̂ψ)∈Wh

(|ϕ0 − ϕ̂|1 + ‖ψ0 − ψ̂‖0
)

+ c2 inf
q̂′∈(Sh )4

‖q0 − q̂′‖1 + c3h ‖q0‖1 . (57)

Proof. From Theorem 1, we know that (ϕ0, ψψ0) is solution
of the variational equation

a((ϕ0, ψψ0), (ϕ, ψψ)) + β((ϕ, ψψ), q0)

= �((ϕ, ψψ)), ∀(ϕ, ψψ) ∈ H 1
0 (�) × (L2(�))4, (58)

that is, using the definitions (16), (17) and (21)∫
�

div q0 · ∇ϕ da =
∫

�

f ϕ da, ∀ϕ ∈ H 1
0 (�). (59)

Now, let (ϕ̂, ψ̂ψ) be an arbitrary element of the space Wh

defined as in Eq. (47), and let q̂′ be an arbitrary element of the
space (Sh)4. From Eq. (59) and by Eq. (47) one gets

β((ϕ̂h − ϕ̂, ψ̂ψh − ψ̂ψ), q0 − q̂′)
= β((ϕ̂h − ϕ̂, ψ̂ψh − ψ̂ψ), q0) − β((ϕ̂h − ϕ̂, ψ̂ψh − ψ̂ψ), q̂′)

=
∫

�

∇(ϕ̂h − ϕ̂) · divq0 da −
∫

�

(ψ̂ψh − ψ̂ψ) · q0 da

+ O(ψ̂ψh − ψ̂ψ, q̂′)

=
∫

�

f (ϕ̂h − ϕ̂) da −
∫

�

(ψ̂ψh − ψ̂ψ) · q0 da + O(ψ̂ψh − ψ̂ψ, q̂′)

=
∫

�

(ψ̂ψh − ψ̂ψ) · (A[ψ̂ψh] − q0) da + O(ψ̂ψh − ψ̂ψ, q̂′). (60)

On the other hand, by Eq. (60), the continuity of the bilin-
ear form β, which is easy to prove, the definition (20) and the
estimates of Eqs. (46), (52), it follows

∣∣∣∣
∫

�

(ψ̂ψh − ψ̂ψ) · (A[ψ̂ψh] − q0) da
∣∣∣∣

≤ γ(h)‖ψ̂ψh − ψ̂ψ‖0‖q0 − q̂′‖1 + h‖ψ̂ψh − ψ̂ψ‖0|q̂′|1, (61)

where

γ(h) = M(1 +
√

2(C(�) + h)), (62)

M being a positive constant independent of h.
The estimate of Eq. (61) and the Cauchy-Schwartz inequality

allow us to write

‖ψ̂ψh − ψ̂ψ‖2
0 ≤ 1

�min

(∣∣∣∣
∫

�

(ψ̂ψh − ψ̂ψ) · (A[ψ̂ψh] − q0) da
∣∣∣∣

+
∣∣∣∣
∫

�

(ψ̂ψh − ψ̂ψ) · (A[ψ̂ψ] − q0) da
∣∣∣∣
)

≤ γ(h)

�min
‖ψ̂ψh − ψ̂ψ‖0‖q0 − q̂′‖1 + h

�min
‖ψ̂ψh − ψ̂ψ‖0|q̂′|1

+ 1

�min
‖ψ̂ψh − ψ̂ψ‖0‖A[ψ̂ψ] − q0‖0. (63)

Therefore, since

|q̂′|1 ≤ ‖q0 − q̂′‖1 + ‖q0‖1, (64)

‖A[ψ̂ψ] − q0‖0 = ‖A[ψ̂ψ − ψ̂ψ0]‖0 ≤ �max‖ψ̂ψ − ψ̂ψ0‖0, (65)

for h ≤ 1 it results

‖ψ̂ψh − ψ̂ψ‖0 ≤ k1‖ψ̂ψ − ψψ0‖0 + k2‖q0 − q̂′‖1 + k3h‖q0‖1,

(66)

k1, k2, k3 being positive constants independent of h.
Now, consider that, by the triangle inequality and the inequal-

ity of Eq. (52), one gets

|ϕ0 − ϕ̂h |1 + ‖ψψ0 − ψ̂ψh‖0

≤ |ϕ0 − ϕ̂|1 + ‖ψψ0 − ψ̂ψ‖0

+(
1 +

√
2(C(� + h)

)‖ψ̂ψ − ψ̂ψh‖0 (67)

(ϕ̂, ψ̂ψ) being an arbitrary element of Wh . Upon combining in-
equalities (66)–(67), the estimate of Eq. (57) follows. �

In order to apply the abstract estimate Eq. (57), we need
to consider families of primal and dual meshes having some
regularity and uniformity properties.
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In particular, we need to consider a family of triangulations
�h which is regular affine in the following sense (see, e.g.,
Ciarlet [3])

(H1): i) There exist a constant σ independent of h such that
h/ρh ≤ σ, where ρh = infm∈{1,2,...,M} sup (diameters of all cir-
cles contained in �m ∈ �h); ii) the mesh size h approaches
zero.

(H2): all the triangles �m ∈ �h , are affine-equivalent to a
single reference triangle, for all h.

Introduce now the basis {g1, g2, . . . , gN } of Sh such that
gn(x j ) = δnj (δnj being the Kronecker symbol), and denote the
support of the generic function gn (i.e., the union of the triangles
having a vertex at xn) by Gn .

We say that a node xn of �h owes the property (P�) if, given
an arbitrary tensor H (independent of position), it results

∑
j∈In

∫
Gn

H(x − x j ) · (x − x j )∇g j ⊗ ∇gn = 0, (68)

In being the set of the indices taken by the nodes of �h lying
on the closure Ḡn of Gn (that is n and the nodes connected to n
by an edge of �h).

It is not difficult to verify that such a property, generaliz-
ing a similar one formulated by Glowinski in [1], holds in the
following remarkable cases:

(1) Gn is an hexagon or half an hexagon generated by a rectan-
gular grid of nodes, which is uniform at least in one direction
(see Figure 2);

(2) Gn is an hexagon or half an hexagon formed by triplets of
equal isosceles triangles (see Figure 3).

The last two assumptions we need to introduce about primal
and dual meshes are the following

(H3): The boundaries of the polygons �̂n ∈ �̂h are obtained
by connecting the middle points of the sides of the triangles
�m ∈ �h having a vertex at xn with the centroids of the same
triangles.

1a

2b

n

2a

1b

b

2an
1a

2121 / bborandaa == 21 aa =

FIG. 2. Element Gn coincident with an hexagon or half an hexagon generated
by a rectangular grid of nodes.

a a aa

n
1b

2b

a a aa
n

b

FIG. 3. Element Gn coincident with a hexagon or half a hexagon formed by
triplets of equal isosceles triangles.

(H4): For all h, �̂h can be divided in two disjointed parts
�̂h1 = {�̂ j/j ∈ J1} and �̂h2 = {�̂ j/j ∈ J2}, such that

i) the elements of �̂h1 are built around nodes owing the (P�)
property;

ii) ar(�h2 ) = ∑
j∈J2

ar (�̂ j ) → 0 as h → 0.

We set ar (�h1 ) = ∑
j∈J1

ar (�̂ j ). It is worthwhile noticing

that (H4) holds, for example, when the core of �̂h is formed by
elements centered at nodes owing the (P�) property, and �̂h2

coincides with a strip of elements adjacent to the boundary of �.
In this case, ar (�h2 ) is of O(h) (see, e.g., Figure 1). Another re-
markable case, interesting for the applications presented in Part
II, is that of a rectangular domain covered by a uniform rectangu-
lar grid of nodes. Here, all the nodes have the (P�) property, with
exception to the four corner nodes, and thus ar (�h2 ) is of O(h2).

The assumption (H3) allows us to express the constraint of
(39) in a different form. Indeed, consider that is possible to
write ϑh q̂(x) = ∑N

n=1 q̂(n)gn(x), ∀q̂ ∈ Th . Hence, given an
arbitrary (ϕ̂, ψ̂ψ) ∈ S0h × Th , enforcing the variational equation
(see the Appendix)

β((ϕ̂, ψ̂ψ), q̂) =
∫

�

∇ϕ̂ · div ϑh q̂ da −
∫

�

ψ̂ψ · q̂ da = 0,

∀q̂ ∈ Th, (69)

we easily find

ψ̂ψ(n) = 1

ar (�̂)n

∫
�

∇ϕ̂ ⊗ ∇gn da =
∫
�

∇ϕ̂ ⊗ ∇gn da∫
�

gn da
,

∀n ∈ {1, 2, . . . , N }, (70)

since
∫
�

gnda = ar (Gn)/3,and ar (�̂n) = ar (Gn)/3 in virtue
of (H3). Clearly, the integrals on the right-hand side of (70) can
be restricted to Gn .

The following Lemma 2 and Theorem 3 give us the desired
estimate of the error eh . The result we find is similar to those
given by Scholtz in [4] and by Davini and Pitacco in [7] for the
biharmonic problem. Use is made of the notation ‖·‖m,∞ and
| · |m,∞ for the norm and the seminorm in the Sobolev space
W m,∞(�), respectively.

Lemma 2. Assume that (H1), (H2), (H3) and (H4) hold,
and that the solution ϕ0 of problem (6) belongs to the space
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W 3,∞(�) ∩ H 2
0 (�). Then, there exists a couple (ϕ̂0, ψ̂ψ0) ∈

Wh and constants c̄1, c̄2 and c̄3 independent of h such
that

|ϕ0 − ϕ̂0|1 ≤ c̄1h|ϕ0|2, (71)

‖ψψ0 − ψ̂ψ0‖0 ≤ c̄2h
√

ar (�h1 )|ϕ0|3,∞ + c̄3h
√

ar (�h2 )|ϕ0|2,∞.

(72)

Proof. Consider the linear mappings rh : H 1(�) → Sh and
Rh : (L2(�))4 → Th defined as

rhϕ =
N∑

n=1

ϕ(xn)gn, ∀ϕ ∈ H 1(�), (73)

Rhψψ =
N∑

n=1

∫
�

ψψgn da∫
�

gn da
χn, ∀ψψ ∈ (L2(�))4. (74)

Since rh leaves invariant piecewise linear functions on �h ,
by (H1), (H2), the properties of projection operators, and the
Poincaré inequality, we get

|ϕ0 − rhϕ0|1 ≤ k h|ϕ0|2, (75)

where k is a constant independent of h.
On the other hand, it is easy to show (cf. [7]) that there exists

a constant k ′ independent of h such that

‖ψψ0 − Rhψψ0‖0 ≤ k ′ h|ψψ0|1 = k ′ h|ϕ0|3. (76)

Now, consider the couple (ϕ̂0, ψ̂ψ0) ∈ Wh with ϕ̂0 = rhϕ0

and ψ̂ψ0 = ∑N
n=1 ψ̂ψ0(n) χn such that

ψψ0(n) = 1

ar (�̂n)

∫
�

∇ϕ̂0 ⊗ ∇gn da, ∀n ∈ {1, 2, . . . , N }.

(77)

Due to the assumption ϕ0 ∈ W 3,∞(�) and the embedding
W 3,∞(�) → C2(�) (see Adams [19]), we can apply the follow-
ing Taylor’s formula

ϕ0(xn) = ϕ0(x) + ∇ϕ0(x) · (xn − x)

+ 1

2
Hϕ0(x̄n)(xn − x) · (xn − x),

∀n ∈ {1, 2, . . . , N }, (78)

where x is an arbitrary point of Gn and x̄n = x̄n(x) is an interior
point of the segment xn−x. Making use of Eq. (78) and observing

that ∇ϕ̂0(x) = ∑
j∈In

ϕ0(x j ) ∇g j (x), ∀x ∈ Gn , we obtain

∇ϕ̂0(x) =
∑
j∈In

(
ϕ0(x) + ∇ϕ0(x) · (x j − x)

+ 1

2
Hϕ0(x̄ j )(x j − x) · (x j − x)

)
∇g j (x). (79)

On the other hand, the base functions g j have the property that∑
j∈In

g j (x) = 1, ∀x ∈ Gn . Thus, it results
∑

j∈In
∇g j (x) = 0,

∀x ∈ Gn , and∑
j∈In

(∇ϕ0(x) · (x j − x))∇g j (x)

=
∑
j∈In

(∇ϕ0(x) · x j )∇g j (x) − (∇ϕ0(x) · x)
∑
j∈In

∇g j (x)

= ∇T

(∑
j∈In

g j (x)x j

)
∇ϕ0(x) = ∇ϕ0(x), (80)

since
∑

j∈In
g j (x) x j = x, and ∇T x = I, I being the identity

tensor. Therefore, Eq. (79) can be rewritten as

∇ϕ̂0(x) = ∇ϕ0(x) + 1

2

∑
j∈In

(Hϕ0(x̄ j )(x j − x)

· (x j − x))∇g j (x), ∀x ∈ Gn. (81)

Upon substituting Eq. (81) into Eq. (77), we obtain

ψ̂ψ0(n) = 1

ar (�̂n)

∫
�

∇ϕ̂0 ⊗ ∇gn da

+ 1

2ar (�̂n)

∑
j∈In

∫
�

(Hϕ0(x̄ j )(x j − x)

· (x j − x))∇g j ⊗ ∇gn da, ∀n ∈ {1, 2, . . . , N }.
(82)

Notice that the Green formula gives∫
�

∇ϕ0 ⊗ ∇gn da =
∫

Gn

∇ϕ0 ⊗ ∇gn da =
∫

Gn

ψψ0gn da,

(83)

since either ∇ϕ0 or gn are zero on ∂Gn . Taking into account
Eq. (83), the definition (74) and considering that (H3) implies∫
�

gnda = ar (Gn)/3 = ar (�̂n), we can rewrite Eq. (82) as
follows

ψ̂ψ0(n) = Rhψψ0(n) + 1

2ar (�̂n)

∑
j∈In

∫
�

(Hϕ0(x̄ j )(x j − x)

· (x j − x))∇g j ⊗ ∇gn da, ∀n ∈ {1, 2, . . . , N }. (84)
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Here, |x j − x| ≤ h, and |∇g j | ≤ ch−1, ∀ j ∈ {1, 2, . . . , N}.
Thus, from Hölder inequality, one deduces

|ψ̂ψ0(n) − Rhψψ0(n)| ≤ k ′′|ϕ0|2,∞, ∀n ∈ {1, 2, . . . , N }, (85)

k ′′ being a constant independent of h.
A refinement of the estimate (85) can be obtained by consider-

ing nodes owing the (P�) property. Indeed, define the difference
quotient of Hϕ0 in the direction of êα as

Dh̄
αHϕ0(x) = Hϕ0(x + h̄êα) − Hϕ0(x)

h̄
, (86)

and recall the standard estimate

∥∥Dh̄
αHϕ0

∥∥
L∞(G ′

n ) ≤ ‖∇Hϕ0‖L∞(G ′
n ) ≤ |ϕ0|3,∞, (87)

which holds for any G ′
n ⊂ ⊂ Gn and any h̄ < dist(G ′

n, ∂ Gn)
(see, e.g., Renardy and Rogers [20]). Since we may express
x̄ j (x) as xn +h̄ j1(x) ê1+h̄ j2(x) ê2, ∀ j ∈ In , where h̄ jα(x) < h,
it results

Hϕ0(x̄ j (x)) = Hϕ0(xn) + Dh̄ j1(x)
1 Hϕ0(xn)h̄ j1(x)

+ Dh̄ j2(x)
2 Hϕ0(xn)h̄ j2(x). (88)

Thus, from Eqs. (84), (87), the definition (68) and the property
(H4) we get

|ψ̂ψ0(n) − Rhψψ0(n)| ≤ k ′′|ϕ0|3,∞, ∀n ∈ J1. (89)

The inequalities of Eqs. (85) and (89) yield

‖ψ̂ψ0 − Rhψψ0‖2
0

=
∑

n∈J1∪J2

|ψ̂ψ0(n) − Rhψψ0(n)|2ar (�̂n)

≤ k ′′ (h2ar (�h1 )|ϕ0|23,∞ + ar (�h2 )|ϕ0|22,∞
)
. (90)

In conclusion, by applying Eq. (75), the triangle inequality

‖ψψ0 − ψ̂ψ0‖0 ≤ ‖ψψ0 − Rhψψ0‖0 + ‖Rhψψ0 − ψ̂ψ0‖0, (91)

Eqs. (76) and (90), we get the proof of the thesis. �

Theorem 3. Let the properties of (H1), (H2), (H3) and (H4)
hold, and let the solution ϕ0 of problem (6) belong to H 4(�) ∩
W 3,∞(�) ∩ H 2

0 (�). Suppose further that it results in

ar (�h2 ) ≤ ch, (92)

where c is a constant independent of h.

Then, there exist constants C1 and C2 independent of ϕ0 and
h such that

eh = |ϕ0 − ϕ̂0|1 + ‖ψψ0 − ψ̂ψ0‖0 ≤ C1h‖ϕ0‖3,∞ + C2h
1
2 ‖ϕ0‖4.

(93)

Likely, when ϕ0 ∈ W 4,∞(�) ∩ H 2
0 (�) and in addition

ar (�h2 ) ≤ ch2, (94)

it results

eh ≤ Ch‖ϕ0‖4,∞, (95)

with C independent of ϕ0 and h.

Proof. Recall the abstract estimate (57) and observe that (H1)
and (H2) imply that there exists a c̄ independent of ϕ0 and h
such that [18, 21]

inf
q̂′∈(Sh )4

‖q0 − q̂′‖1 ≤ c̄h|q0|2 ≤ c̄h�max‖ϕ0‖4. (96)

On the other hand, from Lemma 2 it descends

inf
(ϕ̂,ψ̂ψ)∈Wh

(|ϕ0 − ϕ̂|1 + ‖ψψ0 − ψ̂ψ‖0) ≤

c̄1 h|ϕ0|2 + c̄2 h
√

ar (�h1 )|ϕ0|3,∞
+c̄3

√
ar (�h2 )|ϕ0|2,∞. (97)

Finally, it is easy to recognize that

‖q0‖1 ≤ �max‖ϕ0‖3. (98)

Upon substituting Eqs. (96)–(98) into Eq. (57) and taking into
account the embeddings H 4(�) → W 2,∞(�) and W 3,∞(�) →
H 3(�) [16], it follows that

eh ≤ c′
1 h

√
ar (�h1 )‖ϕ0‖3,∞ + c′

2

(
h + √

ar (�h2 )
)

‖ϕ0‖4,

(99)

where c′
1 and c′

2 are independent of ϕ0 and h. The insertion
of Eq. (92) into Eq. (99) gives the estimate of Eq. (93), for
h ≤ 1. Similarly, the insertion of Eq. (94) into Eq. (99) and the
embedding W 4,∞(�) → H 4(�) give the estimate of Eq. (95).�

6. CONCLUDING REMARKS
The physical meaning of the Lumped Stress Method is the

following. Consider an arbitrary ϕ̂ ∈ S0h defined as in Section 3,
a latticed structure Bh coincident with the skeleton �h of the
primal mesh �h , and the stress field T̂ = WT Hϕ̂W. The latter
consists of linear Dirac deltas with support �h .
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FIG. 4(a)–(d). LSM force networks obtained for several no-tension bodies.

It is easy to realize that the line integral of T̂ through each
edge of �h is a uniaxial tensor, which can be regarded as the
axial force carried by the corresponding bar of Bh .

The LSM approximates the stress in the neighborhood of
each dual element by the quantity T∗ + T̂h(n), with T̂h(n) =
WT Hhϕ̂(n)W. Equation (40) shows that T̂h(n) coincides with a
suitable composition of the uniaxial stresses carried by the bars
of Bh incident to n.

It is useful to regard the quantity Eh(ϕ̂), defined as in Eq. (41),
as the complementary energy of the truss Bh .

Several applications of the LSM to technical problems and
benchmark examples of 2D elasticity have been presented in
[11, 12]. The particular ability of such a method in dealing
with no-tension (masonry-like) materials has been illustrated in
[16, 17].

Figures 4a–d show the LSM force networks for several elastic
problems dealing with materials which do not react in tension.

They refer to a transversally loaded clamped beam (Figure 4a);
the same beam reinforced with a steel element at the bottom
side (Figure 4b); a panel undergoing simple shear (Figure 4c);
and a wall with openings subjected to both vertical and hori-
zontal loads. The reader is referred to [17] for the details of the
numerical calculations.

Further applications of the LSM in the field of shape opti-
mization problems are addressed to future works.
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Approchés,” in J. J. H. Miller (Ed.), Topics in Numerical Analysis, 123–
171, Academic Press, London (1973).

2. Ciarlet, P. G., and Raviart, P. A., “A mixed finite element method for the
biharmonic Equation,” in C. de Boor (Ed.), Mathematical Aspects of Finite
Elements in Partial Differential Equations, 125–145, Academic Press, New
York (1974).

3. Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-
Holland, Amsterdam (1978).

4. Scholtz, R., “A mixed method for 4th order problems using linear finite
elements, R.A.I.R.O. Anal. Numérique, 12, 85–90 (1978).

5. Scholtz, R., “Interior estimates for a mixed finite element method,” Numer.
Funct. Anal. Optim., 1, 415–429 (1979).

6. Davini, C., Pitacco, I., “Relaxed notions of curvature and a lumped strain
method for elastic plates,” SIAM J. Numer. Anal., 35, 677–691 (1998).

7. Davini, C., and Pitacco, I., “An unconstrained mixed method for the bihar-
monic problem,” SIAM J. Numer. Analysis, 38, 820–836 (2000).

8. Davini, C., “Gamma-convergence of external approximations in boundary
value problems involving the bi-laplacian,” J. Comp. Appl. Math., 140, 182–
208 (2002).

9. Oden, J. T., and Carey, G. F., Finite Elements—Vol. IV: Mathematical
Aspects, Prentice-Hall, Englewood Cliffs, NJ (1984).

10. Balasundaram, S., Bhattacharyya, P. K., “A mixed finite element method
for fourth-order partial differential equations, ZAMM—Z. angew.” Math.
Mech., 66, 489–499 (1986).

11. Fraternali, F., “Complementary energy variational approach for plane elas-
tic problems with singularities,” Theor. Appl. Fract. Mech., 35, 129–135
(2001).

12. Fraternali, F., Angelillo, M., and Fortunato, A., “A lumped stress method
for plane elastic problems and the discrete-continuum approximation,” Int.
J. Solids Struct., 39, 6211–6240 (2002).

13. Kohn, R. V., and Vogelius, M., “Relaxation of a variational method for
impedance computed tomography,” Comm. Pure Appl. Math., 40, 745–777
(1987).

14. Kohn, R. V., and Strang, G., “Optimal design and relaxation of variational
problems—parts I, II, III,” Comm. Pure Appl. Math., 39, 113–137, 139–182,
353–377 (1986).

15. Bendsoe, M. P., and Sigmund, O., Topology Optimization: Theory, Methods
and Applications, Springer Verlag, Berlin Heidelberg (2003).

16. Angelillo, M., Fraternali, F., and Rocchetta, G., “On the stress skeleton of
masonry vaults and domes,” PACAM VII: Proc. 7th Pan American Congress
of Applied Mechanics, Temuco, Chile, 369–372 (2002).

17. Fraternali, F., “Un approccio numerico alle tensioni per i solidi murari piani,”
AIMETA ’03: Proc. 16th AIMETA Congr. Theor. Appl. Mech., Ferrara, Italy,
CD-ROM (2003).

18. Gurtin, M. E., “The linear theory of elasticity,” in S. Flügge (Ed.), Encyclo-
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APPENDIX
Let us consider arbitrary functions ϕ̂ ∈ Sh , q̂ ∈ Th and, in

correspondence with each couple of nodes n, s connected by
an interface �s

n of the primal mesh, the region �̂s
n formed by

two adjacent sub-elements of �̂n and �̂s (Figure A1). Since
each element �̂s

n recurs twice when all the nodes of the primal

FIG. A1. Double sub-element �̂s
n of the dual mesh.

mesh are taken into consideration, upon applying over such ele-
ments the generalized Green formula (see, e.g., Temam [19]), we
find∫

�

div q̂ · ∇ϕ̂ da

= 1

2

N∑
n=1

Sn∑
s=1

(
−

∫
�̂s

n

q̂ · Hϕ̂ da +
∫

∂�̂s
n

q̂ · ∇ϕ̂ ⊗ n̂ dσ

)

(A.1)

where Sn is the number of nodes connected to n.
In the right-hand side of Eq. (A.1), Hϕ̂ is a combination of

Dirac deltas uniformly distributed along the interfaces �s
n , with

amplitude (per unit length) [[∇ϕ̂]]s
n ⊗ ĥs

n . Here, [[∇ϕ̂]]s
n is the

jump of ∇ϕ̂ through �s
n and ĥs

n is the unit vector orthogonal to
�s

n (Figure A1).
Now, said ω̂s

n and γs
n the intersections of �̂s

n and �s
n with

�̂n , respectively, and said �s
n the length of �s

n , it results (recall
that the dual mesh divides the edges of the primal mesh in equal
parts)

∫
ω̂s

n

Hϕ̂ da = [[∇ϕ̂]]s
n ⊗ ĥs

n
�s

n

2
, (A.2)∫

ω̂s
n

Hϕ̂ · p da = [[∇ϕ̂]]s
n ⊗ ĥs

n ·
∫

γs
n

p dσ, ∀p ∈ (
C

(
ω̂s

n

))4
.

(A.3)

From Eqs. (A.2)–(A.3), upon expressing q̂ as
∑N

n=1 q̂(n) χn , we
deduce

∫
�̂s

n

q̂ · Hϕ̂ da = [[∇ϕ̂]]s
n ⊗ ĥs

n · q̂(n)
�s

n

2
+ [[∇ϕ̂]]s

n ⊗ ĥs
n · q̂(s)

�s
n

2

= q̂(n) ·
∫

ω̂s
n

Hϕ̂ da + q̂(s) ·
∫

ω̂n
s

Hϕ̂ da (A.4)

Still in Eq. (A1), boundary terms associated with the in-
terfaces ∂�̂s

n which do not lie on ∂� eliminate two by two.
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Moreover, for nodes n, s lying on ∂�, it results

∫
∂�̂s

n∩∂�

q̂ · ∇ϕ̂ ⊗ n̂ dσ = q̂(n) ·
∫

γs
n

∇ϕ̂ ⊗ n̂ dσ + q̂(s)

·
∫

γn
s

∇ϕ̂ ⊗ n̂ dσ. (A.5)

Thus, formula (A.1) can be reduced to

∫
�

∇ ϕ̂ · div q̂ da = −
N∑

n=1

q̂(n) ·
∫

�̂n

Hϕ̂ da +
∑
b∈B

q̂(b)

·
∫

γb

∇ϕ̂ ⊗ n̂ dσ, (A.6)

where γb = ∂�̂b ∩ ∂�, ∀b ∈ B.
Consider now ϑh q̂ ∈ (Sh)4 defined as in Eq. (44). For such a

function and an arbitrary ϕ̂ ∈ Sh , we obtain

∫
�

div ϑh q̂ · ∇ϕ̂ da = 1

2

N∑
n=1

Sn∑
s=1

(
−

∫
�̂s

n

ϑh q̂ · Hϕ̂ da

+
∫

∂�̂s
n

ϑh q̂ · ∇ϕ̂ ⊗ n̂ dσ

)
, (A.7)

∫
�̂s

n

ϑh q̂ · Hϕ̂ da

= [[∇ϕ̂]]s
n ⊗ ĥs

n ·
(

q̂(n)
�s

n

2
+ (q̂(s) − q̂(n))

�s
n

8

)

+[[∇ϕ̂]]s
n ⊗ ĥs

n ·
(

q̂(s)
�s

n

2
+ (q̂(n) − q̂(s))

�s
n

8

)

= q̂(n) ·
∫

ω̂s
n

Hϕ̂ da + q̂(s) ·
∫

ω̂n
s

Hϕ̂ da. (A.8)

Further on, for nodes n, s lying on ∂�, one gets

∫
∂�̂s

n∩∂�

ϑh q̂ · ∇ϕ̂ ⊗ n̂ dσ

= ∇ϕ̂ ⊗ n̂|γs
n
·
(

q̂(n)
�s

n

2
+ (q̂(s) − q̂(n))

�s
n

8

)

+ ∇ϕ̂ ⊗ n̂|γn
s
·
(

q̂(s)
�s

n

2
+ (q̂(n) − q̂(s))

�s
n

8

)

= q̂(n) ·
∫

γs
n

∇ϕ̂ ⊗ n̂ dσ + q̂(s) ·
∫

γn
s

∇ϕ̂ ⊗ n̂ dσ. (A.9)

Upon substituting Eqs. (A.8)–(A.9) into Eq. (A.7), we find

∫
�

∇ ϕ̂ · div ϑh q̂ da = −
N∑

n=1

q̂(n) ·
∫

�̂n

Hϕ̂ da +
∑
b∈B

q̂(b)

·
∫

γb

∇ϕ̂ ⊗ n̂ dσ

=
∫

�

∇ ϕ̂ · div q̂ da. (A.10)

Now, let us adopt the following expansion of ϑh q̂(x) over the
generic dual element �̂n

ϑh q̂(x) = q̂(n) + ∇ϑh q̂(x)(x − xn), ∀x ∈ �̂n. (A.11)

Formula (A.11) leads us to deduce∫
�

ϑh q̂ · ψ̂ψ da =
∫

�

q̂ · ψ̂ψ da + O(ψ̂ψ, ϑh q̂ ), ∀ψ̂ψ ∈ Th,

(A.12)

where ∣∣O(ψ̂ψ, ϑh q̂ )
∣∣ ≤ h‖ψ̂ψ‖0 |ϑh q̂ |1 . (A.13)

From Eqs. (A.6), (A.10), and (A.12)–(A.13), we get the proof
of formulas (36), (45)–(46), and (69) of the present paper.




