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Abstract

Two different free discontinuity finite element models for studying crack initiation and propagation in 2D elastic prob-
lems are presented. Minimization of an energy functional, composed of bulk and surface terms, is adopted to search for the
displacement field and the crack pattern. Adaptive triangulations and embedded or r-adaptive discontinuities are
employed. Cracks are allowed to nucleate, propagate, and branch. In order to eliminate rank-deficiency and perform local
minimization, a vanishing viscosity regularization of the discrete Euler–Lagrange equations is enforced. Converge prop-
erties of the proposed models are examined using arguments of the C-convergence theory. Numerical results for an in-
plane crack kinking problem illustrate the main operational features of the free discontinuity approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical Griffith’s criterion of crack propa-
gation is based on the idea that a given amount of
energy per unit surface Gc (fracture energy or tough-
ness of the material) needs to be released from the
body to the crack front, in order to make the crack
grow. It refers to a crack loaded in mode I (Fig. 1a)
and can be written in the form of the energy balance
G ¼ Gc, where G is equal and opposite to the to the
rate at which the potential energy of the body
changes with the crack area (energy release rate).
Several variants of Griffith’s criterion have been
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proposed for arbitrary loading (Fig. 1b). The mini-

mum strain energy density criterion [1] assumes that
crack grows in the direction of minimum energy
density which coincides with the direction of domi-
nant dilatation, while the maximum energy release

rate criterion [2] supposes that the crack grows in
the direction of maximum energy release rate by
considering the global stationary values of the
stored energy. Both criteria derive the direction of
crack initiation r* from energy considerations, the
strain energy density criterion is based on minimiz-
ing the local energy density while the energy release
rate criterion relies on using the global energy. The
difference attributes to the accuracy of the numeri-
cal results. Local stress criteria have also been pro-
posed and widely used in the technical literature,
.
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Fig. 1. Mode I (a) and mixed mode (b) propagation of an existing crack.
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such as the maximum circumferential stress (or
hoop stress) [3] and the maximum shear stress [4]
criteria.

In recent years, further generalizations of Grif-
fith’s theory have appeared in the literature, in order
to determine the crack path on the basis of an
energy criterion, and also to describe crack initia-
tion, using the framework of Free Discontinuity

Problems [5]. Starting with [6], it has been assumed
that the displacement field u and the crack K of a
fracturing body, subject to quasistatic loading, are
the arguments of an energy functional Eðu; KÞ com-
posed of bulk (potential energy) and a surface (or
interface) parts. The latter represents the energy dis-
sipated during the creation or the propagation of
fractures within the body. Optimal solutions (u,K)
are sought through a time-continuous minimization
process, during which bulk and interface energies
‘‘compete’’ against each other, as in Griffith’s crite-
rion. Existence theorems have been proved in
[7–10], for different formulations, showing that the
free discontinuity approach to crack initiation and
propagation is well posed, at least for brittle bodies.
The original model proposed in [6] deals with a glo-
bal minimization problem, but variants considering
local minimization have also been proposed [11].

Concerning numerical approximations, both
strong and weak approximations of the free discon-
tinuity problem have been formulated. Strong
approaches explicitly account for discontinuities
and consider finite element models incorporating
discontinuous test functions and mesh adaptivity
[12–14]. Weak approaches instead model fracture
through an auxiliary damage variable and introduce
energy approximation by means of families of ellip-
tic functionals [15]. In both cases, convergence
behavior of discrete approximations has been
proved [12,15], using arguments of the C-conver-
gence theory [16].
The present study deals with the formulation of
two different free discontinuity finite element models
for 2D fracture problems in linear elasticity. Previ-
ous models considering the scalar case of antiplane
shear [12] or minimization via Surface Evolver
[13,14] are generalized, introducing a vanishing
viscosity approach to non-convex optimization.
Numerical results are given for a model problem
of crack kinking under mixed loading, showing
the performance and the main operational features
of the two proposed approaches. Convergence
properties and implementation issues are discussed,
as well as challenging future directions of the pres-
ent research.

2. Generalized Griffith theories

Consider the reference configuration X of a n-
dimensional body and assume that a quasistatic
boundary deformation history �u is prescribed on a
portion oDX of oX. Suppose also that the comple-
ment oNX of oDX in oX is traction free and that
body forces are absent (hard-device conditions).

Under such a loading history, generalized Grif-
fith theories [6–10] model crack initiation and prop-
agation in X through minimization of the energy
functional

EðtÞðu;KÞ ¼
Z

XnK
W ðX;ruðXÞÞdX

þ
Z

K
/ðX; ½½u��ðXÞ; mðXÞÞdH n�1 ð1Þ

where t is the time, u is the displacement field of the
body; ru is the absolutely continuous part of the
distributional derivative of u; K is the crack; m is
the unit normal to K; ½½u�� is the difference between
the values uþ and u� of u on the two opposite
faces of K; and H n�1 is the Hausdorff measure of



Fig. 2. Discrete cohesive regularizations of Griffith’s energy.
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ðn� 1Þ-dimensional sets, coinciding with the ordin-
ary length in the case of rectifiable arcs. The func-
tions W and /, appearing on the right-hand side
of (1), represent bulk and interface energy densities,
respectively.

For a fixed t, minimization of (1) gives rise to a
free discontinuity problem, admitting the pair ðu;KÞ
as unknown, with K varying in a suitable class of
hypersurfaces contained in �X, and u lying in a space
of sufficiently smooth functions defined over X n K.
A weak formulation is obtained letting u be discon-
tinuous and defined over the entire domain X [5].
This leads one to identify the crack K with the jump
set JðuÞ of u, and to replace (1) with

F ðtÞðuÞ ¼ EðtÞðu; JðuÞÞ ð2Þ
Existence of minimizers of (1) and (2) has been
proved in spaces of special functions of bounded
variation (SBV spaces), assuming that W is quasi-
convex and satisfies standard coeciveness and
growth conditions, the crack is a rectifiable set of
bounded measure contained in X, and / does not
depend on the crack opening ½½u�� (brittle case)
[10]. SBV spaces collect functions whose distribu-
tional derivative is a bounded measure, composed
of bulk (absolutely continuous) and interface (sin-
gular) parts (no Cantor part) [5]. The continuous-
time formulation of the quasistatic evolution has
been defined through a passage to the limit, intro-
ducing a time discretization 0 ¼ t0 < t1 < � � � <
tN ¼ T of the loading interval ½0; T �, and letting
N !1.

The present study deals with the special case of
2D isotropic, brittle and linear elastic bodies,
assuming

W ¼ 1

2
kðXÞðtr eðXÞÞ2 þ 2lðXÞeðXÞ � eðXÞ ð3Þ

/ ¼ GcðXÞ ð4Þ

where e is the symmetric part of ru, while k and l
are the Lamè coefficients corresponding to plane
stress or plane strain conditions. The above choices
of W and / guarantee existence of solutions of the
continuous-time evolution [10].

3. Free discontinuity finite element models

Let Mh denote a triangulation of X such that
some or all of its vertices are movable, and some
or all of its edges are discontinuous. Introduced a
piecewise linear approximation uh of u on Mh and
denoted Kh the set of the discontinuous edges of
Mh, a discrete approximation of (1) is defined
through

Ehðuh;KhÞ ¼
X
T2Mh

Z
T

W ðX;ruhðXÞÞdX

þ
X
E2Kh

Z
E

/hðX; dhðXÞÞdH 1 ð5Þ

on a set of finite element spaces depending on the
configuration of Mh. In (5), /h is the following cohe-
sive regularization of Griffith’s fracture energy (cf.
[12])

/h ¼ GcðXÞ 1� 1þ bh
dhðXÞ

dc

� �
e�bhdhðXÞ=dc

� �
ð6Þ

with dc a characteristic opening displacement, bh a
mesh size-dependent scale parameter, and dh coinci-
dent with k½½uhðXÞ��k, k � k denoting the Euclidean
norm. It is immediately verified that such a function
converges to GcðXÞ for bh !1 (Fig. 2).

Observe that it is possible to write uh ¼ uhðXn
h;

vn
h;XÞ and Kh ¼ KhðXn

hÞ, where Xn
h is the array col-

lecting the parameters which assign the positions
of the movable vertices, and vn

h is the array of nodal
displacements.
3.1. Solution strategy

Refer to the step tn�1 ! tn of a time discretiza-
tion, denote all the quantities relative to t ¼ tn by
the apex n, and drop the index h for convenience.
A finite element approximation ðun;KnÞ of the cur-
rent state ðu;KÞ of the body is found by minimizing
the incremental functional
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EnðXn; vnÞ ¼
X
T2Mn

Z
T

W ðX;runðXn; vn;XÞÞdX

þ
X
E2Kn

Z
E

/ðX; dnðXn; vn;XÞÞdH 1 ð7Þ

It is worthwhile noticing that the mesh Mn needs to
be adaptive, in order to expect convergence of the
minimizers of (7) to those of (1). As a matter of fact,
for a fixed Mn, the length of Kn cannot converge to
that of the actual continuous crack K, unless the lat-
ter exactly runs along the edges of Mn, due to unre-
coverable fine oscillations or ‘‘zigzag’’ effects [12].

On enforcing stationarity of En, one obtains the
equations

Rn ¼ oEn

oXn ¼ 0 ð8Þ

rn ¼ oEn

ovn
¼ 0 ð9Þ

requiring that residual configurational and mechan-
ical forces be zero, respectively.

Boundary conditions for vn are enforced in stan-
dard way if the imposed displacement history �u is
uniform on oDX, as in the examples presented in
the next section. In the case of non-uniform bound-
ary conditions, Eq. (8) needs instead to be modified
on oDX, as indicated in [17].

Systems (8) and (9) is generally non-convex,
badly conditioned and affected by degeneracy of
the Hessian matrix of En, even in absence of crack
propagation [18]. In order to eliminate rank-defi-
ciency, a vanishing viscosity approach can be use-
fully employed [11,18]. The approach used in this
study generalizes that presented in [18], considering
a fictitious motion, which originates from a known
point ðXn

0; v
n
0Þ and is ruled by the q;w gradient flow

q
dXn

ds
þ Rn ¼ 0 ð10Þ

w
dvn

ds
þ rn ¼ 0 ð11Þ

s denoting the fictitious time. Introduced a time dis-
cretization with time step d, incremental updates
ðXn

i ; v
n
i Þði ¼ 1; 2; . . .Þ are found by minimizing the se-

quence of functionals

En
i ðX

n
i ; v

n
i Þ ¼ EnðXn

i ; v
n
i Þ þ

q
2d
kXn

i � Xn
i�1k

2

þ w
2d
kvn

i � vn
i�1k

2 ð12Þ

whose stationarity conditions are
q
d
ðXn

i � Xn
i�1Þ þ Rn

i ¼ 0 ð13Þ

w
d
ðvn

i � vn
i�1Þ þ rn

i ¼ 0 ð14Þ

with Rn
i ¼ oEnðXn

i ; v
n
i Þ=oXn

i , and rn
i ¼ oEnðXn

i ; v
n
i Þ=

ovn
i .
Systems (13) and (14) is solved iteratively,

through a Newton iteration with directional control
[18], until kXn

i � Xn
i�1k and kvn

i � vn
i�1k are found to

be less than given tolerances. This implies that the
viscous relaxation vanishes at convergence and that
the final solution ðXn; vnÞ of (13) and (14) represents
a local minimizer of (7) [11]. The parameter d is
chosen sufficiently small to ensure positivity of the
Hessian of En, and is step by step rescaled.

3.2. Embedded adaptive discontinuity (EAD) model

The first free discontinuity model here presented
constructs the adaptive mesh Mh by subdivision of
a fixed external triangulation Th of X (Fig. 3a), in
such a way that each T 2 T h results into four sub-
elements (Fig. 3b). The supplementary vertices
X00kðk ¼ 1; . . . ;N 00Þ, introduced along the edges of
Th, are allowed to move within the segments X0i�
X0j � ði; j ¼ 1; . . . ;N 0Þ, according to the equations

X00k ¼ nkX0i þ ð1� nkÞX0j; ah 6 nk 6 1� ah ð15Þ

where ah is a mesh dependent parameter, strictly
greater than zero, introduced to prevent node col-
lapse. The array Xh collects the N 00 variables nk,
appearing on the right-hand side of (15)1, and is
subject to constraints (15)2. The discontinuity set
Kh groups the edges connecting movable vertices
(represented by dotted lines in Fig. 3b). This corre-
sponds to insert duplicate nodes only in correspon-
dence with the inner vertices X00k .

The present embedded discontinuity model has
been proposed in [12] for the scalar problem of anti-
plane shear in linear elasticity. In such a case, it has
been shown that the above choice of Kh permits one
to reproduce all the possible rectifiable cracks of X,
in the limit h! 0, and ensures C-convergence of the
family of discrete functionals (5) to (1), provided
that it results

lim
h!0þ

ah ¼ 0; lim
h!0þ

hahbh ¼ þ1 ð16Þ

The above result also implies convergence of the
minimizers of Eh (finite-element solutions) to the
minimizers of E (‘‘exact’’ solutions) [12].



Fig. 3. Fixed triangulation (a) with inside a nested adaptive triangulation (b).
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3.3. r-Adaptive discontinuity (RAD) model

A more general adaptive model is obtained by
considering a triangulation Mh in which all the ver-
tices are movable and all the edges are discontinu-
ous. This leads to a fully r-adaptive discontinuous
model, in which Xh coincides with the array of all
the referential vertex coordinates, and Kh coincides
with the entire set of mesh edges.

Clearly, in such a model, suitable constraints
have to be imposed, in order to preserve the bound-
ary of X during vertex motion. Assuming that X is
polygonal, this implies that the vertices of X must
remain fixed, and that edge vertices must remain
within their edges [17].
Fig. 4. Mixed mode crack kinking problem.
The generalization of the previous convergence
results to the present case is rather immediate, pro-
vided that it results lim

h!0þ
hbh ¼ þ1.

4. Numerical results

The performance of EAD and RAD approaches
is tested with reference to the model problem of
crack kinking under mixed mode loading, as illus-
trated in Fig. 4. Following [15], all the material
properties are set to 1, in consistent units, as well
as the aspect ratio B=L. In [15], such a problem
has been analyzed through a weak free discontinuity
approach, for different values of the loading angle a.
Here, the attention is restricted to the case with
a ¼ 52:5�, for which [15] estimates h ¼ 20� (kinking
angle).

Figs. 5–7 show the results obtained through the
EAD approach for three different meshes, corre-
sponding to 4 · 4, 8 · 8 and 16 · 16 square grids
of vertices in the external mesh Th. The crack was
allowed to start growing along an edge of Th placed
at 45� below the horizontal, and then let to run
along Kh. As it is shown in Figs. 5–7 and in
Fig. 12, it tends to turn and grow at 20� in corre-
spondence with each of the employed EAD meshes,
even in presence of small numerical perturbations.

The results corresponding to the RAD approach
are shown in Figs. 8–11 for different mesh configu-
rations. In detail, those of Figs. 8–10 correspond
to 6 · 6, 8 · 8 and 10 · 10 grids of nodes, respec-
tively, while that of Fig. 11 corresponds to a coarse
mesh with a local refinement in proximity of the
crack tip (RAD 24). It can be observed that mesh
adaption is rather effective in the RAD approach,



Fig. 5. Kinking prediction – EAD 4 mesh.

Fig. 6. Kinking prediction – EAD 8 mesh.

Fig. 7. Kinking prediction – EAD 16 mesh.
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which is clearly more flexible than the EAD one.
Also in the RAD case, the kinking angle tends to
20� below the horizontal, as the mesh size decreases
(around the crack tip). It is worth noticing that all



Fig. 10. Kinking prediction – RAD 10 mesh.

Fig. 8. Kinking prediction – RAD 6 mesh.

Fig. 9. Kinking prediction – RAD 8 mesh.
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the examined RAD meshes initially have tip edges
vertical, horizontal, or inclined above the horizontal
(Figs. 8–11). They are thus not particularly tailored
to the problem on hand (kinking below the horizon-
tal), which again highlights the great flexibility of
the RAD approach.



Fig. 11. Kinking prediction – RAD 24 mesh.

Fig. 12. Convergence of EAD and RAD predictions.
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The convergence behavior of the EAD and RAD
results is clearly illustrated by Fig. 12.
5. Concluding remarks and future work

Two different free discontinuity models for mod-
eling crack initiation and propagation in brittle
bodies have been presented, involving adaptive dis-
continuous meshes, smooth interface energies and
a vanishing viscosity relaxation of the quasistatic
evolution problem. Convergence of the discrete
approximation has been illustrated through numeri-
cal applications and extension of previous theoreti-
cal results concerning the antiplane case of linear
elasticity [12].

The presented numerical results show that the
RAD approach, when associated with an efficient
minimization strategy, is highly flexible and effec-
tive. Nevertheless, it requires a high computational
cost, involving a large number of duplicate nodes
and interface elements. The EAD approach instead
implies a more limited number of degrees of free-
dom, but can exhibit small oscillations or zigzag
effects in predicting the crack pattern, which never-
theless are going to disappear in the limit for the
mesh size approaching zero. The given results also
point out that excessive element distortion may
cause obstruction to crack propagation, especially
after the first initial steps of the evolution. Such
drawback can be adjusted using remeshing, h-adap-
tion and or topological optimization of the mesh at
the beginning of each step [17,18]. Above all, the
presented models appear well established from the
mathematical point of view, competitive against
other discontinuous approaches available in the lit-
erature, and susceptible of remarkable improve-
ments and technical application.

Significant results are expected by future theoret-
ical and numerical research in the field, addressing
3D fracture problems, inclusion of cohesive inter-
face laws, local minimization and remeshing, finite
elasticity or elasto-plasticity, mixed strong–weak
approaches (damage to fracture transition), separa-
tion of dilatational and distorsional effects, and
multi-scale modeling [19–26].
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