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Introduction - Tensegrity Metamaterials

Nonlinear metamaterials are progressively emerging as structured
materials that can tune their responses to the level of the applied
stress/strain and the amplitude of traveling waves.

Particularly interesting is the class of tensegrity metamaterials: their
mechanical behavior can be effectively adjusted by playing with
internal and external prestress, as well as the usual controls of
geometry, topology, and properties of the members.
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Main goals of ongoing research on tensegrity metamaterials
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1D Preliminaries - Geometrically nonlinear response of tensegrity prisms

Kinematic variables
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Work in collaboration with: A. A dola, G. Carpentieri, M. de Oliveira, R.E. Skelton (Compos Struct, 117, 234-243, 2014;
J Mech Phys Solids, 74, 136-157, 2015)
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Admissible configurations
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Rigid-elastic model (rigid bases)

b = by = const, { = {y = const
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Compact compression waves on 1D tensegrity chains with stiffening response
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Work in collab ion with: A. A dola, G. Carpentieri, C. Daraio, V.F. Nesterenko, L. Senatore, R.E. Skelton (J Mech Phys

Solids, 60, 1137-1144, 2012; APL, 105, 201903, 2014)
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Class 8 = 1 prism

b = bar length

| = horizontal cables length
c = inner cables length

v = vertical cables length

a = twisting angle between
top and bottom bases

B = slope of the internal
strings over the horizontal
plane

Modano, M., Mascolo, ., Fraternali, F., Bieniek, Z. Numerical and analytical approaches to the self-
equilibrium problem of class 8 = 1 tensegrity metamaterials. FRONTIERS IN MATERIALS (Mechanics of
Materials), 5:5, 2018.

Mascolo, 1., Amendola, A., Zuccaro, G., Feo, L., Fraternali, F. On the geometrically nonlinear elastic
response of class 8 = 1 tensegrity metamaterials. FRONTIERS IN MATERIALS (Mechanics of Materials),
5:16, 2018.
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Self-equilibrium problem

Member matrices
M =[B S]
Nik — Njk
Self-equilibrium problem

Ax =0
A =[-BA ST]

A bars’ force densities
[ strings’ force densities

T — . .
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Construction of physical models

(a) (c)

(b) (d) (e)
Connection and securing of Spectra® cables to eyelets and
washer to be passed through the threaded bars (a-c); a
triangular network of cables (d); a vertical cable (e)
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acorn nut
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Assembling steps:

(1) mounting of top, bottom,
and inner cables on the
bars;

(2) insertion of vertical cables;

(a) b)
‘ (3) tightening of the cables.

Bar equipment: before (a) and after (b) the fasting of the
steel nuts
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Variation of the wave profile and transition to rarefaction waves
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Bistable response of microscale lattices

scale bar: 10pum
movie 1|

Work in collaboration with: C. Grigoropoulos, A. Micheletti, Z. Vangelatos (Nanomaterials, 10, 652, 2020)
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Compression solitary waves on a column of bistable tensegrity prisms
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2D and 3D nonlinear tensegrity metamaterials

The secomd part of this talk is focused on the compact wave
dynamics in 2D and 3D tensegrity beams and plates with
stiffening-type, nonlinear elastic response. The given results in
multiple dimensions prove the presence of compact compression
waves in tensegrity lattices exhibiting such a behavior.

Some distinctive features of 2D and 3D systems are also discussed,
which are related to thermalization effects near the impacted zones of
the boundary. The analyzed behaviors suggest the use of
multidimensional tensegrity lattices for the design and AM of novel
sound focusing devices, and novel approaches to Non-Destructive
Evaluation (NDE) and Structural Health Monitoring (SHM).
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Nonlinear response of 2D/3D lattices

Two- and three-dimensional assemblies

F. Fraternali On the compact wave dynamics of tensegrity metamaterials 18/42



Nonlinear response of 2D/3D lattices

Two-string system with stiffening response
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Nonlinear response of 2D/3D lattices

Two-dimensional stiffening module (interpenetration mechanism)

movie
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Nonlinear response of 2D/3D lattices

Three-dimensional stiffening module (entaglement mechanism)
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Numerical modeling Equations of motion
Material properties

Equations of motion

A(p)t(p) + Mp =0,

where p is the vector of nodal positions, M is the (constant) mass
matrix, A(p) is the equilibrium operator, and t(p) is the vector
containing the axial forces of all members. The axial force in the i-th
member is computed as follows

ti = ki(p) (li(p) — 1),
For the cables, we set 1~<l~(p) = k; when it results ;(p) > [;, and

ki(p) = 0 when instead it results /;(p) < I;. The solution p(r) can be
easily obtained through a Matlab® script.
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Numerical modeling Equations of motion
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Material properties

quantity value  units
cell side 20 mm
bar diameter 1.75 mm
cable diameter 0.25 mm
Ti6Al4V Young’s modulus 120 Gpa
Ti6Al4V mass density 442  g/em’
Nylon 12 cables Young’s modulus 0.5 Gpa
Lead mass density 1134  g/em?
spherical mass radius 2.5 mm
additional nodal mass 074 ¢
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Solitary waves on stiffening systems

Solitary wave dynamics of weakly precompressed particulate systems
featuring power-law interactions with exponent n > 1.

Characteristic phase speed V, and the spatial length L, of solitary
waves (Nesterenko, Dynamics of Heterogeneous Materials, Springer,

2001)
2 n—1
Ve = cn ntl Em’
L - ma nin+1)
n—1 6
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Figure 1: Two-dimensional tensegrity beam under impact loading
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Work in collaboration with: A. Micheletti, G. Ruscica, (Nonlinear Dynam, 98, 2737-2753, 2019)
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Deformed configurations with superimposed energy colormaps for a
3% 50 strip impacted with vo = 5 m/s.
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Effects of different impact velocities

Table 1: Statistics of the wave speed, maximum axial strain of the cables, and total
energy fraction of the ccw traveling across Part 2, for different impact velocities.

Vo Vccw SVeew Em 5Eccw
(m/s) (m/s) (m/s) (%) (%)

500 5.67 0.02 3346 192
375 510 002 18.41 0.87
250 427 002 809 0.65

movie vo = 3.75 m/s >
movie vo = 2.50 m/s >
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We further analyze the partition of the impact energy on examining
the time-variation of the energies E; () that are associated with the
nodes of Part 1 (thermalized region) and Part 2 (region behind the
thermalized region):

Ej(r) = %mjvjz(t) - % > kili(n) = 1)

Energy correlation function: C(t,1y) = ¢(¢)/c(ty), where

1 il 1 X
f)= —r EXD) — (—— Y Eft
c(1) NN, ; (1) Na_Nbi:ZNa i(7)
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Figure 2: Energy correlation function in Part 1 (dashed blue curve) and Part 2 (solid
red curve) for vo = 5 m/s (times in ms on the x-axis).

On the col



Energy correlation function
2D beams

Solitary wave dynamics Plates
3D beams

Collision between two ccws on 2D beams - 1/3
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movie 1

Deformed configurations of a 1 x80 strip after double impact with
initial velocity vo = Sm/s: a) t=0.089 s; b) t=0.138 s.
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Deformed configurations of a 3 x80 strip after double impact with
initial velocity vo = Sm/s: a) t=0.150 s; b) t=0.187 s.
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movie

Deformed configurations of a 5 <80 strip after double impact with
initial velocity vo = Sm/s: a) t=0.179 s; b) t=0.233 s.
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Solitary wave dynamics of a 2D plate
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Compression solitary waves on 3D beams
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Deformed configurations and energy colormaps for a2 x 2 x 30
beam of cubic cells impacted with vo = 1.25 m/s.

Work in collaboration with: A. Micheletti, G. Ruscica, (Nonlinear Dynam, 98, 2737-2753, 2019)
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Deformed configurations of a 2 X 2 x 30 beam of cubic cells after
double impact with initial velocity vo = 1.25m/s: a) t=0.124 s, b)

1=0.225 s.
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Tensegrity acoustic lenses
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Figure 3: Acoustic lens consisting of an array of tensegrity beams featuring strong
hardening response and scalable size of the unit cells.
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Discussion and Outlook

A parade of numerical simulations of impact events on 2D and 3D
tensegrity beams has led us to discover that the impact dynamics of
such systems is characterized by the combination of thermalization
phenomena in proximity of the impacted areas, and the formation and
propagation of compact compression waves in front of the
thermalized regions.

The traveling ccws transport energy on localized packets of unit cells
spanning from two to three lattice modules in the longitudinal
direction. Such compression waves propagate with nearly constant
velocity before and after collisions with other ccws, and exhibit
limited energy leaking during their propagation
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Discussion and Outlook

The behaviors examined in the present study suggest the employment
of tensegrity beams to form innovative acoustic lenses. Such devices
are expected to be able to generate tunable ccws in an adjacent host
medium, which will cohalesce at a given focal point (Spadoni and
Daraio, PNAS 2010). The latter may consist of a material defect or a
tumor mass in the host medium (Daraio and Fraternali, US Pat. No.
8,616,328)

Compared to devices based on granular metamaterials supporting
fixed wavelength solitary waves, the tensegrity acoustic lenses will
profit from the adjustable width of ccws in tensegrity lattices, and the
atomic-scale localization phenomenon observed in the high-energy
limit.
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Discussion and Outlook

Future directions of the present research include:

e multiscale analytic modeling of the wave dynamics of tensegrity
lattices

o development of novel additive manufacturing techniques for the
fabrication of macro- and micro-scale physical models of lattices

o dynamical tests aimed at experimental validating the puzzling
compact wave dynamics of tensegrity metamaterials

o fabrication and testing of acoustic lenses and SHM actuators and
sensors with tensegrity architecture
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Discussion and Outlook

Post-tensioning of 3D printed metallic structures




Discussion and Outlook

3D printing of adaptive microscale structures

3D printing of active hydrogels using PECDAI
projection  micro-stereolithography:  (a)
schematic of a PuSL setup and fabrication
process; (b) sample substrate movement
during fabrication; and (c) water or solvent
diffusion in a rod. Commonly employed
hydrogels: poly(ethylene glycol) diacrylate
(PEGDA); hexanediol diacrylate (HDDA);
poly(N-isopropylacrylamide) (PNIPAAm)

Dynamic Mask

of tensegrity metamaterials



Discussion and Outlook

Thank you for your attention!

Supplementary Materials on
www.fernandofraternaliresearch.com
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