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Motivation

A novel area of research has emerged over the last few years regarding
the design and manufacturing of structural lattices modulated with periodic
elastic moduli and mass densities.

It has been shown that such linear elastic metamaterials may exhibit
anomalous acoustic behaviors, like negative effective elastic moduli;
negative effective mass density; acoustic negative refraction; phononic
band gaps; and local resonance, to name just a few examples.

The dynamics of strongly nonlinear metamaterials with power-law
interaction law between elements has also been investigated, revealing
that elastically stiffening systems with power law exponent n greater than
one (“normal” powe-law materials) support compressive solitary waves and
unusual reflection of wave on material interfaces.

Differently, elastically softening systems with n < 1 ("abnormal” power-law
materials) support the propagation of rarefaction solitary waves under
initially compressive impact loading.



The present talk focuses on the following features of the wave dynamics of
granular and tensegrity metamaterials:

- Energy transport through solitary waves;

- Dependence of the wave profile on the material properties (t-lattices);
- Shock and impulse mitigation properties;

- Optimal design through Evolutionary Strategies;

- Practical applications.

Granular crystals are metamaterials composed of particles arranged in
given geometrical configurations. Such systems are characterized by a
highly nonlinear dynamics derived from the Hertzian contact interaction
between particles and the zero tensile resistance between grains.

We optimize features of granular systems such as particle distribution,
connectivity, size, and material properties. By designing granular
protectors or containers optimally, the strongly nonlinear dynamics of
granular systems can be exploited to produce fast decomposition of an
external impulse into trains of solitary waves, energy trapping, and shock
disintegration/reflection.



Concerning tensegrity structures, we explore their use as novel networks
supporting energy transport through solitary waves. Experimental and
theoretical studies have shown that the geometrically nonlinear response
of tensegrity prisms may gradually change from stiffening to softening,
depending on mechanical, geometrical and prestress variables. This
extremely rich constitutive behavior can be dynamically tuned, by
integrating control functions within the design of the structure.

We present theoretical and numerical results on the mechanics of
periodic lattices of lumped masses connected by tensegrity prisms. The
latter may exhibit either softening or stiffening elastic response tuned by
local and global prestress.

The given results show that such systems are able to support tunable
solitary rarefaction and compression waves and anomalous wave
transmission and reflection between branches with different acoustic
impedances.

The observed behaviors pave the way to the optimal design of tunable
tensegrity metamaterials, acoustic lenses, and innovative impact
protection devices that do not require energy dissipation



Granular crystals

Two remarkable phenomena have
been observed in the literature
with reference to the wave
dynamics of heterogeneous
granular lattices:

a) disintegration of an incident
pulse into a train of solitary waves
when it passes from sections with
LARGE radius to sections with
small radius;

b) partial reflection in the opposite disintegration
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Similar behaviors have been observed at the interfaces
between soft (e.g., rubber) and hard (e.g., steel) beads:

a) disintegration of an incident pulse into a solitary wave
train when it passes from sections with hard beads to
sections with soft beads;

b) partial reflection in the opposite case (soft -> hard
transition)
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The previous 1D “thermalization” phenomena are accompanied by wave-
redirection effects in 2D and 3D granular systems, leading to marked
“energy- trapping” capabiliy of the system (as opposed to energy
dissipation).

Motion (left) and contact force (right) animations for a 2D granular
system transversally impacted by an external striker.



Tensegrity metamaterials

Tensegrity metamaterials are here defined as periodic arrays of tensegrity
structures, freestanding or embedded in a matrix.

Such structures may act as "engineered structural foams" featuring special
dynamics, due to the geometrically nonlinear response of the tensegrity
units. The mechanical properties of the t-units can be adjusted on the fly,
through suitable control of prestress and geometry of strings and bars.



Elastic potential of a hardening prism
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It has been shown that tensegrity prisms endowed with rigid
bases (“hard t-prisms”) feature a "locking' behavior in
compression. Such a behavior is characteristic of lattices
supporting solitary waves featuring atomic-scale localization in
the high-energy limit (Fraternali et al., 2012).



Control and deployability

——————— 1 €13
animation > ,
| v

Courtesy of Bob Skelton, UCSD



Part I

Basic Properties of Solitary
Waves



Solitons

A soliton (or solitary wave) is a solution of a nonlinear
wave equation that asymptotically preserves the same
Shape and velocity after a collision with other solitary
waves.

Properties: ,

» describe waves with permanent form;

« are localized, so that decay or
approximate a constant to infinity;

« can interact strongly with other
solitons, but emerge from the collisions
unchanged unless a motion

phase.
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Super-compact solitary waves on stiffening lattices
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Discrete element modeling

generalized coordinates
qp - G

- L’(q'n) position
y =y (qm) vectors

particle strains
(+ dilatation, - compression)

y-y)@“

We employ a discrete element modeling of a granular metamaterial by
describing the particles as point masses connected by nonlinear springs,
which reproduce the Hertzian contact law between spheres.

Interaction potentials — — Potential of the external forces
‘ (gravity, precompression, etc.)

N
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Hertz interaction potentials
1

n +1
Vs = o (0, )" Interaction potentials
i
F,=V',=0, (5, )" Interaction forces
6, =min{0,5, } Negative (compressive) part of 0,

(no tension behavior)

For spherical particles
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Numerical results: optimization of 1D and 2D
granular protectors

-

Analyzed
systems
and materials

@ Steclbeads
@ PIFEbeads
@ Rubberbeads Elastic modulus [GPa]  Poisson’s ratio  Density [kg/m?]
Stainless steel 193,00 0,30 8000
@ Bronzebeads PTFE 1,46 0,46 2200
. Glass beads Rubber 0,30 0,49 2200
Nvion beads Bronze 76,00 0,41 8500
O Nylonbea Glass 62,00 0,20 2425

Nylon 3,55 0,40 1085




Topology optimization
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Density plots of particle energies normalized to unity.



Topology optimization
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Topology optimization
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Size optimization
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Size optimization

Fin Optimized system
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Size optimization
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Material optimization
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2D granular crystals/systems

composite homogeneous
10x0 box- 10x0 steel box-
uniform impact uniform impact
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3D granular crystals/systems

no. of beads= 833 v striker =1.65 m/s
diameter= 9.53 mm material: stainless steel

Force mitigation efficiency
at the lateral walls: 95%

Force mitigation efficiency at
the bottom wall: 70%



Discussion

We have show that an optimized design may lead to dramatic advantages
in the protection abilityof granular protectors, leading to a significant
decrease of the transmitted force.

In particular, an optimal design may generate suitable topology, size, and
material randomization by combining effects of wave disintegration and
reflection at the interfaces between different particles.

A general feature we observe in the optimized protectors is the
transformation of incident waves into a collection of interacting
reflected and transmitted solitary pulses, which in particular
form an extended (long-wavelength), small-amplitude wave that
travels to the wall.

We also find that optimization randomizes these systems (adding to their
disorder) and produces a marked thermalization. We constantly observe
the appearance of soft/light beads near the wall, hard/heavy beads near
the end impacted by the striker, and alternating hard and soft beads in the
central section of the optimized protectors.
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Solitary Waves on Tensegrity
Metamaterials



Mechanical response of a tensegrity prism under
axial loading




Sequence of configurations corresponding to feasible values of the twisting angle

Compatibility equations
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Equilibrium problem
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Numerical approach

Continuation method
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Force-displacement response of a fully-elastic prism
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Rigid-elastic model (¢ and b fixed)
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Force-displacement response of a

IC prism
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Effects of element rigidity and internal
prestress
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Experimental validation of the constitutive response
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Tensegrity metamaterials

(a) Chain of tensegrity prisms (strongly nonlinear springs) and
lumped masses globally prestressed by force Fg. (b) Top view
(on the left) and side view (on the right) of the tensegrity unit.



Properties of the elastic potential of rigid-elastic prisms

e (H1) minimum at zero: V e C*(—d,~),V = 0,V(0) = 0,V"(0) = 0;
e (H2) growth: V(r) = co(r+d)~", for some cp > 0 and all r close to —d;
e (H3) hardening: V"(r)<0 in (—d,0], V(r) < V(—r) in (0,d).

For ¢ = ¢;, the continuum limits of the strain waves traveling on lattices endowed with such potentials have a small-
amplitude profile of the form &(x) =&, ;2(x)+ O(y*) (Friesecke and Pego, 1999), where x is a coordinate centered at the
wave peak, and it results

& a(X)=— a (." sech(yx ’
sech® ™ hho \ 2 2hy

with
P =24 C;CS . a=V"(0), b=V"0)

s

Cy = Ilo\,-"v ©)

ho denoting the lattice spacing. Differently, for ¢ > ¢, (that is, c— oc), the strain waves tend to assume a piecewise linear
profile z..(x), which is concentrated on a single lattice spacing and defined as follows (Friesecke and Matthies, 2002):
0 if x/hg<—1
Eoo(X)= ¢ d/ho (1—x/hg ) if x/hg € [-1,1]
0 if x/hp=1



Numerical simulation
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Rarefaction solitary waves on softening tensegrity

lattices

The wave dynamics of lattices showing tensegrity units supports the
formation of a leading rarefaction soliton followed by a dispersive, oscillatory
tail. The rarefaction soliton moves at supersonic speed while the oscillatory

tail moves at subsonic speed.
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Composite hard-soft systems

The interaction of a rarefaction solitary wave with an acoustically hard-soft
interface also demonstrated anomalous behavior; a reflected solitary rarefaction
wave with oscillatory tail in the acoustically hard branch; and a delayed train of
transmitted compression solitary pulses in the acoustically soft branch..
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Technical applications

The presented results highlight that softening tensegrity metamaterials may
transform an initially compressive disturbance into a rarefaction wave of finite
amplitude with progressively vanishing oscillatory tail. We demonstrated
anomalous reflection of compression and rarefaction solitary waves from
interfaces of two tensegrity based metamaterials.

The analyzed systems can act as effective impact mitigation systems which do
not require dissipation of energy, but a sufficiently large number of units, as a
function of local and global prestress. If the size of the units can be scaled
down to about 10 u, we expect that an effective impact protection barrier would
require a total length of 1 cm.
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3D printing of titanim physical samples
(in collaboration with the Mercury Centre for Advanced Manufacturing
Technology& Production, University of Sheffield, UK)

Ti6Al4V tensegrity prisms and columns




Experimental setup for dynamic tests on tensegrity chains
(in progress)
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Ongoing work

Generalize the mathematical work available in literature. on
the existence and asymptotic profiles of localized waves on
lattices with Lennard-Jones type interactions to softening
lattices.

Design by computation of tensegrity metamaterials featuring a
variety of behaviors not found in natural materials, such as,
e.g., sound focusing; rarefaction waves; acoustic cloaking;
wave-steering and stop-bands.

Main applications: acoustic lenses, innovative tools for
nondestructive evaluation and monitoring of materials and
structures; and shock absorption devices.





