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Abstract

This work studies the acoustic band structure of tensegrity mass-spring chains, and the possibility to tune the disper-

sion relation of such systems by suitably varying local and global prestress variables. Building on established results

of the Bloch-Floquet theory, the paper first investigates the linearized response of chains composed of tensegrity units

and lumped masses, which undergo small oscillations around an initial equilibrium state. The stiffness of the units

in such a state varies with an internal self-stress induced by prestretching the cables forming the tensegrity units, and

the global prestress induced by the application of compression forces to the terminal bases. The given results show

that frequency band gaps of monoatomic and biatomic chains can be effectively altered by the fine tuning of local and

global prestress parameters, while keeping material properties unchanged. Numerical results on the wave dynamics of

chains under moderately large displacements confirm the presence of frequency band gaps of the examined systems

in the elastically hardening regime. Novel engineering uses of the examined systems are discussed.

Keywords: Tensegrity lattice, band gaps, prestress, wave attenuation, monoatomic, biatomic, tunability

1. Introduction

The research area of linear and weakly nonlinear wave dynamics has devoted much attention to so-called ‘phononic

band gap’ theory, which extends the previously investigated theory of photonic band gaps [1, 2, 3, 4]. A number of
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studies have shown that composite materials that feature periodic variations in density and/or wave velocity can dis-

play band gaps where the propagation of mechanical waves is forbidden (refer, e.g., to [4] and references therein).

Structural lattices formed by tensegrity units and lumped masses are particularly interesting for applications. Such

systems are easily tunable: either by initial self-stress of the units (also referred to as ‘local’ or ‘internal’ prestress),

or by changing the precompression of the whole structure (‘global’ or ‘external’ prestress, refer to [5]- [12], and

references therein, for an extensive overview).

The research conducted so far in the area of lattice materials alternating tensegrity units and lumped masses has

revealed that elastically hardening systems support compressive solitary waves and the unusual reflection of waves

on material interfaces [6, 11]. At the contrary, elastically softening systems support the propagation of rarefaction

solitary waves under initially compressive impact loading [7, 8, 9]. Solitary wave dynamics has been suggested for

the construction of a variety of novel acoustic devices, like impact mitigation systems and tunable acoustic lenses.

Effective impact mitigation systems based on tensegrity systems with softening-type response are able to transform

compressive disturbances into solitary rarefaction waves with progressively vanishing oscillatory tail [7, 13]. Tun-

able acoustic lenses based on elements with an stiffening response can spatially focus compression solitary waves in

different regions of space [6, 14].

This work investigates translational waves in 1D periodic arrays of tensegrity prisms alternating with lumped

masses, which are shown to be able to control linear elastic waves with arbitrary tunable performance starting from

(theoretically) zero frequency. The tuning mechanism relies on variability of an effective stiffness of the tensegrity

units by means of applied local and global prestress [6]-[9]. We show that such systems support phononic band gaps,

which can be tuned to selected frequency ranges by varying the applied prestress, while keeping material properties of

the unit cells unchanged. As compared to granular systems (refer, e.g., to [16, 17] and references therein), the internal

prestress adds a significant extra feature of tensegrity metamaterials, which can be finely tuned in order to essentially

vary the system band gaps.

The structure of the paper is as follows: In Sect. 2 we model the analyzed tensegrity chain as a sequence of masses

connected by non-linear springs. We first focus on the linearized mechanical response of a 1D monoatomic lattice

(Sect. 2.1) and then we pass to the analysis of a spring-mass lattice which features springs with two different stiffness

constants, as a consequence of different states of local and global prestress (Sect. 2.2). We show that the dispersion

relations of such systems are strongly influenced by the applied levels of prestress. Numerical results obtained in

the geometrically nonlinear regime, which accounts for the actual force-displacement response of the tensegrity units

under large or moderately large displacements, confirm the presence of frequency band gaps in the dispersion relation

of the analyzed systems (Sect. 3). The key mechanical features of the such structures are summarized in Sect. 4,

where we also suggest future research lines for the design and testing of novel band gap systems with tensegrity

architecture.
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2. Dispersion relation of 1D tensegrity chains

The present section studies the dispersion relation of chains obtained by alternating tensegrity units, acting as

elastic springs, and massive discs, acting as lumped masses. The generic tensegrity unit is composed of the minimal

regular tensegrity prism illustrated in Fig. 1, which shows two triangular bases composed of members carrying tensile

forces (cables or strings), three cross members carrying compressive loads (bars), and three cross-strings.Fig.1
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Figure 1: Rest configuration of a minimal regular tensegrity prism (a), prestressed configuration (b) and lumped mass

(c).

The chain is uniformly axially loaded by an axial force F (total axial force applied to the terminal bases). We

assume that the lattice unit cells are frictionless unilateral contact with the adjacent discs [9]. As such, the bases

of the units, being tangentially disconnected from the discs, are free to slide over the surface of these discs. This

assumption implies that twisting moments are not transferred from the units to the lumped masses, meaning that the

systems examined in the present study do not form continuous 3D tensegrity columns. Accordingly, we describe

these systems as 1D chains composed of lumped masses that can move only in the longitudinal direction [6, 9], and

elastic springs that are characterized by the axial force vs. axial strain response of a uniformly compressed tensegrity

prism [7]. We examine chains equipped with tensegrity prisms featuring identical geometrical properties in the rest

configuration and identical mechanical properties, with possibly different mechanical response up to the value of the

applied prestress.

Hereafter, we use the symbols s, l, and b to denote the current lengths of the cross-strings, the base strings

and the bars, respectively, and let h denote the height of the unit. In addition, we let R and d indicate the radius

and the thickness of the discs interposed between the units, and make use of the symbols Eb and Es to denote the

Young moduli of the bars and the strings, respectively. The rest lengths of the cross-strings and the base-strings are

respectively denoted by sN and lN . The units examined in the previous work coincide with those analyzed in Ref. [9]

for a study on the solitary wave dynamics of tensegrity chains under impact loading. Each unit is composed of 2.28

mm Spectra strings and 0.8 mm cylindrical bars made of the titanium alloy Ti6Al4V. Its rest configuration under zero
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external and internal forces is described by the properties listed in Table 1. The total mass M of a unit cell is evaluated

as the sum of the disk’s mass (m) and the prism’s mass (m0). We set m0 = 0.083 g and m = 300 m0 = 24.89 g, so that

the chain can be described as a system of point masses connected by massless springs (m >> m0 [9]).

sN lN R d Eb Es

(mm) (mm) (mm) (mm) (MPa) (MPa)

6.00 8.70 18.66 2.00 120.00 5.48

Table 1: Geometrical and mechanical properties of the rest configuration of the generic unit.

Given the action of ‘local’ and ‘global’ states of prestress, let us assume that the generic unit is not in the rest con-

figuration before the application of dynamic loading. A state of local prestress (or self-stress) acts in the configuration

of the chain under zero external forces, which shows the two terminal bases of the generic unit rotated against each

other at a twisting angle of 5/6 π. This state of prestress follows from the action of a self-equilibrated set of internal

forces in the prism members, and can be usefully characterized though the prestrain of the cross-string p̄, as shown in

Ref. [7] (cf. Tab. 2).

p̄ 0.00 0.01 0.02 0.05 0.09 0.10

s̄ (mm) 6.000 6.060 6.120 6.300 6.540 6.600

¯̀ (mm) 8.700 8.773 8.845 9.061 9.346 9.417

b̄ (mm) 11.108 11.207 11.305 11.597 11.985 12.081

h̄ (mm) 5.407 5.463 5.519 5.688 5.913 5.969

Table 2: Variables chacterizing the geometry of the self-stressed configuration of the unit under zero external forces,

for different values of p̄.

In addition to local prestress, we assume that the chain is initially loaded with a static precompression force F0,

which induces a state of global prestress in the structure in the equilibrium configuration preceding the application of

dynamic loading. We denote all the quantities referred to the self-stressed configuration by a superimposed dash, and

the quantities referred to the globally-prestressed configuration by the subscript "0" (cf. Fig. 1). We let δ = h̄ − h

denote the axial displacement from the self-stressed configuration, and let ε = δ/h̄ denote the corresponding axial

strain (positive when the prism is compressed).

The mechanical theory of axially loaded prisms presented in Ref. [7] shows that the geometry of an arbitrary

configuration of such a structure can be described in terms of three independent geometric variables, say, e.g., the

length of the base strings `, the prism height h, and the twisting angle ϕ between the terminal bases. By using the

three-equilibrium equation of the generic node, and assuming the linear elastic response of bars and strings, the theory

4



presented in [7] allows us to link ` and ϕ to h (free kinematic variable), and to determine the effective constitutive

response F vs. h (or F vs. ε) of the unit, for any couple of values of the variables p̄ and ε0 = δ0/h̄ that characterize

the local prestress and the global prestress of the unit (δ0 = h̄ − h0), respectively. Tab. 3 and Fig. 2 illustrate the

geometry and constitutive responses of four units that differ from one another in terms of the values of the prestress

variables (p̄, ε0). In the plots of Fig. 2, the force F has been normalized by introducing the dimensionless quantity

F̄ = F
(h∗0+d)K∗ , where h∗0 is the height and K∗ is the tangent stiffness of Unit 1 (taken as reference) in the globally

prestressed configuration. The results shown in Fig. 2 reveal that the F vs. ε laws of all the examined units are

markedly nonlinear, due to geometric (large displacements) effects. In particular, the F̄ vs. ε response of Unit 1

exhibits zero slope at the origin, due to the fact that the unit is under zero local prestress ( p̄ = 0) [7]. It is worth noting

that Units 1 and 2 exhibit stiffening tangent response and relatively low tangent stiffness in proximity to the globally

precompressed configuration, while Units 3 and 4 exhibit softening response and relatively high tangent stiffness (see

Tab. 3 and Fig. 2).

p̄ ε0 F0 F̄0 s0 `0 h0 a φ0 K

(%) (%) (N) - (mm) (mm) (mm) (mm) (rad) (kN/m)

Unit 1 0.0 1.0 0.0074 0.0035 6.001 8.701 5.353 7.353 2.641 0.39

Unit 2 0.1 1.5 0.125 0.059 6.007 8.709 5.332 7.382 2.652 1.99

Unit 3 5.0 20 36.144 17.097 6.159 9.310 4.551 6.551 2.887 21.65

Unit 4 3.0 5 7.974 3.772 6.148 8.954 5.297 7.297 2.708 26.15

Table 3: Geometrical and mechanical properties of four different units, which differ each other for the values of the

‘local’ prestress variable p̄, and the ‘global’ prestress variable ε0.

The study presented in the following Sects. 2.1 and 2.2 linearizes the constitutive response of the units near

the globally prestressed configuration (ε0, F0), by describing such structures as effective linear springs with stiffness

constant K equal to the local slope of the F − h curve (tangent axial stiffness). The results presented hereafter are

therefore valid for (infinitesimally) small oscillations of the system with respect to the initial configuration. We refer

the reader to Sect. 3 for a study of the dispersion relation of tensegrity chains in the geometrically nonlinear regime.

2.1. Monoatomic chain

Our first goal is to study the band structure of a tensegrity chain by using available results for monoatomic struc-

tures [18]. We analyze a monoatomic tensegrity chain in the form of a sequence of masses connected with linear

springs of the same stiffness constant K (Fig. 3). We define the distance between the masses as H0 = h0 + d, where h0

is the height of the prism in the initial configuration. The quantity H0 corresponds to the unit cell size ‘a’.

We examine four different monoatomic chains (Mono 1,2,3,4) that respectively employ the Units 1,2,3,4 described

in Tab. 3. In writing the equation of motion of the nth mass forming the chain as follows
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Figure 2: F − ε curves of Units 1,2 (a), and 3,4 (b).

K M

a== H0

Figure 3: Monoatomic chain: physical model (top) and mass-spring model (bottom).

Mδ̈n = K(δn+1 − δn) − K(δn − δn−1) (1)

we seek solutions in the form of a propagating harmonic wave

δn = Aeiκnaeiωt (2)

where κ is the wave number andω is the angular frequency (Bloch-Floquet theory, refer, e.g., to [18]). The substitution

of Eqn. (2) into (1) leads us to obtain the following single dispersion curve (the so-called ‘acoustic branch’) between

the angular frequency ω and the wave number κ (we refer the reader to Refs. [18] for further details)

ω(κ) =

√
2K(1 − cos κa)

M
(3)
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Fig. 4 plots the dispersion curves obtained for the four monoatomic chains (Mono 1,2,3,4) following the intro-

duction of the normalized frequency f̄ = f
√

M
K∗ ( f = ω

2π ), and the normalized wavenumber κ̄ = κ π/a. Let us

focus our attention on the end points of the first Brillouin zone (κ̄ = ±1), at which the dispersion curve reaches the

limiting angular frequency ω =

√
4K
M , which marks the upper bound of the transmission region of mechanical waves,

or, equivalently, the lower bound of the stop band region (band edge) [18]. The results in Fig. 4 plots point out that

mechanical waves with normalized frequencies such that f̄ > 0.32, 0.72, 2.35, 2.59 (i.e., f > (40, 90, 296, 325) Hz)

are not allowed to propagate through the Mono1, Mono 2, Mono 3 and Mono 4 chains, respectively. We highlight

a ≈ 640% increase of the lower bound of the stop band region, when passing from Mono 1 (p̄ = 0, ε0 = 1%) to

Mono 3 (p̄ = 5%, ε0 = 20%), and a ≈ 713% increase of the same quantity when passing from Mono 1 to to Mono 4

( p̄ = 3%, ε0 = 5%). Therefore, it is clear that one can markedly change the dynamics of mechanical waves in such

systems by finely adjusting the local and global prestress of the chain, while keeping unchanged the rest configuration.

2.59
2.36

0.72

0.32

݂̅
k

Figure 4: Dispersion relation in the first Brillouin zone for monoatomic chains equipped with the Units described

inTab. 3

.

2.2. Biatomic chain

We now examine the band structure of a biatomic tensegrity chain (Fig. 5, top), which is modeled by a sequence

of identical lumped masses connected by linear springs with alternating constants K1 and K2, where K1 < K2 (Fig.

5, bottom). The spring with the constant K1 refers to the 1D model of a tensegrity prism of height ‘h01’ at the initial

configuration (‘soft’ unit), while the spring with the constant K2 refers to a prism of height ‘h02’ (‘hard’ unit).

We define the distance between the two masses connected to the softer prism as H01 = h01 + d. Using the

same notation, H02 is equal to h02 + d. Consequently, the unit cell size of the mass-spring model can be defined

as a = H01 + H02 (Fig. 5). As in the case of the monoatomic chain, all the prisms forming the biatomic chain

are characterized by identical geometric properties in the rest configuration, as well as identical material properties,
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M

Figure 5: Biatomic chain: physical model (top) and mass-spring model (bottom).

and differ only by the value of the local and global prestress (refer to Tab. 4 for geometric and material properties).

By fixing the values of the hard spring constant K2 and the applied external precompression force F0, we study

the variation of the mechanical properties of the structure with the soft spring constant K1, by examining the units

illustrated in Tab. 4 and Fig. 6.

Soft Hard

p̄ 0.000 0.030 0.050 0.100

ε0 0.010 0.025 0.016 0.108

K (kN/m) 15.463 28.257 43.107 68.333

s0 (mm) 6.027 6.161 6.280 6.578

`0 (mm) 8.776 8.933 9.075 9.430

b0 (mm) 11.107 11.402 11.597 12.081

h0 (mm) 4.823 5.436 5.595 5.910

Table 4: Geometrical and mechanical properties of soft and hard units of biatomic chains, for constant F̄0 = 1.99.

By extending the Bloch-Floquet theory outlined in the previous section to the case of a biatomic chain, we get a

dispersion relation ω vs. κ characterized by the two branches, which are given by the equation (refer, e.g., to [18, 19]

for details)

ω2 =
K1 + K2

M
±

1
M

√
K2

1 + K2
2 + 2K1K2 cos κa (4)

The lower branch, which is usually referred to as the acoustic branch, covers the frequency range (or pass band)

comprised between ω = 0 and ω =

√
2K1
M . Likewise, the upper (or optical) branch covers the pass band comprised

between ω =

√
2K2
M and ω =

√
2(K1+K2)

M .
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Figure 6: F − ε curves of the units of biatomic chians shown in Tab. 4.

Fig. 7 shows the acoustic and optical branches of the dispersion relations obtained for the biatomic chains equipped

with the units illustrated in Tab. 4. The results presented in Fig. 7 highlight that the amplitude of the stop band

comprised between the acoustic and optical branches changes markedly when passing from one chain to another, due

to the different values assumed by the local and global prestress variables p̄ and ε0 in such systems. By keeping

p̄ = 0.100 and ε0 = 0.010 in the hard units and varying such prestress parameters in the soft unit, one can get

a fixed upper bound at f̄ = 2.96 ( f = 372.28Hz) and tune the lower band gap bound to f̄ = 1.41 (177.09 Hz),

f̄ = 1.90 (239.40 Hz), and f̄ = 2.35 (295.68 Hz) when the couple { p̄, ε0} is respectively equal to {0.000, 0.108},

{0.030, 0.025}, and {0.050, 0.016} in the soft units. The above results (Fig. 7) confirm that the band gap frequencies

in biatomic tensegrity chains can be effectively tuned by the variation of the local and global prestress, similarly to

the monoatomic systems.

2.96

2.35

1.90

1.41

݂̅

3.78
3.52
3.28

Figure 7: Dispersion relation in the first Brillouin zone for a biatomic chain under F̄0 = 1.99 and different values of

p̄.
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The biatomic chains examined in Fig. 7 show band gap frequencies between the acoustic and optical branches

within the audible range (20 Hz to 20kHz). This result is a consequence of the particular choice of the prisms and

masses forming such systems, and can be generalized to hypersonic band gap system by using, e.g., tensegrity units

consisting of prisms equipped with rigid bases and bars (rigid-elastic units [7]). Table 5 shows the geometrical and

mechanical properties of two rigid-elastic tensegrity units (named ‘Rigel 1’ and ‘Rigel 2’) that exhibit the same stress-

free configuration and identical cross-string material of the fully elastic prisms previously examined. The axial force

vs. axial strain responses of such units illustrated in 8 highlights a locking-type response in correspondence to the

limiting configuration with φ = π, when the bars touch each other [7]. The dispersion relation of a biatomic chain

equipped with the rigid-elastic units is shown in Fig. 8. It is seen that no waves can propagate along the chain within

the first stop band region f̄ ∈ [133.95, 263.39], which extends above the audible frequency range ( f ∈ [16.84− 33.12]

kHz).

Rigel 1 Rigel 2

p̄ 0.200 0.000

ε0 0.076 0.125

K (MN/m) 139.866 540.754

s0 (mm) 7.782 6.810

`0 (mm) 8.700 8.700

b0 (mm) 11.800 11.108

h0 (mm) 6.201 4.744

Table 5: Geometrical and mechanical properties of the equilibrium points of units equipped with rigid bases under

F̄0 = 1.17 × 103.

3. Frequency band gaps under moderately large incremental strains

We have already observed that the actual F vs. ε curves of the tensegrity units analyzed in the present work are

markedly nonlinear, due to geometric effects [7]-[9] (cf. Fig. 2). We now want to numerically study the phenomenon

of wave attenuation in the Mono 1 and Mono 2 chains analyzed in Sect. 2, by accounting for the nonlinear response

of the units under moderately large incremental strains, while varying the values of the local and global prestress

variables from p̄ = 0, ε0 = 1.0% (Mono 1) to p̄ = 0.1%, ε0 = 1.5% (Mono 2). Such a study is conducted by

perturbing the equilibrium configuration by a sinusoidal time-displacement input applied to the first unit of a chain

composed of 100 masses. The amplitude of the applied displacement input is set equal to 0.03 mm, which gives raise

to an incremental strain |∆ε| ≈ 0.6% from the initial equilibrium point (cf. Tab. 1), and nearly reduces to zero the

static precompression force, when applied in tension (cf. Fig. 2(a)). In the present section, we employ an in-house
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Figure 9: Dispersion relation in the first Brillouin zone for a biatomic chain equipped with Rigel 1 and Rigel 2 units
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developed particle dynamics code, which describes the tensegrity units of the Mono 1 and Mono 2 chains as nonlinear

elastic springs governed by the force-strain laws depicted in Fig. 2(a). This numerical model makes use of a fourth-

order Runge-Kutta integration scheme to solve the Newton equations of motion of the masses forming the chain (see

Refs. [6, 20, 21] for additional details). It differs from that analyzed in Sect. 2, which studied the Mono 1 and Mono 2

systems as linear mass-spring chains, by linearizing the response of the tensegrity units in proximity to the prestressed

configuration.

We begin by analyzing the nonlinear response of the nonlinear Mono 1 chain. The chain is subjected to sinusoidal

displacement loading with excitation frequency fin ∈ [20, 80] Hz ( f̄in ∈ [0.16, 0.64]), thus allowing for the bandgap

edge of the linear Mono 1 chain to be included in our analysis ( f = 40 Hz, implying f̄ = 0.32, cf. Fig. 4). The given

numerical results assume a time integration step equal to 10−3/ fin, which is significantly lower than the oscillation

period of the linearized unit (T0 ≈ 0.003 s, cf. Ref. [9]). Figs. 10-11 illustrate the force vs. time outputs for the

units 1, 2, 5 and 10 and the fast Fourier transforms (FFTs) of the outputs for units 1, 5, 20 and 50 at excitation

frequencies f = 30 Hz ( f̄ = 0.24) and f = 80 Hz ( f̄ = 0.64), respectively. The FFT results are obtained through

the Matlab R© function ‘fft’ (Version R2017b) . The nonlinear response of the analyzed system is clearly visible, since

one observes that the output force-time histories ∆F = F − F0 feature positive peaks larger than the negative peaks,

as a consequence of the stiffening-type response of the unit (cf. Fig. 2 a). The applied excitation induces transient

oscillatory pulses ∆F followed by a steady state signal propagating throughout the chain. The latter is characterized

by a leading harmonic with frequency fin, and higher-order harmonics of fin, and with reduced amplitude (cf. the (e)

panels in Figs. 10-11) [22]. Fig. 10 shows that the input excitation of frequency f = 30 Hz ( f̄ = 0.24) propagates

unperturbed through the system (cf. panels (e)-(h)). Differently, Fig. 11 shows that the input disturbance of frequency

of f = 80 Hz ( f̄ = 0.64) generates a dramatically attenuated output. The ∆F output for fin = 80 Hz is indeed very fast

reduced in amplitude as it travels along the chain, and progressively vanishes with time already at unit # 2 (cf. panels

(a)-(d) of Fig. 11). We observe that the FFT of the ∆F output at unit # 5 exhibits almost zero amplitude for both fin

and higher-order harmonics. The FFT plots for fin = 80 Hz at the units 5, 20 and 50 feature nearly flat response, with

small amplitude, in correspondence to the frequency range below the lower band gap edge of the linear Mono 1 chain

(40 Hz). A similar, small amplitude plateau is present also in the FFT of the ∆F output at unit # 1 (not visible in Fig.

11(e) because of its reduced amplitude), and is generated by the transient noisy response of the system.

The final Fig. 12 illustrates 3D and density plots of the FFTs of the ∆F outputs recorded at units # 5 and # 50

of the nonlinear Mono 1 and Mono 2 chains, as the excitation frequency varies from values below the band gap edge

of the linear system, i.e., f = 40 Hz in Mono 1 ( f̄ = 0.32) and f = 90 Hz ( f̄ = 0.72) in Mono 2 (cf. Fig. 4), to

values lying above such a threshold. The results in Fig. 12 show that only inputs with excitation frequencies up to

the band gap edge of the linear chain are allowed to propagate through the nonlinear systems under consideration.

The presence of band gaps in the frequency spectrum is a property of linear systems (cf., e.g., Ref. [19]). However,

we observe that the presence of moderately large incremental strains does not substantially alter the structure of the

‘linear’ dispersion curves shown in Fig. 4, for both the Mono 1 and the Mono 2 chains.
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(a) F-F0 unit #1 (b) F-F0 unit #2 

  
(c) F-F0 unit #5 (d) F-F0 unit #10 

  
(e) FFT unit #1 (f) FFT unit #5 

  
(g) FFT unit #20 (h) FFT unit #50 

 

 

 

 

 

 

Figure 10: ∆F outputs in units # 1 (a), #2 (b), # 5 (c), and # 10 (d) of the Mono 1 chain, and FFTs of outputs in

units # 1 (e), # 5 (f), # 20 (g), and # 50 (h), which are induced by a sinusoidal time-displacement input with 0.03 mm

amplitude and 30 Hz frequency.
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(a) F-F0 unit #1 (b) F-F0 unit #2 

  
(c) F-F0 unit #5 (d) F-F0 unit #10 

  
(e) FFT unit #1 (f) FFT unit #5 

  
(g) FFT unit #20 (h) FFT unit #50 

 

 

 

 

 

 

Figure 11: ∆F outputs in units # 1 (a), #2 (b), # 5 (c), and # 10 (d) of the Mono 1 chain, and FFTs of outputs in

units # 1 (e), # 5 (f), # 20 (g), and # 50 (h), which are induced by a sinusoidal time-displacement input with 0.03 mm

amplitude and 80 Hz frequency.
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(c) unit #50                                           (d)

(a) unit #5                                         (b)

Figure 12: 3D plots of the FFTs of the outputs recorded in units # 5 and # 50 of systems Mono 1 (left: panels a, c) and

Mono 2 (right: panels b, d) under sinusoidal time-displacement inputs with 0.03 mm amplitude and varying excitation

frequencies.
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4. Concluding remarks

We have analyzed the frequency band structure of 1D tensegrity systems formed by alternating tensegrity prisms

with lumped masses. The conducted study assumed constant material properties (eventually accounting for units

equipped with rigid bases and bars [7]), and variable states of local and global prestress of the system. The results

presented in Sect. 2 have shown that the examined structures exhibit highly tunable frequency band gaps in the

linear regime induced by small vibration near the initial equilibrium state, as a function of a parameter p̄ describing

prestretching the cables in the tensegrity unit, and the initial strain ε0 induced by the precompression applied to the

whole system. By suitably varying such parameters it is shown to be possible to design monoatomic and biatomic

systems that feature band gaps either in the audible and/or in the ultrasonic frequency range (cf. Sect. 2.2). In

Sect. 3 we have generalized these results to the nonlinear regime induced by moderately large incremental strains

for a monoatomic system with stiffening-type elastic response. Both the analytic and numerical results presented in

Sects. 2 and 3 have revealed a novel feature of tensegrity systems, not previously investigated in the to-date literature

(see [5]-[12] and references therein), which consists of their ability to serve as band gap systems with easily tunable

performance, through the control of local and global prestress variables, while leaving material properties and the rest

configuration of the system unchanged.

The present study paves the way to a number of relevant extensions and generalizations that we address to future

work. One natural extension of the current research regards the band structure of lattice materials equipped with

multi-atomic bases [17, 18], which can be richly designed by alternating tensegrity units equipped with different,

material and prestress properties and lumped masses. Such systems may function as stop band systems [17, 19], wave

guides [23, 24], impact protection gear [9, 25], and/or acoustic lenses [14, 15]. Another relevant generalization of the

present study regards the modeling of the dispersion behavior of tensegrity systems in the nonlinear regime induced

by large strains, to be conducted by recourse to particle dynamics simulations [19], and/or the transfer matrix method

(refer, e.g., to [26] and references therein). Also the modeling of the dynamical response and control of 3D tensegrity

systems deserves special attention [27]-[31], which requires the use of numerical codes dedicated to the dynamics

of spatial tensegrity structures [32], and/or finite elements simulations [33], to account for extensional, twisting and

bending modes, as well as internal resonance phenomena, and edge modes.

Finally, the additive manufacturing and the experimental testing of physical models of tensegrity systems at dif-

ferent scales is a topic of great interest and a challenge at present [10], since it requires the employment of advanced

multimaterial deposition techniques that can handle internal prestress. One viable strategy consists of using projection

micro-stereolitography setups [34] that employ swelling materials for the tensile members [35]. Alternatively, one can

use multi-jet technologies that handle materials with different coefficients of thermal expansion for struts and cables,

in order to create internal self-stress during the deposition process.

16



Acknowledgements

AA and FF gratefully acknowledges financial support from the the Italian Ministry of Education, University

and Research (MIUR) under the ”Departments of Excellence” grant L.232/2016. AOK thanks the funding from

the European Union’s 7th Framework programme for research and innovation under the Marie Skĺodowska-Curie
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