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ABSTRACT: This paper investigates the use of the most fundamental
elements; cables for tension and bars for compression, in the search for the
most efficient bridges. Stable arrangements of these elements are called
tensegrity structures. We show herein the minimal mass arrangement of these
basic elements to satisfy both yielding and buckling constraints. We show that
the minimal mass solution for a simply-supported bridge subject to buckling
constraints matches Michell’s 1904 paper which treats the case of only
yielding constraints, even though our boundary conditions differ. The
necessary and sufficient condition is given for the minimal mass bridge to lie
totally above (or below) deck. Furthermore this condition depends only on
material properties. If one ignores joint mass, and considers only bridges
above deck level, the optimal complexity (number of elements in the bridge)
tends toward infinity (producing a material continuum). If joint mass is
considered then the optimal complexity is finite. The optimal (minimal mass)
bridge below deck has the smallest possible complexity (and therefore
cheaper to build), and under reasonable material choices, yields the smallest
mass bridge.

Key Words: tensegrity structures, form-finding, minimum mass, optimal
complexity, deployable structures.
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1. INTRODUCTION
Tensegrity is a word coined by Fuller in 1962 [1], as
structures that are axially loaded prestressable
structures with disjointed compressive members [2].
Skelton later enlarged the definition to include
axially-loaded compressive members joined by ball
joints and to include the presence of external forces in
addition to prestress. This enlarged the design space
for engineering purposes. Motivated by nature, where
tensegrity concepts appear in every cell, in the
molecular structure of the spider fiber, and in the
arrangement of bones and tendons for control of
locomotion in animals and humans [3], engineers

have only recently developed efficient analytical
methods to exploit tensegrity concepts in engineering
design. Previous attempts to judge the suitability of
tensegrity for engineering purposes have simply
evaluated the tensegrity produced as art-forms [4], but
then judged them according to a different
(engineering) criteria.

The tensegrity paradigm used for bridges in this
paper allows the marriage of composite structures
within the design. Our tensegrity approach creates a
network of tension and compressive members
distributed throughout the system at many different
scales (using tensegrity fractals generates many
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different scales). Furthermore, these tension and
compression members can simultaneously serve
multiple functions, as load-carrying members of the
structure, and as sensing and actuating functions [5].
Moreover, the choice of materials for each member of
the network can form a system with special electrical
properties, special acoustic properties, special
mechanical properties (stiffness, etc). The
mathematical tools of this paper can be used therefore
to design metamaterials with unusual and very special
properties not available with normal design methods
(cf., e.g., [5, 6]).

This paper focuses on bridge design for minimal
mass. In particular, we focus our attention on
superstructure and substructure bridges, that are well
known in civil engineering, where they are often referred
to as ”tied arch” and ”deck arch” bridges, respectively.
An intermediate architecture is also known in the
literature, the “through arch” bridges, referring to cases
in which the deck runs half-way between the crown of an
arch and the supporting piles. Remarkable examples of
tied arch bridges are: the Lowry Avenue Bridge in
Minneapolis, Minnesota over the Mississippi River; the
Torikai big bridge over the Yodo river, Osaka, Japan; the
GFRP Lleida Pedestrian Bridge. Furthermore, examples
of deck arch bridges are given by: the Alexander
Hamilton Bridge over the Harlem River in New York
City; the Paderno bridge and Blera bridge in Italy [7].
Finally, benchmark examples of through arch bridges
are: the Hell Gate Bridge, New York; the Bayonne
Bridge, Staten Island, New York; the Tyne Bridge,
Newcastle. We refer the reader to the interesting essay by
Sergio Poretti and Tullia Iori on the history of structural
engineering in Italy [7] for an exciting overview of arch
bridges designed by worldwide known designers in Italy
over the last 70 years (i.e. Maillart, Musumeci, Nervi,
Morandi and Castigliano).

The present work aims at answering the long-
standing question about the most convenient
architecture of arch bridges, which is able to minimize
the overall mass of the bridge structure and the deck.
We show that shallow deck arch bridges offer minimal
mass tensegrity architectures for simply supported
bridges under uniformly distributed vertical loads. It is
worth noting that tensegrity architectures provide
minimal mass structural configurations for a variety of
loading conditions, being able to resist to the applied
loads without suffering mass-demanding bending
stresses [8–11].

The subject of form-finding of tensegrity structures
continues to be an active research area [12–17], due to
the special ability of such structures to serve as

controllable systems (geometry, size, topology and
prestress control), and also because the tensegrity
architecture provides minimum mass structures for a
variety of loading conditions, [8–11]. Other approaches
to optimization can be found in [12, 17, 18]. These
more general approaches can consider objective
functions that include other criteria than minimal mass,
but they do not yield analytical closed form expressions
of the results. Such general methods also can lead to
local minima rather than global answers.

Particularly interesting is the use of fractal
geometry as a form-finding method for tensegrity
structures, which is well described in [8–10, 18]. Such
an optimization strategy exploits the use of fractal
geometry to design tensegrity structures, through a
finite or infinite number of self-similar subdivisions of
basic modules. The strategy looks for the optimal
number of self-similar iterations to achieve minimal
mass or other design criteria. This number is called the
optimal complexity, since this number fixes the total
number of parts in the structure.

The self-similar tensegrity design presented in
[8–10] is primarily focused on the generation of
minimum mass structures, which are of great technical
relevance when dealing with tensegrity bridge
structures (refer, e.g., to [19]). The ‘fractal’ approach
to tensegrity form-finding paves the way to an
effective implementation of the tensegrity paradigm in
parametric architectural design [13, 14, 20–22].
Discrete to continuum approaches to trusses and
tensegrity structures are available in [23–26].

Designing tensegrity for engineering objectives has
produced minimal mass solutions for five fundamental
(but planar) problems in engineering mechanics.
Minimal mass for tensile structures, (subject to a
stiffness constraint) was motivated by the molecular
structure of spider fiber, and may be found in [27].
Minimal mass for compressive loads may be found in
[8]. Minimal mass for cantilevered bending loads may
be found in [9]. Minimal mass for torsional loads may
be found in [10]. Discussions of minimal mass
solutions for distributed loads on simply-supported
spans, where significant structure is not allowed below
the roadway, may be found in [28].

This paper finds the minimum mass design of
tensegrity structures carrying simply supported and
distributed bending loads. In [28] numerical solutions
where found for a specified topology, without any
theoretical guarantees that those topologies produced
minimal mass. This paper provides more fundamental
proofs that provide necessary and sufficient conditions
for minimal mass.
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It is also worth noting that tensegrity structures can
serve multiple functions. While a cable is a
loadcarrying member of the structure, it might also
serve as a sensor or actuator to measure or modify
tension or length. Other advantages of tensegrity
structures are related to the possibility to integrate
control functions within the design of the structure.
A grand design challenge in tensegrity engineering is
to coordinate the structure and control designs to
minimize the control energy and produce a structure of
minimal mass. This would save resources (energy and
mass) in two disciplines, and therefore ”integrate” the
disciplines [29].

The remainder of the paper is organized as follows.
Section 2 provides some basic knowledges on the
mode of failure of tensile and compressive members.
Section 3 describes the topology of the tensegrity
bridge under examination. For a simply-supported
structure of the simplest complexity, Section 4
describes the minimal mass bridge when the
admissible topology allows substructure and
superstructure (that is, respectively, structure below
and above the roadbed). Section 5 provides closed-
form solutions to the minimal mass bridge designs (of
complexity n = 1) when only substructure or
superstructure is allowed. Section 6 first defines deck
mass and provides closed-form solutions to the
minimal mass bridge designs (of complexity n, p = q =
1) when only substructure or superstructure is
allowed. This finalizes the proof that the minimal mass
bridge is indeed the substructure bridge. Section 6 also
adds joint mass and shows that the optimal complexity
is finite. Conclusions are offered at the end.

2. PROPERTIES OF TENSILE AND
COMPRESSIVE COMPONENTS 
OF THE TENSEGRITY STRUCTURE
The tensegrity structures in this paper will be
composed of rigid compressive members called bars,
and elastic tensile members called cables. We will
assume that a tensile member obeys Hooke’s law,

(1)

where k is cable stiffness, ts is tension in the cable, s is
the length of the cable, and s0 < s is the rest length of
the cable. The tension members cannot support
compressive loads. For our purposes, a compressive
member is a solid cylinder, called a bar. All results
herein are trivially modified to accommodate pipes,
tubes of any material, but the concepts are more easily
demonstrated and the presentation is simplified by
using the solid bar in our derivations. The minimal

t k s s( ),s 0= −

mass of a cable with yielding strength σs and mass
density ρs, is

(2)

To avoid yielding, a bar of length b, yielding
strength σb, mass density ρb with compression force fb,
has the minimal mass

(3)

To avoid buckling, the minimal mass of a round bar
of length b, modulus of elasticity Eb, and maximal
force fb is

(4)

The actual mode of failure (buckling or yielding) of
a compressive member can be identified by using the
following well-know facts that give the basis to a
correct design of the bar radius rb. Define rY, the bar
radius that satisfies yielding constraints, and rB, the
radius that satisfies buckling constraints, by

(5)

The following are well known facts:

Lemma 2.1 Designs subject to only yielding
constraints (hence rb = rY) fail to identify the actual
mode of failure (buckling) if rY < rB, or equivalently if,

(6)

Lemma 2.2 Designs subject to only yielding
constraints (rb = rY) automatically also satisfy
buckling constraints if rY > rB, or equivalently if,

(7)

Lemma 2.3 Designs subject to only buckling
constraints (rb = rB) fail to identify the actual mode of
failure (yielding) if rB < rY, or equivalently if,

(8)
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Lemma 2.4 Designs subject to only buckling
constraints (rb = rB) automatically also satisfy yielding
constraints if rB > rY, or equivalently if,

(9)

3. PLANAR TOPOLOGIES OF THE
TENSEGRITY BRIDGES UNDER STUDY
The planar bridge topology is considered here to
elucidate the fundamental properties that are important
in the vertical plane. We use the following
nomenclature, referring to Fig. 1:

• A superstructure bridge has no structure below
the deck level.

• A substructure bridge has no structure above the
deck level.

f

b E

4
.b b

b
2

2σ
π

<

• A nominal bridge contains both substructure and
superstructure.

• Y means the design was constrained against
yielding for both cables and bars.

• B means the design was constrained against
yielding for cables and buckling for bars.

• n means the number of self-similar iterations
involved in the design (n = 1 in Fig. 1, and n ≥ 1
in Fig. 2).

• p means the complexity of each iteration in 
the substructure ( p = 1 in Fig. 1c, and p ≥ 1 in
Fig. 2).

• q means the complexity of each iteration in the
superstructure (q = 1 in Fig. 1b, and q ≥ 1 in Fig. 2).

• α is the aspect angle of the superstructure
measured from the horizontal.

• β is the aspect angle of the substructure measured
from the horizontal.
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Figure 1. Basic modules of the tensegrity bridge with: a) nominal bridge: n = q = p = 1; b) superstructure: n = q = 1; 
c) substructure: n = p = 1. Compressive members (bars) are heavy black lines, tensile members (cables) are thin red lines.
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For a tensegrity bridge with generic complexities n,
p and q (see Fig. 2), the total number of nodes nn of
each topology is given by:

(10)

For the substructure bridge (that is q = 0), the
number of bars nb and the number of cables ns are:

(11)

For the superstructure bridge (that is p = 0), the
number of bars nb and the number of cables ns are:

(12)

For the nominal bridge, the number of bars nb and
the number of cables ns are:

(13)

We define the superstructure bridge of complexity
(n, p = 0, q) by Fig. 2 where the substructure below is
deleted. We define the substructure bridge of
complexity (n, p, q = 0) by Fig. 2 where the
superstructure above is deleted.

4. ANALYSIS OF THE BASIC MODULES
(n = 1, p = 1 OR 0, q = 1 OR 0)
We first will examine the simplest of bridge concepts,
as in Fig. 1. Consider, first, the nominal bridge, subject
to yielding constraints, with complexity (n, p, q) = 
(1, 1, 1). This configuration, described by Fig. 1a, is
composed of 5 cables and 3 bars. Let the bottom end
of each compressive member above the deck be

n p q( )(2 1) 2 1.n
n n= + − + +

n p n p(2 1), ( 1)(2 1) 2 .b
n

s
n n= − = + − +

n q n q( 1)(2 1), (2 1) 2 .b
n

s
n n= + − = − +

n p q n p q( 1)(2 1), ( 1)(2 1) 2 .b
n

s
n n= + + − = + + − +

constrained by a hinge boundary condition, so as to
allow rotation but not translation. Define F as the total
applied load, and L as the span. All cables use the same
material, and all bars use the same material. It will be
convenient to define the following constants:

(14)

(15)

Define a normalization of the system mass m by the
dimensionless quantity μ:

(16)

where the mass m at the yielding condition is:

(17)

where (bi, si) is respectively the length of the ith bar or
cable, and respectively ( fi, ti) is the force in the ith bar
or cable.

The mass of the nominal bridge will be minimized
over the choice of angles α and β. The lengths of the
members are:

(18)
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Figure 2. Typical topologies of the nominal bridges for different values of the complexity parameters n (increasing downward)
and q, p (increasing rightward).



The equilibrium equations at each node are:

This system of equations can be solved, choosing t1
and t3 as free independent parameters:

4.1. Nominal bridges under yielding
constraints
The nominal bridge of complexity (n, p, q) = (1, 1, 1)
subject to yielding constraints is optimized in the
following theorem.

Theorem 4.1 Given the nominal bridge with
complexity (n, p, q) = (1, 1, 1) (described in Fig. 1a),
with attendant data (18), the minimal mass can be
expressed in terms of independent variables t1 and t3:

(21)

where:

(22)

An alternate expression for the mass can be written by
substituting the relation between t2 and t3 from (27), to
get an equivalent expression μY(t1, t2) = μY(t1, t3), where:

(23)
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Hence it follows that the minimal mass solution requires
t3 > 0 if and only if c3 < 0 (equivalently c2 > 0). Note
also that c3 < 0 if and only if:

(26)

Conversely, minimal mass requires t3 = 0 if c3 > 0
(equivalently c2 < 0). This event occurs if and only if:

(27)

Finally, c3 = 0 (and also c2 = 0) if and only if:

(28)

Note also that the requirement that t2 and t3 both be non-
negative values limits the feasible range of t3 such that:

(29)

Given the relation between t2 and t3 in (23) we have
the corresponding feasible range for t2:

(30)

The proof of the theorem follows the mass
calculation in (16), (17) after substituting the
equilibrium forces given by (20).

Corollary 4.1 Consider a superstructure bridge with
complexity (n, p, q) = (1, 0, 1) (topology is defined by
Fig. 1b). The minimal mass μY requires the following
aspect angle:

(31)

which corresponds to the following dimensionless
minimal mass:
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(32)

From (32) and (21) notice that t1 = t3 = 0 in the
minimal mass substructure. As a practical matter the
cable 1, would not actually be eliminated but it would
be prestressed with a small tension to stabilize the
midpoint in presence of horizontal dynamic forces.

Refer to [30] for an extended proof of the above and
following corollaries of this section.

Corollary 4.2 Consider a substructure bridge, with
complexity (n, p, q) = (1, 1, 0) (topology is defined by
Fig. 1c). The minimal mass design under only yielding
constraints is given by the following aspect angle:

(33)

which corresponds to the following dimensionless
minimal mass:

(34)

Figure 3 plots the mass versus the angles β and α,
yielding the minimum at the values given by (33) and
(31). All designs in this section assume failure by
yielding. One must check that yielding is indeed the
mode of failure.

Corollary 4.3 For the designs in this section, yielding
is indeed the mode of failure if the following
inequalities hold:
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In addition, if and (35) holds or if

and (36) holds, then the minimal

mass of a superstructure bridge is less than the
minimal mass of a substructure bridge. (In this event,
the minimal mass bridge is superstructure only). If
ρ = 1 and (36) also holds, then the minimal mass of the
substructure bridge is equal to the minimal mass of the
superstructure bridge. If ρ > 1 and (36) also hold, then
the minimal mass of the substructure bridge is less
than the minimal mass of the superstructure bridge. If
ρ > 1 and (36) also hold, then the minimal mass of the
substructure bridge is less than the minimal mass of
the superstructure bridge (The minimal mass bridge is
substructure only).

As a practical matter, ρ is almost always greater
than 1, since compressive members tend to have a
mass density over yielding strength ratio greater then
cables (i.e. (ρb/σb) > (ρs/σs)).

Thus far the conclusion is that if then

the bridge in Fig. 1a at its minimal mass configuration
becomes the configuration of substructure in Fig. 1c,
if the bridge design is constrained against yielding.
Furthermore, such a design will not buckle. Note that
this design produced a topology constrained against
yielding, and a design constrained against buckling
might produce a different topology. Now lets consider
this possibility.
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Figure 3. Dimensionless masses of the substructure (continuous curves) and superstructure (dashed curves) for different values
of the aspect angles (respectively β or α) and for values of the coefficient ρ > 1 (left) and ρ < 1 (right) under yielding

constraints.



4.2. Nominal bridges under buckling
constraints
This section repeats all the designs of the previous
section (for the three structures of Fig. 1) with the
added constraint that the bars cannot buckle.

Theorem 4.2 Consider a nominal bridge of complexity
(n, p, q) = (1, 1, 1). The minimal mass (the cable mass
required at the yielding conditions plus the bar mass
required at the bar buckling conditions), is, in terms of
t1 and t3:

(37)

or, equivalently, in terms of t1 and t2:

(38)

Refer to [30] for an extended proof of the above
theorem.

The value of β = 4.25 deg minimizes the mass (38)
if the material choice is steel (ρ = 7862 kg/m3; 
σ = 6.9 × 108 N/m2; E = 2.06 × 1011 N/m2). It will
become clear that the minimal mass solution of the
minimal bridge μB, constrained against buckling, will
reduce to only a substructure. It is straightforward to
show that the mass of the bars is much greater than the
mass of the cables under the usual condition:

(39)

To prepare for those insights, now consider the
individual solutions for designs constrained to be only
superstructure or only substructure in configuration.

Corollary 4.4 Consider a superstructure bridge of
complexity (n, p, q) = (1, 0, 1), (Fig. 1b). Suppose (39)
holds. The minimal mass design under yielding and
buckling constraints is given by the following aspect
angle: 
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which corresponds to the following dimensionless
minimal mass: 

(41)

Refer to [30] for an extended proof of the above and
following corollaries of this section.

It is straightforward to show that the second variation
of μB(α) with respect to α is always positive, indicating
that there is only one minimum described by (40).

Corollary 4.5 Consider a substructure bridge, with
complexity (n, p, q) = (1, 1, 0) (Fig. 1c). The minimal
mass design under yielding constraints and buckling
constraints is given by the following aspect angle: 

(42)

which corresponds to the following dimensionless
minimal mass:

(43)

where:

(44)

It is straightforward to show that the second variation
of μB(β) with respect to β is always positive, indicating
a unique global optimal value of (42). Figure 4 plots the
mass versus the angle β and α, yielding the minimum at
the values given by (40) and (42).

We must verify if buckling is indeed the mode of
failure in the designs of this section. 

Corollary 4.6 Suppose buckling constraints are
considered in both superstructure and substructure
bridge designs. Then buckling is indeed the mode of
failure if the following inequalities hold:

(45)
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where

(47)

In addition, if the following inequality holds:

(48)

then the minimal mass of the substructure bridge is
less than the minimal mass of the superstructure
bridge. (The minimal mass of the nominal bridge
reduces to substructure only. If η = ηαβ, (45) or (46)
hold, then the minimal mass of the substructure is
equal to the minimal mass of the superstructure. (The
minimal mass of the nominal bridge reduces to either
superstructure or substructure only). If η < ηαβ, and
(45) or (46) hold, then the minimal mass of the
superstructure is less than the minimal mass of the
substructure. (The minimal mass bridge is
superstructure only).

η
α α
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5. MASS OF BRIDGES OF COMPLEXITY
(n, p, q) = (1, p, q), UNDER YIELDING
AND BUCKLING CONSTRAINTS
Now we consider more complex structures by
increasing p, q. This section finds the minimal mass of
substructure, and superstructure bridges with
complexity (n, p, q) = (1, p, q), for any p and q greater
then 1. 

5.1 .Substructure bridge with complexity 
(n, p, q) = (1, p > 1, 0)
Refer to Fig. 5 for the notation. The angle between the
bars is: 

(49)

The lengths of the bars and cables are:

(50)

From the equilibrium equations, we obtain the
following relations for the forces:
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Figure 4. Dimensionless masses of the substructure (left) and superstructure (right) under buckling constraints for different
values of the aspect angles (respectively β or α) and different values of the parameter η.
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Figure 5. Notations for forces and lengths of bars and cables for a substructure with complexity n = 1 and p > 1.



(51)

(52)

Theorem 5.1 Consider a substructure bridge with
topology described by (50), with complexity (n, p, q) =
(1, p, 0) (Fig. 5). At the yielding condition the
dimensionless total mass is:

(53

Refer to [30] for an extended proof of the above
theorem and following theorems of this section.

Corollary 5.1 The minimal mass in (53) is achieved at
infinite complexity p → ∞ and t0 = 0. The minimal
mass at yielding for a substructure bridge is:

(54)
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where p* → ∞ and the optimal angle βY
* is:

(55)

Proof 5.1 Substitute p → ∞ into Eq. (53) to obtain: 

(56)

The value of β that minimizes (56) is (55). Figure 6
shows how mass (53) varies with p and β. The optimal
p* is deduced from the plot of Fig. 6 and the optimal
angle is computed analytically in Eq. (55).

Theorem 5.2 Consider a substructure bridge with
topology defined by (50), with complexity (n, p, q) = (1, p,
0), See Fig. 5. At the buckling condition the dimensionless
total mass is minimized at p = 2 and t0 = 0, where: 

(57)

Corollary 5.2 The minimal mass substructure is
achieved for p = 1.

Proof 5.2 The mass of a substructure with topology of
n = 1 defined by (50), for a general p > 1 is:

(58)
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Figure 6. Mass curves under yielding constraints of substructures (left) and superstructures (right) vs. aspect angle β (left) and α
(right) for different complexity p (left) and q (right), (F = 1 N, L = 1 m).
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The plot of (58) in Fig. 7 vs. β for different p
shows that (58) has a minimum value at p = 2.
However, the mass at p = 2, (57), is larger then the
mass (43) at p = 1 from Corollary 4.5.

5.2. Superstructure bridge with 
complexity (n, p, q) = (1,0, q > 1)
Refer to Fig. 8 for the notation. The angle between the
bars is:

(59)

The lengths of the bars and cables are:

(60)

From the equilibrium equations, we obtain the
following relations for the forces:

(61)
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Theorem 5.3 Consider a superstructure bridge, of
total span L, topology defined by (60), with complexity
(n = 1, q > 1), Fig. 8. At the yielding condition under
a vertical load F the dimensionless total mass is:

Refer to [30] for an extended proof of the above
theorem and following theorems of this section.

Corollary 5.3 The minimal mass in (63) is achieved at
infinite complexity q → ∞ and t0 = 0. Then the minimal
mass at yielding for a superstructure bridge is:
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Figure 7. Mass curves under buckling constraints of substructures (left) and superstructures (right) vs. aspect angle β (left) 
and α (right) for different complexity p (left) and q (right), (steel bars and cables, F = 1 N, L = 1 m).
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Figure 8. Notations for forces and lengths of bars and cables for a superstructure with complexity n = 1 and q > 1.
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where q* → ∞ and the optimal angle αY
* is:

(65)

The left side of Fig. 9 illustrates superstructure
bridges as q → ∞, where masses are given for any q
by (63).

Proof 5.3 Substitute q → ∞ into Eq. (63) to obtain:

(66)

The value of a that minimizes (66) is (65). See Fig. 6
to see how mass (63) varies with q and a. The
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optimal q* is deduced from the plot of Fig. 6 and the
optimal angle is computed analytically in Eq. (65).

Theorem 5.4 Consider a superstructure bridge with
topology (60), and complexity (n, p, q) = (1, 0, q > 1),
see Fig. 8. At the buckling condition the dimensionless
total mass is:

(67)
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Figure 9. Optimal topologies of superstructure bridges with complexity (n, p, q) = (1, 0, q → ∞ under yielding constraints (left)
and buckling constraints (right) for different q, (steel for bars and cables, F = 1 N, L = 1 m). 
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Corollary 5.4 The minimal mass superstructure is
achieved for q → ∞ and t0 = 0, leading to the following
mass:

(68)

Proof 5.4 The plot in Fig. 7 vs. α for different q shows
that (67) has a global minimum value at q → ∞

It is important to consider that, for the solution 
q → ∞ buckling is not the mode of failure since the
lengths of the bars approaches zero. Also note that at
α = 90 deg, μB = π/8.

The left side of Fig. 9 shows a sequence of
superstructures under yielding constraints, as q
increases. From (63) the mass is minimized at q → ∞
and αY

* = 45 deg (ρ = 1). The right side of Fig. 9 shows
a sequence of superstructures under buckling
constraints, as q increases. From plot in Fig. 7 the mass
is minimized at α = 90 deg for q = ∞ (η = 857.71, same
steel/steel material as above).

q( , )
4

cos

2 sin
.B

2

μ α α η α
α

→ ∞ = +

Moreover, the left side of Fig. 10 shows a sequence
of substructures under yielding constraints, as p
increases. From (53) the mass is minimized at p → ∞
and βY

* = 45 deg (ρ = 1). The right side of Fig. 10
shows a sequence of substructures under buckling
constraints, as p increases. From plot in Fig. 7 the mass
is minimized at β = 90 deg for p = 1 (η = 857.71, same
steel/steel material as above).

Theorem 5.5 A minimal mass superstructure
constrained against yielding with hinge/roller
boundary conditions, has the same optimal topology
as a minimal mass superstructure constrained against
buckling and hinge/hinge boundary conditions.

Proof 5.5 [31] proved that the minimal mass structure
constrained against yielding with hinge/roller
boundary conditions has the topology of the right side
of Fig. 9 as q → ∞ and α → 90 deg. Theorem 5.4
provides the same topology for hinge/hinge
constraints.

Figure 10. Optimal topologies of substructure bridges with 
n = 1 under yielding constraints (left) and buckling constraints (right) for different p, (steel for bars and cables, 

F = 1 N, L = 1 m).



Theorem 5.6 The minimal mass nominal bridge
constrained against yielding is obtained combining
the optimal superstructure topology (Fig. 9, left side
as q → ∞) with the optimal substructure topology
(Fig. 9, left side as p → ∞).

Proof 5.6 [31] obtained these same results by starting
with a continuum and optimizing the shape.

Figure 11(a) illustrates the minimal mass nominal
bridge under yielding constraints (Theorem 5.6),
leading to complexity (n, p, q) = (1, ∞, ∞). Fig. 11 (b)
illustrates the minimal mass superstructure bridge
under buckling constraints, leading to complexity (n,
p, q) = (1, 0, q → ∞). Fig. 11(c) illustrates the minimal
mass substructure bridge under buckling constraints,
leading to complexity (n, p, q) = (1, 1, 0). 

6. INTRODUCING DECK AND JOINT
MASSES
In previous sections, complexity n was restricted to 1.
This is appropriate only when the external loads are all

applied at the midspan. Real bridges cannot tolerate
such an assumption. So in this section we consider a
distributed load. Part of the load is the mass of the
deck that must span the distance between adjacent
support structures (complexity n will add 2n − 1
supports). In the section 6.4 we will consider adding
mass to make the joints, where high precision joints
have less mass then rudely constructed joints.

6.1. Including deck mass
The total load that the structure must support includes
the mass of the deck, which increases with the distance
that must be spanned between support points of the
structure design (which is determined by the choice of
complexity n). We therefore consider bridges with
increasing complexity n. We will show that the
smallest n = 1 yields smallest structural mass and the
largest deck mass. The required deck mass obviously
approaches zero as the required deck span approaches
zero, which occurs as n → ∞. We will show that the
mass of the deck plus the mass of the structure is
minimized at a finite value of n.

The deck, as illustrated in Fig. 12, is composed by
2n simply supported beams connecting the nodes on
the deck. Let the deck parameters be labeled as: mass
md, mass density ρd, yielding strength σd, width wd,
thickness td and length equal to:

(69)

The cross sectional of the deck beam has a moment
of inertia equal to: Id = wdtd

3/12. Each beam is assumed
to be loaded by a uniformly distributed vertical load

 = L

2
.d n
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Figure 11. Minimal mass bridges under (a) yielding
constrained nominal bridges, (b) buckling constrained

superstructure bridge and (c) buckling constrained
substructure bridge.

Figure 12. a) schematic deck system for a substructure with complexity n = 3 and p = 1; b) detail of a single deck module.
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summing to the total value F and the total self weight
of the deck (� ) (g = 9.81ms−2):

(70)

Assuming that the beam of a single deck section is
simply supported between two consecutive nodes of
the bridge, the maximum bending moment is equal to
fdd

2/8 and the maximum stress is given by Navier’s
equation [32]:

(71)

The thickness of the deck beam is: 

(72)

Substituting (69), (70) and (72) into (71) we get the
following equation for the mass of one deck section:

(73)

where:

(74)

Then, the normalized total mass of the deck structure is:

(75)

The total force acting on each internal node on the
deck is then the sum of the force due to the external
loads and the force due to the deck:

(76)

6.2. Adding deck mass for a substructure
bridge with complexity (n, p, q) = (n, 1, 0)
In this case, we make use of the notation illustrated in
Fig. 13 in which complexity p is fixed to be one.
Complexity n is defined to be the number of self-
similar iterations of the basic module of Fig. 1c. Each
iteration n = 1, 2, … generates different lengths of bars
and cables. The lengths at the ith iteration are:
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Observing the multiscale structure of Fig. 13 it’s clear
that the number of bars and the number of cables at the
ith self-similar iteration are 

(79)

In this case the total force applied to the bridge
structure is given by (76) and then the forces in each
member become: 

(80)

Theorem 6.1 Consider a substructure bridge with deck
mass md and topology defined by (10), (11), (77) and
(78), with complexity (n, p, q) = (n, 1, 0), see Fig. 13.
The minimal mass design under yielding constraints is
given by:

(81)

using the optimal angle:

(82)

Proof 6.1 Assuming (77) and (78) for the length of
each member, (80) for the forces of each member, and
(79) for the number of members, the dimensionless
minimal mass becomes: 
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The solution for minimal mass can be achieved from,

(85)

yielding the optimal angle of (82). Substituting it into
(83) concludes the proof.

Observe that (81) yields mass for

complexity n = 1 and mass for complexity

n = ∞. Note from (82), which is the same as (33), that
the optimal angle βY

* does not depend upon the choice
of n. Indeed, the minimal mass solution under yielding
constraints (81) depends on the material choice ρ (14),
the complexity parameter n and the deck properties.
Note that, since the total external force F is a specified
constant, the mass is minimized by the complexity n =
1 if md = 0. However since md depends upon n, the
total vertical force including deck mass depends upon
n, and the optimal complexity will be shown to be n >
1 in that case.

Theorem 6.2 Consider a substructure bridge with
topology defined by (10), (11), (77) and (78), with
complexity (n, p, q) = (n, 1, 0). The minimal mass
design under yielding and buckling constraints is
given by:

(86)

using the aspect angle:

(87)
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where: 

(88)

(89)

(90)

Proof 6.2 The total mass of the cables, using (78), (80)
and (79), is given by:

(91)

Similarly, making use of (4), the total mass of bars is: 

(92)

Introducing constants β1 and β2 given in (88) and (89),
the total mass is:

(93)

The solution for minimal mass can be achieved from, 

(94)

yielding the optimal angle of (87) by solving the
following cubic equation: 

g
m

F
1

1

2
1 2 ,

n

n d
1β = −

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

g
m

F

1 2 2

7
1

1

2
1 2 ,

n

n d
2 3 /2

β = +⎛

⎝
⎜

⎞

⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ +

β β β η β β η β β η( )= − + −216 12 324 3 .3 1 2
2 2

1
3

2
4 4

1
4

2
2 2

1/3

g
m

F

1 tan

2 tan
1

1

2
1 2 .s n

n d
2

μ β
β

= +⎛

⎝
⎜

⎞

⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

g
m

F
tan

1 2 2

7
1

1

2
1 2 .b n

n d2
3 /2

μ η β= +⎛

⎝
⎜

⎞

⎠
⎟ −

⎛
⎝
⎜

⎞
⎠
⎟ +

μ μ μ β β
β

ηβ β= + = + +(1 tan )

2 tan
tan .B s b 1

2

2
2

μ
β

β β
β

ηβ β∂
∂

= − −⎛

⎝
⎜

⎞

⎠
⎟+ =

tan
1

1 tan

2 tan
2 tan 0,B

1

2

2 2

Minimum Mass and Optimal Complexity of Planar Tensegrity Bridges

236 International Journal of Space Structures Vol. 30 No. 3+4 2015

Figure 13. Adopted notations for forces and lengths of bars and cables for a substructure with generic complexity 
(n, p, q) = (n, 1, 0).

Ftot
2n+ 1

Ftot
2n

Ftot
2n

Ftot
2n

Ftot
2n

Ftot
2n

Ftot
2n

Ftot
2n

Ftot
2n+ 1

β
Ftot
2

Ftot
2

fb1

t1t1

fbi
ti ti

fbi
ti ti

fbntn tn tn tn tn tn tn tn
fbn fbn fbn

L/ 2nL/ 2nL/ 2nL/ 2nL/ 2nL/ 2nL/ 2nL/ 2n

wx wx



Gerardo Carpentieri, Robert E. Skelton and Fernando Fraternali

International Journal of Space Structures Vol. 30 No. 3+4 2015 237

(95)

Substituting (87) into (93) concludes the proof. 

6.3. Adding deck mass for a
superstructure bridge with complexity (n,
p, q) = (n, 0, 1)
In this case, we make use of the notation illustrated in
Fig. 14 in which complexity q is fixed to be one.
Complexity n is the number of self-similar iterations
of the basic module of Fig. 1b at different scales. After
the ith self-similar iterations, the length of the bars and
cables for i ranging from 1 to n, are: 

(96)

Observing the multiscale structure of Fig. 14 it’s clear
that the number of bars and the number of cables after
the ith self-similar iterations are:

(97)

In this case the total force applied to the bridge
structure is given by (76) and then the forces in each
member become:

(98)

Theorem 6.3 Consider a superstructure bridge with
topology defined by (10), (12), (96), with complexity
(n, p, q) = (n, 0,1), Fig. 14. Under a given total vertical
force (76), the minimal mass design under yielding
constraints is given by:
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using the aspect angle: 

(100)

Theorem 6.4 Consider a superstructure bridge with
topology defined by (10), (12), (96), and complexity (n,
p, q) = (n, 0, 1), see Fig. 14. The structure is loaded
with a given total vertical force (76) and the minimal
bar mass, subject to yielding constraints is given by:

(101)

using the aspect angle:

(102)

where: 

(103)

(104)

The proofs of Theorems 6.3 and 6.4 can be found in
[30]. Figures 15 and 16 show the optimal masses for
yielding and buckling with and without deck mass.
The optimal substructures and superstructures are
presented in Figs. 17 and 18 respectively. The addition
of deck mass causes, in all considered cases, an
optimal complexity n that tends to infinity. In the next
section we will consider the addition of joint mass. 
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Figure 14. Adopted notations for forces and lengths of bars and cables for a superstructure with complexity (n, p, q) = (n, 0, 1).
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6.4. Penalizing complexity with cost
considerations: adding joint mass
Theorem 6.1, for md = 0, leads to an optimal
complexity n = 1 which corresponds to a minimal 
mass equal As complexity n approaches

infinity, instead, the mass given in (81), for md = 0, go 
to a limit equal to However, the addition of the

deck mass in Theorem 6.1 switches the optimal
complexity from n = 1 to n = ∞, so small complexities
n are penalized by massive decks. Also in this latter
case, the resulting optimal minimal mass is then 

as can be verified looking the (81) or

considering that as n goes to infinity the deck mass
given in (73) approaches zero. As a matter of fact,
neither n = 1 or n = ∞ are believable solutions due to
practical reasons: the first solution leads only to a
single force at the middle of the span, the second

ρ+1 /2.

ρ+1 .

ρ+1 ,

solution leads to an infinite number of joints and
connections. The minimal masses obtained from (81)
with or without deck correspond to perfect massless
joints. The addition of the joint masses to a tensegrity
structure with nn nodes, as illustrated in [10], leads to
the following total normalized mass:

(105)

Let $j be the cost per kg of making joints and let $b be
the cost per kg of making bars. Then define Ω = $b/$j. For
perfect joints Ω = 0, for rudely made low cost joints $j is
small and Ω is larger. Hence Ω is also approximatively
the ratio of material cost per joint divided by material
cost per structural member being joined.

Consider the minimal masses of the substructure
bridge (μY

*) constrained against yielding, for the cases
with or without deck, see Eq. (81). Assume steel
material for cables, bars and deck beams and set F = 1

μ μ μ= + + Ωn .Y tot Y d n,
* * *
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Figure 15. Optimal masses under yielding of the substructures (left) and superstructure (right) without deck (solid curves) 
and with deck (dashed curves) for different values of the complexity n and for different values of ρ, (F = 1 N, 

L = wd = 1 m, steel deck).

Figure 16. Optimal masses under buckling of the substructures (left) and superstructure (right) without deck (solid curves) 
and with deck (dashed curves) for different values of the complexity n and for different values of η, 

(F = 1 N, L = wd = 1 m, steel deck).
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Figure 17. Optimal topologies of substructure bridges with complexity (n, p, q) = (n → ∞, 1, 0) under yielding constraints (left)
and buckling constraints (right) for different n, (steel for bars, cables and deck, F = 1 N, L = Wd = 1 m).

Figure 18. Optimal topologies of superstructure bridges with complexity (n, p, q) = (n → ∞, 0, 1) under yielding constraints
(left) and buckling constraints (right) for different n, (steel for bars, cables and deck, F = 1 N, L = wd = 1 m).



N, L = wd = 1 m. Without deck the optimal aspect angle
βY

* (82) is 35.26 deg. For the case with neither deck
nor joint mass, the optimum complexity n is 1, which 

corresponds to an optimal mass As n

approaches infinity the mass tends to a limit equal to 

which is also the optimal mass for the case with

deck mass and perfectly manufactured joints, since μd
*

approaches zero for n → ∞. Note that with the addition
of joint masses as illustrated in (105), the optimal
complexity n* can become a finite value. The above
procedure can be also used for the design under
buckling constraints.

Figures. 19 (for yielding) and Fig. 20 (for buckling)
show the total minimal masses obtained by using
(105). In both Figs. 19 and 20 we also show with red
curves the minimal mass of substructures or
superstructures only. In either case, the total mass of
the structure with deck (but no joint mass), is shown
by black continuous lines in Figs. 19 and 20, reaching
minimum for an infinite complexity n. It is worth

μ = 2 /2.Y
*

2,

noting that, for infinite n, the mass of the deck is zero
and the total minimum mass is just the mass of the
bridge structure. Then, with the dotted and dashed
lines, we show that a finite optimal complexity can be
achieved if the joint’s masses are considered.

From Fig. 19 note that the minimal mass (μ ≅ 21)
bridge has complexity n = 11 for Ω = 0.002, and has
minimal mass μ ≅ 15 with complexity n = 12 for Ω =
0.001. Economic costs would decide if saving 25 %
structural mass is worth the extra cost of improving the
joint precision by a factor of 2.

7. CONCLUDING REMARKS
This paper provides closed form solutions (analytical
expressions) for minimal mass tensegrity bridge
designs. The forces, locations, and number of members
are optimized to minimize mass subject to both
buckling and yielding constraints for a planar structure
with fixed-hinge/fixed-hinge boundary conditions.

We designed bridges from the elementary
consideration of i) yielding constraints, ii) buckling
constraints, iii) without deck mass, iv) with deck mass,

Minimum Mass and Optimal Complexity of Planar Tensegrity Bridges
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Figure 19. Optimal masses under yielding of the substructures and superstructure (red curve) and total optimal mass with deck
and different joint factors (dashed and dottled curves) for different values of the complexity n (steel for bars, cables, deck, 

F = 1 N, L = wd = 1 m).

Figure 20. Optimal masses under buckling of the substructures (left) and superstructure (right) (red curves) and total optimal
masses with deck and different joint factors (dashed and dotted curves) for different values of the complexity n (steel for bars,

cables, deck, F = 1 N, L = wd = 1 m).
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v) superstructure only, vi) substructure only, vii)
without joint mass, viii) with joint mass.

We optimize the complexity of the structure, where
structural complexity as the number of members in the
design. This can be related to 3 parameters (n, p, q),
where 2n is the number of deck sections along the
span; p is the number of compressive members (bars)
reaching from the span center to the substructure; and
q is the number of cables reaching from the span
center to the superstructure. Hence we refer to (n, p, q)
as the three different kinds of complexities of the
structure. We used a tensegrity structural paradigm
which allowed these several kinds of complexities.
The complexity n is determined by a self-similar law
to fill the space of the bridge. As the number of self-
similar iterations go to infinity we get a tensegrity
fractal topology. However, the number of self-similar
iterations n and the complexities p and q required to
minimize mass, under different circumstances within
the set of 8 possibilities i),...,viii) listed above, go to an
optimal number between 1 and infinity, where an
infinite complexity fills the define space with a
continuum. 

First we optimized structures under yielding
constraints for the simply-supported case (n = 1) with
no deck. The number of self-similar iterations n of the
given tensegrity module goes to infinity as the mass
approaches the minimum. Our result produces the
same topology as [31], where there is a compressive
member at 45 deg attached at each boundary,
connecting to a 1/4 pie shaped continuum material
piece at the center. The bottom half of the bridge (the
substructure) is the dual of the superstructure (dual
meaning flip the structure about the horizontal axis
and replace all tension members with compression
members and all tension members with compressive
members). We showed that the top half of this
structure is the optimal topology for bridge designs
which do not allow any substructure, and conversely
that the bottom half of this structure is the optimal
topology for bridges allowing no superstructure.

Secondly, we optimized the simply supported
bridge (n = 1) under buckling constraints with no deck.
For the superstructure design we proved that the
minimal mass is achieved at high values of q,
approaching a continuum (where the shape of the
structure is a half disk). It is interesting that this shape
(designed under buckling constraints) is the same as
the result of [31], which was derived under yielding
constraints and different boundary conditions (our
conditions were hinge/hinge and his were
hinge/roller). We also optimized the substructure

bridge (without deck) to find an optimal complexity
(n, p, q) = (1, 1, 0). This substructure bridge has less
mass than the superstructure bridge except for
extremely high complexity (q > 400). At q = 3000, the
superstructure has one fifth the mass of the
substructure design. Thirdly, we consider adding a
deck to the bridge, since this is the only practical
possibility to carry distributed loads. Under yielding
constraints the minimal mass bridge requires infinite
complexity n (infinite self-similar iterations of the
tensegrity module). The bridge has superstructure and
substructure that are duals of each other. The angle of
departure from the boundaries is 35.26 deg (as
opposed to 45 deg for the no deck mass discussed
above). Under buckling constraints the structure (n, p,
q) = (n, 1, 1) has minimal mass at n = ∞. The
superstructure has a departure angle (from the
boundary) of approximatively 26.56 deg as opposed to
larger angles for yielding designs and no-deck designs.
The substructure under buckling constraints has an
even more streamlined profile with departure angle
approximatively of 5.18 deg. Furthermore the mass of
a substructure design is much smaller that the mass of
a superstructure design.

In all of the design cases studied, we conclude that
the infinite complexity substructure bridge is the
solution which minimizes the sum of deck mass and
structural mass.

Finally, we consider the impact of assigning a
mass penalty to the number of required joints. We
suppose that the cost per kg of compressive members
is $b, and that the cost per kg of fabricated joints is $j.
The ratio Ω = $b/$j is used as a weighting factor to
add joint mass to member mass and this sum is
minimized. The total minimal mass is always at a
finite complexity n < ∞ and p = q = 1. Again,
buckling is always the mode of failure in our study,
leading to the conclusion that with deck mass and
joint mass, this paper describes the optimal
complexity to obtain a minimal mass bridge, and this
bridge is not a continuum (as Michell produced under
yielding assumptions), but, has finite complexity n.
The optimal complexity n is given in terms of
fabrication costs and material properties.

The tensegrity architectures introduced in the
present work allow for creating networks of tension
and compressive members at many different scales
[10,28], which simultaneously work as load-carrying
members of the structure and as sensing and actuating
functions.

This study paves the way for further studies on:
stiffness and stability [11]; vibrations modes and



control [33]. It is predictable that the prestrain will
play a fundamental rule on the tuning of stiffness and
dynamics of such structures. For sake of brevity these
issues must appear in future work.

In future work, we plan to employ the present
multiscale approach for the optimal design of composite
tensegrity structures [34–36]; tensegrity metamaterials
featuring special mechanical and directional behaviors
[5, 6]; and bio-inspired membrane networks with
tensegrity architecture [20, 37, 38].
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