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Abstract 
 

We employ a 𝑟𝑟-adaptive finite element model to search for a ‘safe’ thrust surface of a masonry dome, which minimizes the 
maximum tensile stress carried by the unreinforced portion of the material. A numerical procedure based on a Breeder Genetic 
Algorithm is employed to drive the movement of the nodes of a membrane model within a suitable design domain, which coincides 
with the region comprised in between the intrados and extrados of the dome in correspondence with the unreinforced portion of the 
structure. The presence of externally bonded Fiber Reinforced Polymer and/or Fabric Reinforced Cementitious Mortar 
reinforcements is accounted for by allowing the thrust surface to move outside the physical domain of the structure in 
correspondence with the reinforced regions. A benchmark example shows that the proposed procedure leads to detect if a masonry 
dome is safe or not, according to the master ‘safe’ theorem of the masonry vault theory. In addition it allows to optimally design 
reinforcement strategies that are aimed at preventing or mitigating crack damage, and increasing the load carrying capacity of the 
structure.  
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1  Introduction 

 
The so-called modern vault theory by Heyman [1] consists of a limit analysis approach to the statics of masonry arches 
and vaults based on the following assumptions: (i) masonry has no tensile strength, (ii) masonry has infinite 
compressive strength, and (iii) sliding between masonry parts does not occur (no-tension model). It is well suited for 
curved structures where the effects of bending and shear stresses on the collapse mechanisms are usually less relevant 
than those played by in-plane tensile stresses [2, 3]. The individual roles played finite friction between parts, infill, 
brick pattern and individual members, such as, e.g., the lantern, drum and buttresses, on the limit analysis of masonry 
vaults and domes is accurately described in [2, 3] and references therein. In the case of masonry arches, the master 
‘safe’ theorem of Heyman leads to search for a fully-compressive line of thrust (or funicular curve) of the applied 
loads, which is entirely contained within the intrados and the extrados of the structure (‘static’ theorem of the limit 
analysis of masonry arches, see Chapters 1 and 2 of [1]). Several extensions of the funicular curve method to 3D 
problems dealing with vaults and domes have been proposed over recent years, by using either continuous or 
discontinuous approaches. Continuous approaches typically make use of stress-function formulations of the 
equilibrium problem [4, 5, 6] or maximum modulus eccentricities surfaces [7, 8], while discontinuous approaches 
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describe the no-tension stress field through spatial force networks generated via 3D funicular constructions [9], the 
Thrust Network Analysis (TNA) [10, 11], or the Lumped Stress Method (LSM) [12, 13, 14, 15]. Continuous and 
discontinuous approaches based on stress-functions or the TNA are intrinsically restricted to parallel loading [4, 13, 
11], while maximum modulus eccentricities surfaces call for fixed finite element models assuming fixed boundary 
conditions [8]. Under parallel loading, a stress function-based mesh adaption strategy based has been presented in [13], 
employing a convex hull predictor-corrector strategy. 

A number of studies have shown that genetic/evolutionary algorithms are particularly useful in structural 
optimization problems [16, 17, 18, 19, 20]. In particular, such optimization strategies have led to show that funicular 
shapes of curved structures provide minimal compliance configurations [21]. Optimization through evolutionary 
algorithms was first developed in the 1960s and has since come to refer to a family of probabilistic search methods 
inspired by the principle of natural selection [22, 23, 24, 25]. Evolutionary optimization algorithms have been shown 
to be well suited for problems where the solution space is multidimensional, multimodal, discontinuous, and noisy 
[26]. A Breeder Genetic Algorithm (BGA), is a specific type of evolutionary optimization algorithm, that employs a 
both stochastic and a deterministic selection scheme, in that the fittest “individuals" (solutions) are selected from a 
current generation and enter the “gene pool" to be recombined and mutated as the basis to form the new generation, 
fitter population, and arrive at an optimal solution [27, 28, 29, 30]. 

The present study deals with an adaptive finite element approach to the search for a ‘safe’ thrust surface of a 
masonry dome, which is either unreinforced, or reinforced through externally bonded Fiber Reinforced Polymer (FRP) 
and/or Fabric Reinforced Cementitious Mortar (FRCM) systems over a portion of the boundary [5, 6, 31, 32, 33, 34, 
35, 36]. We assume that the dome resists the external loads through a thrust surface contained in a given search domain, 
which exhibits zero or almost-zero tensile stresses over the unreinforced portion of masonry. An elastic finite element 
model is allowed to move within the search domain, utilizing a BGA to manipulate the coordinates of the mesh nodes 
within the prescribed bounds, and minimizing the maximum tensile stress suffered by the unreinforced masonry 
(fitness function). The proposed approach is able to handle arbitrary loading conditions, structural inhomogeneities 
(e.g., nonuniform material properties), and geometries. The modeling of FRP/FRCM reinforcements is carried out 
following Baratta and Corbi [5, 6], on allowing the thrust surface to move outside the physical domain of the structure 
in correspondence with the reinforced regions. A benchmark example allows us to emphasize the technical potential 
of the proposed approach, which leads to design optimal placements of FRP/FRCM reinforcements, and the associated 
benefits in terms of crack damage prevention and load carrying capacity of the structure. 

 
2  R-Adaptive Thrust Surface 

 
Without loss of generality, let us refer our analysis to the dome of the church of Santa Maria di Monteverginella in 
Naples, which is illustrated in Figs. 1- 2. Such a dome has a variable thickness, rests on a circular drum and is crowned 
with a small lantern (without openings). The wall thickness varies from 0,57 m in correspondence with the drum, to 
more than 1,00 m at the crown (including the base of the lantern). The intrados of the dome is not decorated with 
frescos (nude masonry), while the extrados is covered with majolica tiles (Fig. 2). We model the dome and the top 
portion of the drum (below the openings) through a 𝑟𝑟-adaptive Sap2000 finite element model (FEM) with linearly 
elastic response. The latter is composed of 154 nodes and 272 shell elements, as shown in Fig. 3. The shell elements 
feature dominant membrane behavior, since their bending thickness is set equal to 1/50 of the membrane thickness 
[37]. We assign the masonry self-weight equal to 15.0 kN/m3, and the Young modulus of the material equal to 1500 
MPa (‘Neapolitan’ tufe stone masonry [38]). The basis of the dome is supposed to be restrained by fixed hinge supports. 
The FEM nodes are allowed to move in 3D according to the following 𝑟𝑟-adaption strategy 

  
 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚   +   𝜉𝜉𝑖𝑖   �𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚   −   𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� (1) 

 
where 𝑟𝑟𝑖𝑖 denotes the radial distance of the 𝑖𝑖-th node from the associated control point 𝐶𝐶𝑖𝑖 lying on the dome axis; 
𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the value of 𝑟𝑟𝑖𝑖 at the intrados of the dome; 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 is the value of 𝑟𝑟𝑖𝑖 at the extrados; and 𝜉𝜉 is a control variable 
ranging in the interval [0,1] (Fig. 1). 
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2.1  Breeder Genetic Algorithm 
 

To minimize the maximum tensile stress carried by the thrust surface in correspondence with unreinforced masonry 
we employ the BGA fully described in [29, 30, 21]. Let 𝑁𝑁 denote the total number of control variables 𝜉𝜉𝑖𝑖 governing 
the 𝑟𝑟 -adaption strategy described by Eqn. (1). We create a population (generation) of 𝜆𝜆 = 100  “individuals" 
(solutions) 𝑟𝑟𝑚𝑚𝑡𝑡 = (𝑟𝑟1, . . . , 𝑟𝑟𝑁𝑁)𝑚𝑚 where 𝑚𝑚 is index of the individual (𝑚𝑚ł ∈ {1,⋯ , 𝜆𝜆}), and let the BGA create 𝐺𝐺 = 200 
generations where 𝑡𝑡 ∈ {1,⋯ ,𝐺𝐺} is the generation. The minimization of the maximum tensile stress carried by the 
unreinforced masonry leads the adopted FEM to approximate the elastic no-tension constitutive model (refer, e.g., to 
[2, 4, 7, 15] and references therein). 

 

  
Figure  1: Cross-section of the church of Santa Maria di Monteverginella in Naples (top) and zoom-in of the dome 
(bottom). 
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Figure  2: Photographs of the exterior (left) and the interior (right) of the dome of the church of Santa Maria di 
Monteverginella in Naples. 

   
 

2.1.1  Selection 
 
The selection consists of the picking, at each generation, the 𝜇𝜇 best individuals within the current population of 𝜆𝜆 
elements. When applying BGA, the best individual found will always be retained. The remaining 𝜆𝜆 − 1 individuals 
of the next generation are generated by recombining and mutating the 𝜇𝜇 best individuals of the current generation. By 
doing so, the best individuals are treated as super-individuals and mated together, hoping that this will lead to a fitter 
population. The probability of selection for recombination is 

 

 𝑝𝑝 = �
1
𝜇𝜇

      1 ≤ 𝑖𝑖 ≤ 𝜇𝜇

0      𝜇𝜇 ≤ 𝑖𝑖 ≤ 𝜆𝜆
 (2) 

  
2.1.2  Recombination 
 
To create the new generation from the 𝜇𝜇 best individuals within the current population of 𝜆𝜆 elements, we utilize 
Extended Intermediate Recombination (EIR) [39]. In order to define the operators, let us suppose to have two parents 
(each one of the 𝜇𝜇  individuals) 𝑥𝑥 = (𝑥𝑥1, . . . ,𝑥𝑥𝑁𝑁)  and 𝑦𝑦 = (𝑦𝑦1, . . . ,𝑦𝑦𝑁𝑁)  and one child before mutation 𝑧𝑧 =
(𝑧𝑧1, . . . , 𝑧𝑧𝑁𝑁), where 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 , and 𝑧𝑧𝑖𝑖 are the radial distances of the current note from the corresponding control node 𝐶𝐶𝑖𝑖 
(Fig. 1). Using EIR we have  

 𝑧𝑧𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑐𝑐𝑖𝑖 ⋅ (𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑡𝑡),∀𝑖𝑖 ∈ {1, . . . . . ,𝑁𝑁} (3) 
 

 where 𝑐𝑐𝑖𝑖 is a scaling factor chosen uniformly at random over an interval [−𝑑𝑑, 1 + 𝑑𝑑] where 𝑑𝑑 = 0.25. This allows 
to reach all the values belonging to the continuous interval between 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 , and to exit too, for a quantity given by 
𝑑𝑑. As a consequence, EIR is capable of producing any point within a hypercube slightly larger than the one defined by 
the parents.  
 
2.1.3  Mutation 
 
Offspring variables are then mutated by the addition of small random values with low probability. The probability of 
mutating a variable is set to be inversely proportional to the number of parameters to optimize. The mutation operator 
acts by modifying randomly each vector 𝑧𝑧𝑡𝑡 by adding a random vector 𝑞𝑞 = (𝑞𝑞1, . . . . . , 𝑞𝑞𝑘𝑘), 𝑞𝑞𝑖𝑖 being scaled according 
to the search interval of 𝑧𝑧𝑖𝑖  
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 𝑤𝑤𝑡𝑡+1 = 𝑧𝑧𝑡𝑡 + 𝑞𝑞 (4) 
 

 The entries in 𝑞𝑞 are uniformly distributed (𝑈𝑈(−𝜎𝜎;𝜎𝜎)), where 𝜎𝜎 is defined as 𝑎𝑎 ⋅ (𝑧𝑧𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑎𝑎 is a scale 
factor we choose here as 0,5. It should be noted, that when a genetic operator generates a value for a parameter out of 
the range, the value is reported within the range by mirroring, i.e., by adding/subtracting to it the value of the limit of 
the range closest to it, depending on whether it is smaller or greater than the lower/upper limit of the range. Following 
the selection, recombination, and mutation, the new generation is filled with children 𝑤𝑤. 

  
Figure  3: 3D and top views of the 𝑟𝑟-adaptive finite element model. 

 
 

3  Numerical Results 
  

We examine the 𝑟𝑟-adaptive FEM described in Sect. 2 (Figs. 1- 3) under either the sole action of the masonry self-
weight (vertical loading), and the combined action of masonry self-weight and horizontal forces acting along the 𝑥𝑥-
axis of a Cartesian frame {𝑂𝑂, 𝑥𝑥,𝑦𝑦, 𝑧𝑧}, which shows the 𝑧𝑧 axis pointing upward along the vertical direction. The 
analyzed horizontal forces mimic the effects of a seismic excitation along the 𝑥𝑥 direction of the dome, according to a 
conventional, static approach to seismic actions on constructions (refer, e.g., to the European Standard EN 1998-1[40]). 
In particular, the horizontal forces in the 𝑥𝑥  direction are set equal to 25% of vertical forces (seismic loading). 
Hereafter, we label ‘RTS’ the Reference Thrust Surface that passes through the nodes marked by black circles in Fig. 
1, and let ‘MTTS’ denote the Minimum Tension Thrust Surface obtained through the BGA described in Sect. 2.1. As 
anticipated, the latter minimizes the maximum tensile stress in the unreinforced masonry (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚); is contained between 
the intrados and the extrados of the vault in correspondence to the unreinforced portion of masonry; and is allowed to 
move beyond the physical domain of the structure in correspondence to the FRP-/FRCM-reinforced regions, on the 
opposite side of the reinforcements [5, 6] (we locally assume: 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 2.000 m). It is worth noting that the the 
initial tensile strength of the examined masonry (undamaged material) is slightly greater than zero and ranges in the 
interval 0.1-1.0 MPa, while its compressive strength is approximatively equal to 13 MPa [38]. We assume that the 
materials and the thickness of the FRP-/FRCM-reinforcements are adequately designed, in such a way that the 
reinforced masonry is able to fully sustain the tensile stresses acting on the reinforced regions of masonry. 

 
3.1  Vertical loading 

  
Let us first examine the case of vertical loading on the unreinforced vault. Fig. 4 illustrates the geometries of the RTS 
and the MTTS and the associated maps of the maximum and minimum principal stresses, which we obtained for such 
a loading condition. The results in Fig. 4 lead us to recognize that the maximum (tensile) principal stress carried by 
the MTTS (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.59 × 10−2 MPa, cf. Fig. 4d) is more than 50 % smaller than that carried by the RTS (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 =
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3.49 × 10−2 MPa, cf. Fig. 4c). On the contrary, the minimum (compressive) principal stress carried by the MTTS at 
the base of the structure (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −3.89 × 10−1 MPa, Fig. 4e) is more than twice larger in magnitude than that carried 
by the RTS (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −1.14 × 10−1 MPa, Fig. 4d). It is worth noting that the largest tensile stresses act at about one 
half of the rise along parallel (or hoop) lines (cf. Fig. 4c-d), and that the MTTS is almost tangent to the extrados in 
correspondence to the base of the drum (maximum abutment thrust), and near the lantern (Fig. 4b). Such results lead 
us to predict a meridional crack pattern of the unreinforced vault, which is indeed frequent in masonry domes, and 
typically allows the structure to be safe in such a cracked state [1]. 

 

   
Figure  4: Results for vertical loading of the unreinforced dome. 

   
The results concerned with vertical loading of the FRP-/FRCM-reinforced dome are shown in Fig. 5. We examine two 
different reinforcement patterns: a first one featuring FRP-/FRCM-reinforcements at the top of the intrados, and a 
second one instead featuring FRP-/FRCM reinforcements at the interior of the drum. In both cases, the reinforcements 
are placed at the intrados, in correspondence to regions where the MTTS of the unreinforced dome is tangent to the 
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extrados (Fig. 4b). As we already observed, the intrados of the examined dome is not decorated with frescos and can 
therefore be subjected to wrapping with FRP-/FRCM reinforcements (cf. Fig. 2). 

 

   
Figure  5: Results for vertical loading of the reinforced dome (thick red lines in panels a) and b) mark the positions 
of FRP-/FRCM-reinforcements). 
   
The results in Fig. 5 show that the maximum tensile stress carried by the unreinforced masonry is reduced by a factor 
of 3 in presence of reinforcements at the top of the intrados (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 5.05 × 10−3 MPa, cf. Fig. 5c), and by a factor 
of 50 in presence of reinforcements at the interior of the drum (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 3.18 × 10−4  MPa, cf. Fig. 5d), always 
comparing with the case of the unreinforced vault (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.59 × 10−2 MPa, cf. Fig. 4d). We also observe that 
reinforcements at top of the intrados leave the MTTS tangent to the extrados at the base of the drum (Fig. 5a), while 
reinforcements at the interior of the drum push the MTTS inward at half of the rise and upward at the crown (cf. Fig. 
5b and Fig. 4b). The minimum compressive stress is more than twice larger (in magnitude) in presence of 
reinforcements at the top of the intrados (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −2.32 × 10−1  MPa, Fig. 5e), as compared to the case with 
reinforcements at the interior of the drum (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = −1.02 × 10−1  MPa, Fig. 5f). It is worth noting that the 
reinforcements can be effective under pre-existing loads only if they are adequately pretensioned before application to 
the masonry substrate, through e.g.. mechanical anchoring devices [41]. Alternative and more traditional reinforcement 
techniques of masonry domes are offered by circumferentially pre-stressed steel belts to be applied against the drum 
of the structure [3]. 
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3.2  Seismic loading 
  

We show in Fig. 6 the MTTSs that we obtained for the case of seismic loading. Trivially, such thrust surfaces do not 
feature polar symmetry (as in the case of vertical loading), being only symmetric with respect to the 𝑥𝑥 axis. The maps 
of the maximum and minimum principal stresses under seismic loading are shown in Fig. 7. 

 

   
Figure  6: MTTSs for seismic loading of the unreinforced an reinforced domes. 
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Figure  7: Stress distributions for seismic loading of the unreinforced an reinforced domes. 

   
  

The results in Fig. 7 highlight that the maximum tensile stress in the unreinforced masonry is reduced by a factor larger 
than 5 in the dome reinforced at the top of the intrados (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 6.75 × 10−2 MPa, cf. Fig. 7c), and by a factor slightly 
larger than 2 in the dome reinforced at the interior of the drum (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 1.64 × 10−1 MPa, cf. Fig. 7e), as compared 
to the case of the unreinforced dome (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 = 3.66 × 10−1 MPa, cf. Fig. 7a), under the same loading condition. We 
also observe marked increments of 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  when passing from vertical loading to seismic loading (compare the results 
in Figs. 4c-d, Fig. 5c-d, and Fig. 7a,c,e). It is worth noting that the magnitude of the minimum compressive stress 
remains significantly lower than the compressive strength of the examined material (13 MPa, cf. [38]), both under 
vertical and seismic loading. Assuming that the tensile strength 𝑓𝑓𝑡𝑡 of the unreinforced masonry is equal to 0.2 − 0.3 
MPa, we conclude that, for the unreinforced dome, it results 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑓𝑓𝑡𝑡, while, both for the dome reinforced at the top 
of the intrados and the dome reinforced at the interior of the drum, it results 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑓𝑓𝑡𝑡. The maximum tensile stresses 
act along parallel lines and reach extreme values over the edge placed in the positive 𝑥𝑥 -direction (Fig. 7a,c,e). 
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Obviously, the opposite edge will instead suffer the maximum tensile stresses in the case of seismic loading in the 
negative 𝑥𝑥-direction. The reinforcement-induced reduction of the maximum tensile strength is significantly beneficial 
in terms of mitigation of crack damage, according to the elastic no-tension constitutive model of masonry [2, 3, 4, 7, 
15]. 

 
4  Concluding Remarks 

 
We have presented a numerical model of unreinforced and reinforced masonry domes, which searches for the optimal 
configuration of the thrust surface of the structure through minimization of the maximum tensile stress in the 
unreinforced masonry. The proposed approach employes a r-adaptive finite element model of the thrust surface 
featuring linearly elastic shell elements with dominant membrane behavior. The nodes of such a model are allowed to 
move within a given search domain, which coincides with the region physically occupied by the structure in 
correspondence with the unreinforced portion of the dome (no-tension model). The form-finding problem of the thrust 
surface is numerically approached through a Breeder Genetic Algorithm, on assuming the maximum tensile stress in 
the unreinforced masonry as fitness function (minimization problem). 

As compared to continuous and discontinuous approaches based on stress-functions or the Thrust Network 
Analysis, which are intrinsically restricted to parallel loading [4, 11, 13], the present approach allows for significant 
technical improvements, being able to handle arbitrary loading conditions, such as, e.g., the seismic loading conditions 
commonly adopted by international codes for constructions [40]. It can be usefully employed to design optimal FRP- 
and/or FRCM-reinforcements, which are able to significantly mitigate fracture damage, and to increase the load 
carrying capacity of the structure. 

We address generalizations of the present study dealing with masonry vaults featuring arbitrary geometries, 
and discrete models of membrane networks [13, 42] to future work. Additional future directions of the present research 
will regard the direct inclusion of FRP-/FRCM-reinforcements in the proposed form-finding strategy, withe the aim of 
designing optimal reinforcement topologies under prescribed constraints on structural stability, nature of the failure 
modes and ‘pseudo-ductility’ of the material [3]. Finally, in a near future we intend to conduct experimental validations 
of the present study through static and dynamic testing of real-scale models of vaults and domes [43, 44, 45]. 
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