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Abstract This paper presents a tensegrity approach to the minimal mass design 
of tensile reinforcements of masonry structures with arbitrary shapes. The 
proposed strengthening methodology allows for the design of minimal mass 
resisting mechanisms of systems formed by a network of masonry rods, mainly 
working in compression, and grids of tensile reinforcements. Assuming a 
perfectly plastic response by each member, the existence of such resisting 
mechanisms ensures that the reinforced structure is stable under the examined 
loading conditions, due to the safe theorem of the limit analysis of elastic-plastic 
bodies. The approach proposed in this paper includes an explicit determination of 
the state of prestress to be applied to tensile reinforcements, in order that they are 
effective under pre-existing loading conditions. Several benchmark examples 
illustrate the potential of this approach when dealing with minimal mass 
reinforcements of 3D models of masonry walls under in-plane and out-of-plane 
forces, and a structural complex formed by a cloister vault resting on supporting 
walls. 
 
Keywords Masonry structures . Tensile Reinforcements . Tensegrity . Topology 
Optimization . Composite materials 
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1  Introduction 

  
The optimal strengthening of masonry structures experiencing damage or aging 
problems attracts remarkable interests among structural engineers and architect, 
because many historical buildings worldwide include such structures in need of 
strengthening [1, 2]. Unreinforced masonry walls are often made of  
materials with poor mechanical properties under tensile stresses (i.e., nearly zero 
tensile strength). This is especially the case in old buildings, due to the degradation 
of mortar beds caused by aging. In the past, such a drawback has been faced through 
the application of reinforcements for the masonry made of traditional building 
materials, like steel or wood (refer, e.g, to [3, 4, 5] and references therein). Nowadays, 
strips and/or meshes of materials like Fiber Reinforced Polymers (FRP) or Fabric 
Reinforced Cementitious Matrix (FRCM) composites are often bonded to masonry 
structures to improve their mechanical properties [6, 7, 8]. It is worth remarking that 
the above strengthening techniques, when improperly used, may lead to an excessive 
over-strength of the reinforced structure, and reduced "cracking-adaptation" capacity 
[9, 10, 11]. 

 The present paper adopts tensegrity concepts (i.e., sticks and strings 
models) to formulate a general methodology for the tensile strengthening of masonry 
structures. Tensegrity structures represent an emerging field of structural mechanics, 
which nowadays has interesting applications in several fields of engineering, 
mechanics and physics ([12]), including robotics ([13, 14]), deployable/smart 
structures ([15, 16, 17, 18]), acoustics ([19, 20, 21]), and biomechanics ([22, 23]). 
The mechanical response of these structures is often characterized by geometrically 
nonlinear behaviors ([24, 25, 26, 27]), and multi-stable configurations ([28, 29, 30]). 
The statics of tensegrity structures have been extensively studied using a variety of 
approaches ([31, 32, 33, 34]), with special attention paid to stability problems ([29, 
35, 36]). It is worth noting ground structure approaches to the form-finding of such 
structures via mathematical programming [37]. A review of methods currently 
available for form finding and control can be found, e.g., in [38, 39, 40, 41, 42], and 
references therein. Tensegrity models are in line with the modern Discrete Element 
Modeling (DEM) of masonry structures, which includes computer-assisted, 
funicular-network procedures [43], Lumped Stress Models (LSM) [44], and Thrust 
Network Approaches (TNA) [45, 46, 47].  

A recent study [48] has presented a tensegrity approach to the "minimal-
mass" FRP-/FRCM reinforcement of masonry vaults and domes. This procedure 
employs tensegrity concepts to find an optimal resisting mechanism for the 
reinforced structure, under given loading conditions. It allows the designer to 
describe the response of the reinforced structure with the use of simplified schemes, 
assuming that tensile stresses are directly taken by the FRP reinforcements, and the 
stress level can be determined by adopting a distribution of stresses that satisfies the 
equilibrium conditions but not necessarily the strain compatibility (cf. Sect. 5.2.1 of 
the ‘Italian Guide for the Design and Construction of Externally Bonded FRP 
Systems for Strengthening Existing Structures’ [49]). The approach proposed in [48] 
describes the reinforced structure as a tensegrity network of masonry rods, working 
in compression, and tension elements corresponding to the FRP-/FRCM- 
reinforcements. It optimizes a background structure connecting each node of a 
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discrete model of the structure with all the neighbors lying inside a sphere of a 
prescribed radius, in order to determine a minimal mass resisting structure under the 
given loading conditions and prescribed yielding constraints [50]. The FRP/FRCM 
reinforcements can be replaced by any other reinforcements that are strong in tension 
(e.g., timber or steel beams/ties). 
The present study generalizes the methodology presented in [48] to cases that use 2D 
and 3D discrete models of masonry structures with arbitrary shape. Such a 
generalization allows us to explore the potential for tensegrity modeling of reinforced 
masonry structures in the design of non-invasive reinforcement patterns for systems 
formed by arbitrarily assembled masonry walls, vaults and domes. Another way of 
our study expands the study initiated in [48] concerns an explicit determination of 
the state of prestress to be applied to the tensile reinforcements of masonry structures, 
in order to let them be effective under pre-existing loading conditions. We employ a 
novel application of linear programming to obtain a minimal mass layout of masonry 
roads and tensile reinforcements describing the state of stress of a reinforced masonry 
structure, under given strength constraints. Due to the safe theorem of the limit 
analysis of elastic-plastic bodies [51], the existence of such a resisting mechanism of 
the reinforced structure ensures that it is safe under the examined loading conditions, 
assuming perfectly plastic response of each member. The input variables of the 
proposed procedure consist of a 3D point cloud defining the geometry of the structure 
to be reinforced, obtainable through, for example, in-situ laser-scanning, together 
with the material densities and yielding strengths of masonry and reinforcing 
elements. It is worth remarking that limit analysis is well recognized by competent 
scientific literature (e.g., [6, 9, 10, 11, 44, 45, 46] and references therein) as one of 
the most reliable approaches to the study of the stability of masonry structures. 

The remainder of the paper is structured as follows. Section 2 illustrates the 
adopted tensegrity methodology for the reinforcement of an arbitrary masonry 
structure under given yielding constraints and loading conditions. Next, Section 3 
presents a number of benchmark examples dealing with the FRP-/FRCM-
reinforcement of masonry walls subjected to in-plane (Section 3.1) and out-of-plane 
forces (Section 3.2), as well as the FRP-/FRCM-reinforcement of a three-dimensional 
structural system formed by a cloister vault and supporting walls (Section 3.3). 
Concluding remarks and suggested directions for future research are presented in 
Section 4. 

 
 

2  Minimal-mass reinforcement of a masonry structure 
  

Let us apply the optimization strategy presented in Sections 2 and 3 of Ref. [48] to 
the general case of an arbitrary masonry structure, whose geometry is described by a 
three-dimensional set of 𝑛𝑛𝑛𝑛 nodes with position vectors 𝐧𝐧𝑘𝑘 (𝑘𝑘 = 1, . . . ,𝑛𝑛𝑛𝑛). Such 
nodes may be condensed over one or multiple structural surfaces, e.g, the intrados 
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and the extrados surfaces of a planar wall or a vaulted structure. 
We introduce a background structure (refer, e.g., to the example in Fig. 1) by 
connecting each node 𝐧𝐧𝑘𝑘 with all the nodes 𝐧𝐧𝑗𝑗 such that it results |𝐧𝐧𝑘𝑘 − 𝐧𝐧𝑗𝑗| ≤ 𝑟𝑟𝑘𝑘 
(interacting neighbors), through two elements working in parallel: a compression 
element (or bar) 𝐛𝐛𝑖𝑖 = 𝐧𝐧𝑘𝑘 − 𝐧𝐧𝑗𝑗; and a tension element (or string) 𝐬𝐬𝑖𝑖 = 𝐧𝐧𝑘𝑘 − 𝐧𝐧𝑗𝑗. Let 
us denote the number of compression elements (bars) by 𝑛𝑛𝑏𝑏; the number of tension 
elements (strings) by 𝑛𝑛𝑠𝑠; and the set of real numbers by ℝ. We introduce a ℝ𝑛𝑛𝑏𝑏×𝑛𝑛𝑛𝑛 
bar-connectivity matrix  𝐶𝐶 𝐵𝐵 such that [ 𝐶𝐶 𝐵𝐵]𝑖𝑖𝑗𝑗 = −1 if the bar vector  𝑏𝑏 𝑖𝑖 has 
its start point at the node  𝑛𝑛 𝑗𝑗; [ 𝐶𝐶 𝐵𝐵]𝑖𝑖𝑗𝑗 = 1 if  𝑏𝑏 𝑖𝑖 has its end point at the node 
 𝑛𝑛 𝑗𝑗; and [ 𝐶𝐶 𝐵𝐵]𝑖𝑖𝑗𝑗 = 0 if  𝑏𝑏 𝑖𝑖 does not contain  𝑛𝑛 𝑗𝑗. Similarly, we introduce a 
ℝ𝑛𝑛𝑠𝑠×𝑛𝑛𝑛𝑛 string-connectivity matrix  𝐶𝐶 𝑆𝑆, making use of the string vectors  𝑠𝑠 𝑖𝑖. 

Assuming that the background structure is subject to a number 𝑚𝑚 of static 
loading conditions, we write its equilibrium equations as follows 

  
𝐀𝐀𝐱𝐱(𝑗𝑗) = 𝐰𝐰(𝑗𝑗)  (1) 

 
Here, 𝑗𝑗 is the loading condition index (𝑗𝑗 = 1, . . . ,𝑚𝑚), 𝐴𝐴 is the static (or equilibrium) 
matrix, 𝑤𝑤(𝑗𝑗) is the vector collecting all the external load vectors applied to each node 
(𝑤𝑤𝑖𝑖), and 𝑥𝑥(𝑗𝑗) is the vector collecting all the force densities (i.e., the forces per unit 
length) in bars (𝜆𝜆𝑖𝑖

(𝑗𝑗)) and strings (𝛾𝛾𝑖𝑖
(𝑗𝑗)). The analytic expressions of such quantities 

are as follows:   
 
 𝐀𝐀 = �−�𝐂𝐂𝐁𝐁𝐓𝐓 ⊗ 𝐈𝐈𝟑𝟑�𝐁𝐁�        �𝐂𝐂𝐒𝐒𝐓𝐓 ⊗ 𝐈𝐈𝟑𝟑�𝐒𝐒�� ∈ ℝ3𝑛𝑛𝑛𝑛×(𝑛𝑛𝑏𝑏+𝑛𝑛𝑠𝑠) (2) 

 𝐱𝐱(𝑗𝑗) = �𝜆𝜆1
(𝑗𝑗)   ⋯   𝜆𝜆𝑛𝑛𝑏𝑏

(𝑗𝑗)|𝛾𝛾1
(𝑗𝑗)   ⋯   𝛾𝛾𝑛𝑛𝑠𝑠

(𝑗𝑗)�
𝑇𝑇
∈ ℝ𝑛𝑛𝑏𝑏+𝑛𝑛𝑠𝑠  (3) 

 𝐰𝐰(𝑗𝑗) = �𝐰𝐰𝟏𝟏
𝐓𝐓   ⋯   𝐰𝐰𝐧𝐧𝐧𝐧

𝐓𝐓�𝑇𝑇 ∈ ℝ3𝑛𝑛𝑛𝑛 (4) 
 
where "⊗" denotes the Kronecker product between matrices (refer, e.g., to [50]), 𝐈𝐈3 
denotes the 3 × 3 identity matrix; and it results 

  

𝐁𝐁� = �
𝒃𝒃𝟏𝟏 ⋯ 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 ⋯ 𝒃𝒃𝒏𝒏𝒃𝒃

� ∈ ℝ3𝑛𝑛𝑏𝑏×𝑛𝑛𝑏𝑏 , �̂�𝑆 = �
𝒔𝒔𝟏𝟏 ⋯ 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 ⋯ 𝒔𝒔𝒏𝒏𝒔𝒔

� ∈ ℝ3𝑛𝑛𝑠𝑠×𝑛𝑛𝑠𝑠  (5) 

 
We now assume that bars and strings behave as elastic-perfectly-plastic members, 
with yield strength 𝜎𝜎𝑏𝑏𝑖𝑖  in the generic bar (compressive yield strength), and yield 
strength 𝜎𝜎𝑠𝑠𝑖𝑖  in the generic string (tensile yield strength). We let 𝐴𝐴𝑏𝑏𝑖𝑖  denote the 
cross-section area of 𝐛𝐛𝑖𝑖, and let 𝐴𝐴𝑠𝑠𝑖𝑖  denote the cross-section area of 𝐬𝐬𝑖𝑖. The masses 
of such members are respectively given by 𝑚𝑚𝑏𝑏𝑖𝑖 = 𝜚𝜚𝑏𝑏𝑖𝑖𝐴𝐴𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖 , and 𝑚𝑚𝑠𝑠𝑖𝑖 = 𝜚𝜚𝑠𝑠𝑖𝑖𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖 , 
where 𝜚𝜚𝑏𝑏𝑖𝑖 and 𝜚𝜚𝑠𝑠𝑖𝑖  respectively denote the mass densities of 𝐛𝐛𝑖𝑖 and 𝐬𝐬𝑖𝑖; 𝑏𝑏𝑖𝑖 denotes 
the length of 𝐛𝐛𝑖𝑖 and 𝑠𝑠𝑖𝑖 denotes the length of 𝐬𝐬𝑖𝑖. Moreover, in correspondence with 
the 𝑗𝑗-th loading condition, we let 𝜆𝜆𝑏𝑏𝑖𝑖

(𝑗𝑗) denote the force density carried by 𝐛𝐛𝑖𝑖, and let 
𝛾𝛾𝑠𝑠𝑖𝑖

(𝑗𝑗)  denote the force density carried by 𝐬𝐬𝑖𝑖 , such that 𝜆𝜆𝑏𝑏𝑖𝑖
(𝑗𝑗) > 0  when 𝐛𝐛𝑖𝑖  is 

compressed, and 𝛾𝛾𝑠𝑠𝑖𝑖
(𝑗𝑗) > 0 when 𝐬𝐬𝑖𝑖 is stretched. Yielding constraints impose these 

results 
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 𝜆𝜆𝑖𝑖

(𝑗𝑗)  𝑏𝑏𝑖𝑖 ≤ 𝜎𝜎𝑏𝑏𝑖𝑖𝐴𝐴𝑏𝑏𝑖𝑖 ,    𝛾𝛾𝑖𝑖
(𝑗𝑗)  𝑠𝑠𝑖𝑖 ≤ 𝜎𝜎𝑠𝑠𝑖𝑖𝐴𝐴𝑠𝑠𝑖𝑖  (6) 

 
 in correspondence with all the bars and strings, and all the loading 

conditions. 
We seek for an optimized resisting mechanism of the examined structure 

through the following linear program [48, 50] 
 
 minimize

𝑥𝑥(𝑗𝑗),𝑦𝑦
    𝑚𝑚 = 𝐝𝐝𝐓𝐓𝐲𝐲 

 subjectto    �
𝐀𝐀𝐱𝐱(𝑗𝑗) = 𝐰𝐰(𝑗𝑗)

𝐂𝐂𝐱𝐱(𝑗𝑗) ≤ 𝐃𝐃𝐲𝐲
𝐱𝐱(𝑗𝑗) ≥ 𝟎𝟎, 𝐲𝐲 ≥ 𝟎𝟎

, (7) 

 where  
 𝐲𝐲 = [𝐴𝐴𝑏𝑏1 ⋯𝐴𝐴𝑏𝑏𝑛𝑛𝑏𝑏|𝐴𝐴𝑠𝑠1 ⋯𝐴𝐴𝑠𝑠𝑛𝑛𝑠𝑠]𝑇𝑇 (8) 
 𝐝𝐝𝑇𝑇 = [𝜚𝜚𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖 ⋯𝜚𝜚𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏|𝜚𝜚𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖 ⋯𝜚𝜚𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠] (9) 

 𝐂𝐂 = �
d𝑖𝑖𝑖𝑖𝑖𝑖(𝑏𝑏1,⋯ , 𝑏𝑏𝑛𝑛𝑏𝑏)       0
       𝟎𝟎 d𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛𝑠𝑠)� (10) 

 𝐃𝐃 = �
d𝑖𝑖𝑖𝑖𝑖𝑖(𝜎𝜎𝑏𝑏1 ,⋯ ,𝜎𝜎𝑏𝑏𝑛𝑛𝑏𝑏)        𝟎𝟎
       𝟎𝟎 d𝑖𝑖𝑖𝑖𝑖𝑖(𝜎𝜎𝑠𝑠1 ,⋯ ,𝜎𝜎𝑠𝑠𝑛𝑛𝑠𝑠)� (11) 

 
The solution to problem (7) provides a minimal-mass configuration of the 
background structure, chooses whether a bar or a string connects each couple of 
interacting nodes; and returns bars and strings with zero cross-section areas in 
correspondence with the interacting nodes that do not need to be connected in the 
minimal mass configuration, under the given equilibrium (1) and yielding (6) 
constraints. 

We initially solve problem (7) by assuming that all the bars feature yield 
strength equal to the compression strength 𝜎𝜎𝑏𝑏 of masonry, and all the strings feature 
yield strength equal to the tension strength 𝜎𝜎𝑠𝑠𝑚𝑚  of masonry (as in an unreinforced 
structure). Next, we compute the widths of such bars and strings by the dividing the 
corresponding cross section areas by the thickness of the structure 𝑡𝑡. When the width 
of a masonry string becomes larger than 𝑡𝑡 , we rescale its cross-section 𝐴𝐴𝑠𝑠𝑖𝑖 , by 
replacing such a member with a reinforcing element endowed with yield strength 
𝜎𝜎𝑠𝑠𝑓𝑓 > 𝜎𝜎𝑠𝑠𝑚𝑚, and cross-section area 𝐴𝐴𝑠𝑠𝑖𝑖

′ = 𝐴𝐴𝑠𝑠𝑖𝑖𝜎𝜎𝑠𝑠𝑚𝑚/𝜎𝜎𝑠𝑠𝑓𝑓 . The width of the reinforcement 
is finally obtained by dividing 𝐴𝐴𝑠𝑠𝑖𝑖

′  by the reinforcement thickness 𝑡𝑡𝑓𝑓 . It is worth 
noting that the above replacement leads us to reduce the mass of the resisting 
structure, compared to the case of unreinforced structure, since the assumption 
𝜎𝜎𝑠𝑠𝑚𝑚 < 𝜎𝜎𝑠𝑠𝑓𝑓  trivially implies 𝐴𝐴𝑠𝑠𝑖𝑖

′ < 𝐴𝐴𝑠𝑠𝑖𝑖 . Overall, this procedure allows us to design an 
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optimal (lightweight) topology of the reinforcing elements, which are necessary to 
ensure equilibrium and respect of yielding constraints under the examined loading 
conditions. 

 
3  Numerical Results 

  
The present section introduces several numerical applications of the minimal mass 
optimization procedure described in Sect. 2. These are aimed at designing optimal 
reinforcements of a masonry wall subject to in-plane forces (Sect. 3.1) [52], a 3D 
wall model subject to out-of-plane forces (Sect. 3.2), and a 3D structural complex 
formed by a cloister vault and supporting walls (Sect. 3.3).  

  
Figure  1: Background structure associated with a 3D point cloud describing the geometry of a cloister 
vault supported by perimeter walls (dimensions in meters): (a) 3d view; (b) top view; (c)-(d) side views.  
 
We examine masonry material exhibiting 𝑓𝑓𝑐𝑐 = 1.21 MPa compressive strength; and 
𝑓𝑓𝑡𝑡 = 0.08 MPa tensile strength, in association with reinforcements exhibiting bonding 
strength greater than or equal to 𝑓𝑓𝑓𝑓  = 112.5 MPa; 𝑡𝑡𝑓𝑓 = 0.17 mm thickness, and  
and 3.2 N/m  2  self-weight per unit area of the reinforcement [52]. Such 
reinforcements correspond to the Carbon Fiber-Reinforced Polymeric (CFRP) strips 
analyzed by Foraboschi and Vanin in Ref. [52]. We wish to emphasize, however, that 
the following results can be applied to other kinds of masonry reinforcements that 
are strong in tension. The masonry selfweight is assumed to be equal to   𝛾𝛾𝑚𝑚 = 18.0 
kN/m 3 in the first two examples (brick masonry), and   𝛾𝛾𝑚𝑚 = 15.0 kN/m 3 in the 
final example (tufe masonry). As in Sect. 2, we assume that each structure analyzed 
is formed by masonry struts with compressive yield strength 𝜎𝜎𝑏𝑏 ; tension 
reinforcements with yield strength 𝜎𝜎𝑠𝑠𝑓𝑓 , and tension masonry elements with yield 
strength 𝜎𝜎𝑠𝑠𝑚𝑚 , over the unreinforced regions. Such strengths are defined as follows 
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 𝜎𝜎𝑏𝑏 = 𝑓𝑓𝑐𝑐;     𝜎𝜎𝑠𝑠𝑓𝑓 = 𝛼𝛼  𝑓𝑓𝑓𝑓;     𝜎𝜎𝑠𝑠𝑚𝑚 = 𝛽𝛽  𝑓𝑓𝑡𝑡 (12) 

 
where 𝛼𝛼 and 𝛽𝛽 are scaling factors, that account for an amplification of 𝑓𝑓𝑓𝑓 due, for 
example, to the adoption of special reinforcement anchoring techniques (𝛼𝛼 > 1), and 
a safety factor reduction of 𝑓𝑓𝑡𝑡 (𝛽𝛽 < 1), respectively. We already noted that of all the 
possible resisting mechanism of the same type, the optimization procedure presented 
in Sect. 2 returns the minimum mass tensegrity mechanism of the reinforced 
structure. Such a statically admissible state of stress for the reinforced structure is 
described by an optimized network of masonry struts (bars) and tensile 
reinforcements (strings), and the sets of force densities 𝜆𝜆𝑖𝑖

(𝑗𝑗) and 𝛾𝛾𝑖𝑖
(𝑗𝑗) respectively 

carried by bars and strings in each of the 𝑚𝑚  loading conditions ( 𝑗𝑗 = 1, . . . ,𝑚𝑚 ) 
examined. In the case of a loading condition that exists prior to the application of the 
reinforcements, the forces 𝑡𝑡𝑖𝑖

𝑗𝑗 = 𝛾𝛾𝑖𝑖
(𝑗𝑗)𝑠𝑠𝑖𝑖  give the pretensions to be applied to the 

reinforcing elements in order to allow them to be effective under the loads 𝑤𝑤(𝑗𝑗). Such 
pretensions can be applied making use of the mechanical anchoring devices described 
in Sect. 5.3.5 of Ref. [49]. 

In the first two examples, we numerically approximate the fully no-tension 
model of the unreinforced masonry by setting 𝛽𝛽 = 0.1. The final example considers 
the complete replacement of masonry members working in tension with 
reinforcements made of fiber-reinforced composites [48]. Unless otherwise 
specified, we mark the reinforcing elements with red lines featuring thickness equal 
to the actual reinforcement width; the masonry struts with solid black lines featuring 
thickness equal to their width; and the masonry elements working in tension by 
dashed black lines.  We let 𝑉𝑉𝑚𝑚  and 𝑉𝑉𝑓𝑓  denote, respectively, the total volume of 
masonry elements and the total volume of reinforcing elements forming the minimal 
mass resisting mechanism obtained through the procedure illustrated in Sect. 2. In 
addition, we let 𝜇𝜇𝑓𝑓 denote the reinforcement volume ratio defined as follows 

 
 𝜇𝜇𝑓𝑓 = 𝑉𝑉𝑓𝑓/𝑉𝑉𝑚𝑚 (13) 

 
 
 

3.1  CFRP reinforcement of masonry walls subjected to in-plane forces 
  

We begin by studying the CFRP reinforcement of the masonry walls experimentally 
analyzed by Foraboschi and Vanin in [52] under the combined action of vertical and 
horizontal forces. The examined walls have 274 cm width; 234 cm height; 24 cm 
thickness; and show a 88 cm × 117 cm central opening juxtaposed between two 
piers with 93 cm width and 234 cm height. The piers are connected at the top by a 88 

mailto:modano@unina.it
mailto:francesco.fabbrocino@unipegaso.it


8 G. Carpentieri et al. 

cm × 84.5 cm lintel. The walls are confined between two concrete beams placed, 
respectively, at the top (where the external loads are applied), and at the foundation 
(see Figs. 1 and 7 of Ref. [52]). 

Three different specimens with the above geometry were tested under a 
(single) loading condition combining vertical and horizontal loads in Ref. [52] (𝑚𝑚 =
1). Such a loading condition has a fixed vertical load 𝐹𝐹𝑣𝑣 on each pier, which is equal, 
respectively, to 20 kN for specimen ♯ 1, 40 kN for specimen ♯ 2, and 70 kN for 
specimen ♯ 3. The vertical forces on the piers are combined with lateral forces 𝐹𝐹ℎ 
applied from left-to-right with monotonic law on top of the walls, up to the wall 
collapse (ultimate horizontal forces respectively equal to 19 kN, 54 kN and 84 kN, 
for specimens ♯ 1, ♯ 2, and ♯ 3). 

The three specimens analyzed in [52] were initially tested up to failure in 
absence of reinforcements, and subsequently unloaded and strengthened with CFRP 
strips placed in such a way as to close the cracks formed during the tests on the 
unreinforced specimens (see Fig. 2). The above specimens differ from each other also 
in terms of the technique used to bond the CFRP strips to the masonry substrate. 
Bonding was accomplished through simple application of a layer of epoxy resin for 
specimen ♯  1; the application of CFRP bolts combined to epoxy bonding for 
specimen ♯ 2; and bonding with epoxy resin under vacuum for specimen ♯ 3 (see 
Ref. [52] for more details). We numerically model such bonding conditions by 
assuming 𝛼𝛼 = 2 in the case of specimen ♯ 1; 𝛼𝛼 = 10 for specimen ♯ 2; and 𝛼𝛼 =
15 for specimen ♯ 3. In each case, we set 𝛽𝛽 = 0.1, as we already mentioned. 

We numerically study the walls under examination using three different 
background structures (or meshes): (a) a coarse mesh featuring 326 nodes and 2442 
potential connections (bars/strings, cf. Fig. 2-(a)); (b) a mid-size mesh with 523 nodes 
and 4178 potential connections (Fig. 2-(b)); and (c) a fine mesh showing 1012 nodes 
and 9174 potential connections (Fig. 2-(c)). Figs. 3, 4, 5 show the minimum mass 
reinforcements that we obtained for the above wall specimens, in correspondence 
with the ultimate value of the horizontal force that was experimentally recorded in 
[52] (𝐹𝐹ℎ = 𝐹𝐹ℎ𝑢𝑢); 𝐹𝐹ℎ = 0.5𝐹𝐹ℎ𝑢𝑢; and 𝐹𝐹ℎ = 0.25𝐹𝐹ℎ𝑢𝑢. 

   
Figure  2: Different background structures of the masonry wall analyzed in Foraboschi and Vanin (2013) 
with dimensions in meters: (a) coarse mesh: 326 nodes, 2442 members, connection distance 𝑟𝑟𝑘𝑘 = 0.20 m 
for nodes with 𝑧𝑧 < 0.325 m and 𝑟𝑟𝑘𝑘 = 0.25 m for the other nodes; (b) mid-size mesh: 523 nodes, 4178 
members, 𝑟𝑟𝑘𝑘 = 0.20 m; (c) fine mesh: 1012 nodes, 9174 members, 𝑟𝑟𝑘𝑘 = 0.15 m. 
   

  
The results presented in Tab. 1 and Figs. 3, 4, and 5 highlight the good convergence 
properties of the tensegrity resisting mechanisms, for successive mesh refinements. 
Analyzing the results in Tab. 1, we indeed observe that the total reinforcement 
volume 𝑉𝑉𝑓𝑓 grows slightly and tend to have an asymptotic limiting value as the mesh 
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size decreases, especially in the cases of specimens ♯ 2 and ♯ 3 (cf. also Figs. 4 and 
5).  The case of specimen ♯ 1 is slightly different, due to the prediction of large 
reinforcements at the bottom-right corner of the wall, when using a coarse mesh (cf. 
Fig. 3). The oscillating values exhibited by the reinforcement volume ratio 𝜇𝜇𝑓𝑓 in 
Tab. 1 are explained by the fact that the total volume of masonry elements forming 
the resisting mechanism (𝑉𝑉𝑚𝑚) generally increases as the mesh size decreases. When 
the rate of increase of 𝑉𝑉𝑓𝑓 is greater than that of 𝑉𝑉𝑚𝑚 the ratio 𝜇𝜇𝐹𝐹 increases, while the 
opposite happens when instead the rate of increase of 𝑉𝑉𝑚𝑚 is greater than that of 𝑉𝑉𝑓𝑓. 
Trivially, the heaviest reinforcements correspond to the case of specimen ♯ 1, which 
features to the lowest masonry-reinforcement bonding strength (𝛼𝛼 = 2). In each of 
the examined cases, the largest reinforcements must be placed diagonally at the basis 
of the the right pier, over the lintel and at the top of the right pier. 

Let us assume now that the reinforcements of the masonry panels under 
consideration need to be applied without prior unloading of the structure. The 
resisting mechanisms shown in Figs. 3, 4, and 5 lead us to predict pretensioning 
forces 𝑡𝑡𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑠𝑠𝑖𝑖  in the ranges 0.46 kN ÷ 11.34 kN; 0.46 kN ÷ 26.51 kN; and 
0.50 kN ÷ 40.93 kN, for specimens ♯ 1, ♯ 2 and ♯ 3, respectively. 

   
   mesh 1 mesh 2 mesh 3 
specimen  𝑉𝑉𝑓𝑓 × 104   𝜇𝜇𝑓𝑓 × 104   𝑉𝑉𝑓𝑓 × 104   𝜇𝜇𝑓𝑓 × 104   𝑉𝑉𝑓𝑓 × 104   𝜇𝜇𝑓𝑓 × 104  

  [𝑚𝑚3]     [𝑚𝑚3]     [𝑚𝑚3]    
  0.991   3.647   1.046   3.092   1.155   3.359  
  0.697   1.675   0.756   1.677   0.765   1.391  
  0.712   1.287   0.773   1.295   0.793   1.195  

Table  1: Statistics of optimal CFRP reinforcements of masonry walls subjected to in-plane forces.  
 
 
 

3.1.1  Experimental validation 
 

The reinforcement schemes illustrated in Figs. 3, 4, and 5 are generally similar to 
those analyzed in Ref. [52] (see Fig. 6), with the exception of a vertical reinforcement 
placed over the left pier in Ref. [52], which is not included in the current 
reinforcement strategy. It is worth noting, however, that the results in Figs. 4 and 5 
indicate the presence of tensile forces within the masonry of the left pier in specimens 
♯ 2 and ♯ 3, as 𝐹𝐹ℎ gets close to its ultimate value 𝐹𝐹ℎ𝑢𝑢.  
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Our results for the present example highlight that the first reinforcements needed to 
guarantee safe equilibrium of the examined walls must be placed in diagonally at the 
bottom of the right pier and on top of the lintel (already for 𝐹𝐹ℎ ≈ 0.25𝐹𝐹ℎ𝑢𝑢). For 
increasing values of the horizontal force 𝐹𝐹ℎ, such reinforcements grow in size and 
spread out over the right pier and the lintel. In the cases of specimens ♯ 2 and ♯ 3, 
the CFRP reinforcements tend to be vertical over the lintel and to interest also the top 
of the left pier in diagonal direction (cf. Figs. 4-5).  
 

 
Figure  3: Minimal mass FRP reinforcements (marked in red) of specimen ♯ 1 in Foraboschi and Vanin 
(2013) for different values of the applied horizontal load 𝐹𝐹ℎ and different background meshes (𝐹𝐹𝑣𝑣 = 40 
kN): (a-d-g) coarse mesh; (b-e-h) mid-size mesh; (c-f-i) fine mesh (𝛼𝛼 = 2, 𝛽𝛽 = 0.1). The widths of the 
compression elements are reduced by a factor 0.25 for visual clarity. 
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Figure  4: Minimal mass FRP reinforcements (marked in red) of specimen ♯ 2 in Foraboschi and Vanin 
(2013) for different values of the applied horizontal load 𝐹𝐹ℎ and different background meshes (𝐹𝐹𝑣𝑣 = 80 
kN): (a-d-g) coarse mesh; (b-e-h) mid-size mesh; (c-f-i) fine mesh (𝛼𝛼 = 10, 𝛽𝛽 = 0.1). The widths of the 
compression elements are reduced by a factor 0.25 for visual clarity. 
 
The sequence of CFRP-masonry debonding mechanisms experimentally observed in 
Ref. [52] begin by detaching the strips reinforcing the lintel and the base of the right 
pier (marked by the labels 1 and 2 in Fig. 6). Next, the CFRP strip placed at the basis 
of the left pier (marked by the label 3 in Fig. 6) are detached, leading the wall to a 
kinematic collapse mechanism [52]. We observe a good match between the 
reinforcement sequence illustrated in Figs. 3 to 5 and the collapse mechanisms 
observed in Ref. [52], and this observation qualitatively validates the current 
reinforcement design strategy of the walls under examination.  
It is worth noting that the topologies of the reinforcements presented in Figs. 3 to 5 
follow from the analyzed direction of the force 𝐹𝐹ℎ  (left-to-right), and would be 
obviously reversed in case of an opposite sign of such a force. More symmetric 
reinforcements would be obtained by including both left-to-right and right-to-left 
horizontal force conditions in the load combination at the base of problem (7) (cf. 
Ref. [48] and Sect. 3.3).  
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3.2  Reinforcement of a masonry wall subjected to out-of-plane actions 
  
We now consider the same masonry wall analyzed in the previous section, 

this time being acted upon simultaneously by masonry selfweight and out-of-plane 
horizontal forces, with the latter replacing the the in-plane horizontal forces analyzed 
in Sect. 3.1. Such out-of-plane forces mimic the effects of ‘seismic’ loading in the 
direction orthogonal to the mid-plane of the wall, and have magnitude equal to that 
of the self-weight forces multiplied by a factor 0.35 [53]. The current example is 
modeled by introducing a background structure formed by two layers of nodes 
parallel to the 𝑥𝑥 − 𝑧𝑧 plane of a Cartesian frame with the 𝑧𝑧-axis placed along the 
vertical (Fig. 7). These two layers of nodes are offset 24 cm from each other along 
the 𝑦𝑦 direction (wall thickness). The background structure in Fig. 7 features 576 
nodes, and 7732 potential connections (bars/strings). The minimal mass resisting 
algorithm obtained through the procedure described in Sect. 2 is illustrated in Fig. 8. 
It consists of 575 tension members and 853 struts. 

     
Figure  5: Minimal mass FRP reinforcements (marked in red) of specimen ♯ 3 in Foraboschi and Vanin 
(2013) for different values of the applied horizontal load 𝐹𝐹ℎ and different background meshes (𝐹𝐹𝑣𝑣 = 140 
kN): (a-d-g) coarse mesh; (b-e-h) mid-size mesh; (c-f-i) fine mesh (𝛼𝛼 = 15, 𝛽𝛽 = 0.1). The widths of the 
compression elements are reduced by a factor 0.25 for visual clarity. 

   
 
The results in Fig. 8 highlight the fact that a set of vertical reinforcements are needed 
on the face of the wall opposite to the out-of-plane forces, in order to guarantee a safe 
equilibrium condition for the wall. The face of the wall to be reinforced should 
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obviously be the opposite one, if the source of the out-of-plane forces is reversed. 
The heaviest reinforcements are necessary at the base of the piers affected by tensile 
stresses. The lintel shows diagonal masonry elements working in tension, which can 
be reinforced through local insertion of additional tensile reinforcements. The lateral 
faces of the central opening also need to be reinforced with diagonal reinforcements, 
as shown in Fig. 8. The tensile forces 𝑡𝑡𝑖𝑖  in the vertical reinforcements range act 
between 5.26 kN at the bottom of the wall, and 49.43 kN towards the top of the wall. 
 

  
Figure  6: FRP reinforcement patterns analyzed in Foraboschi and Vanin (2013) for specimen ♯ 1 (a), ♯ 
2 (b), and ♯ 3 (c). The number indicates the temporal sequence of cracks. 
 
 

   
Figure  7: Background structure of a masonry wall subjected to out-of-plane actions: (a) 3d view; (b) top 
view; (c) front view. The connection distance of all nodes is 𝑟𝑟𝑘𝑘 = 0.3 m. 
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Figure  8: Minimal mass FRP reinforcements (thick red lines) of a masonry wall subjected to out-of-plane 
actions: (a) 3d view; (b) top view; (c) front view (𝛼𝛼 = 1, 𝛽𝛽 = 0.1,  𝑉𝑉𝑓𝑓 = 1.391 × 10−4  𝑚𝑚3, 𝜇𝜇𝑓𝑓 =
0.655 × 10−4). The widths of the compression elements are reduced by a factor 0.25 for visual clarity. 

   
  
 

3.3  Reinforcement of a structural complex formed by a cloister vault and 
supporting walls 

  
Our final example is concerned with a 3D structural complex composed of 

4 orthogonal walls that are 4.5 m horizontal length, 3.0 m height and 50 cm thickness. 
These walls support a cloister vault with 2.25 m elevation in the center and 25 cm 
thickness (cf. Fig. 1). The two walls are parallels to the 𝑦𝑦 axis of a Cartesian frame 
with the 𝑧𝑧-axis placed along the vertical; the walls show 1.5 m × 1.6 m central 
openings. The background structure illustrated in Figs. 9 and 10 features 683 nodes 
and 8432 potential connections. It is worth noting that in the present case we model 
both the perimeter walls and the vault as 2D membranes lying in the 3D Cartesian 
space. To be consistent with a similar example studied in [48], we hereafter model 
the masonry as a completely no-tension material, and replace all the masonry strings 
with tension reinforcements, independent of their actual dimensions. 

The optimal design for reinforcement for the current example is illustrated 
in Figs. 9 and 10. This shows a pure vertical loading (structure selfweight) action, 
and a load combination including the masonry selfweight and seismic loading in both 
the ±𝑦𝑦  directions (multiple loading conditions: 𝑚𝑚 = 3 ). The seismic loading 
consists of horizontal forces with magnitude equal to 0.35 of the magnitude of 
vertical forces in all nodes [53]. 

The optimal reinforcements for pure vertical loading action are placed 
mainly along the perimeter at the base of the cloister (𝑧𝑧 ≈ 3 m); along horizontal 
lines over the two piers of the 𝑦𝑦-walls with openings; and along diagonal lines at the 
intersections of the vault segments (Fig. 9). If such reinforcements are applied to a 
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preexisting structure, we observe that the resisting mechanisms shown in Fig. 9 have 
pre-tensioning forces 𝑡𝑡𝑖𝑖 = 𝛾𝛾𝑖𝑖𝑠𝑠𝑖𝑖 in the range 7.96 kN ÷ 48.93 kN at the base of the 
vault. 

As for the case of the load combination that includes vertical loading and 
seismic loading in the ±𝑦𝑦  directions (cf. Fig. 10), we observe that the optimal 
reinforcement strategy combines the reinforcements required for vertical loading as 
well as diagonal reinforcements over the two piers of the walls that have central 
openings, and reinforcements aligned with - or orthogonal to - the junctions between 
the vaults segments, when moving towards the crown of the vault (cf. Figs. 10 and 
9). Due to the membrane modeling that has been adopted for all the elements forming 
the current structure, of all the vault supports, only the two walls parallel to the 
direction of the seismic forces (+𝑦𝑦-axis) are actually such forces. We assume that 
seismic loading follows the application of the reinforcements, and therefore the 
pretensioning forces to be applied to such elements are only determined by vertical 
loading. The inclusion of seismic forces in the ±𝑦𝑦 directions in the current load 
combination leads us to suggest symmetric reinforcements over the vault panels and 
supporting walls (Fig. 10). 

Comparing the results shown in Figs. 9 and 10 with similar ones obtained 
[48] for vertical and seismic loading of a cloister vault (featuring slightly different 
geometry and material properties), we realize that the presence of perimeter walls in 
the current model has led us to design different topologies for the reinforcing 
elements, as compared to those predicted by the modeling of the vault as an 
independent structure constrained by fixed spherical hinges at the base (see Fig. 5 of 
Ref. [48]). This is mainly due to the fact that the perimeter walls do not carry forces 
orthogonal to their planes in the current model, and therefore cannot be replaced by 
spherical hinges. It is worth noting that the current model suggests the need for major 
reinforcements over the perimeter walls, and lighter reinforcements over the surface 
of the vault. 

 
 

4  Concluding remarks 
  

We have presented a methodological framework for the minimal mass reinforcement 
of arbitrarily shaped masonry structures. This framework generalizes the tensegrity 
approach for the strengthening of masonry vaults and domes recently presented in 
Ref. [48]. The proposed methodology employs a novel application of linear 
programming, which is aimed at designing lightweight reinforcements for masonry 
structures, and the corresponding pre-tensioning forces. The present expansion of the 
research presented in Ref. [48] is multifold: (𝑖𝑖)  we approximate the no-tension 
constraint by admitting the presence of tension elements within the unreinforced 
masonry, which are supposed to carry very low tensile stresses; (𝑖𝑖𝑖𝑖) we analyze 
masonry structures with general shapes and dimensions, including 2D walls, 3D 
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walls, and structural complexes formed by an arbitrary combination of walls, vaults 
and domes; and (iii) we predict the state of prestress to be applied to masonry 
reinforcements under pre-existing loading conditions. 

 

   
Figure  9: Optimal reinforcement patterns of the cloister vault supported by walls under vertical loading 
(reinforcements marked in red): (a) 3d view; (b) top view; (c) xz view; (d) yz view (𝛼𝛼 = 3.343, 𝑉𝑉𝑓𝑓 =
2.651 × 10−3  𝑚𝑚3, 𝜇𝜇𝑓𝑓 = 2.246 × 10−3). The widths of the reinforcements are magnified by a factor 2 
for visual clarity. 

   
The reinforcements analyzed in the present study consist of linear elements, such as 
FRP-/FRCM-reinforcements, steel ties, timber beams, and any other reinforcements 
that are strong in tension. The adopted optimization approach allows us to design 
non-invasive reinforcement patterns, which are able to preserve a sufficient crack-
adaption capacity of the structure [9, 10, 11, 48], with the respect to the equilibrium 
equations and material yield limits. 
The numerical results given here highlight the fact that the proposed reinforcement 
design approach is able to capture the main features of the experimental response of 
real-scale masonry walls loaded by vertical and horizontal forces and CFRP-
reinforced [52]. We have also shown that such a design strategy is able to handle both 
in-plane and out-of-plane loadings, walls with openings, and the arbitrary support 
conditions of vaulted structures. The proposed strengthening methodology matches 
the safe theorem of the limit analysis of elastic-plastic bodies [9, 10, 11, 51], and is 
in line with the recommendations embodied in modern standards for the the design 
and construction of strengthening techniques for existing structures [49]. 
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Figure  10: Optimal reinforcement patterns of the cloister vault supported by walls under combined 
vertical and seismic loadings in the +y-direction (reinforcements marked in red): (a) 3d view; (b) top view; 
(c) xz view; (d) yz view (𝛼𝛼 = 3.343, 𝑉𝑉𝑓𝑓 = 2.635 × 10−3  𝑚𝑚3, 𝜇𝜇𝑓𝑓 = 1.118 × 10−3 ). The widths of the 
reinforcements are magnified by a factor 2 for visual clarity. 
 
 
Future directions for research growing out of the present study will be aimed at 
analyzing the minimal mass reinforcement of a variety of case-studies dealing with 
masonry structures of arbitrary geometry and complexity. Additional future research 
lines include experimental validations of the design procedure presented in Sect. 2, 
through laboratory testing of real-scale and reduced-scale models, under static and 
dynamic loading. 
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