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We study the geometrically nonlinear behavior of uniformly compressed tensegrity
prisms through fully elastic and rigid-elastic models. The given models predict a variety of
mechanical behaviors in the regime of large displacements, including an extreme stif-
fening-type response, already known in the literature, and a newly discovered, extreme
softening behavior. The latter may lead to a snap buckling event producing an axial col-
lapse of the structure. The switching from one mechanical regime to another depends on
the aspect ratio of the structure, the magnitude of the applied prestress, and the material
properties of the constituent elements. We discuss potential mechanical and acoustic
applications of such behaviors, which are related to the design and manufacture of ten-
segrity lattices and innovative metamaterials.

& Elsevier Ltd. All rights reserved.
1. Introduction

The category of ‘Extremal Materials’ has been introduced in Milton and Cherkaev (1995) to define materials that at the
same time show very soft and very stiff deformation modes (unimode, bimode, trimode, quadramode and pentamode
materials, depending on the number of soft modes). Such a definition applies to a special class of mechanical metamaterials,
i.e. composite materials, structural foams, pin-jointed trusses; cellular materials with re-entrant cells, rigid rotational
elements: chiral lattices, etc., which feature special mechanical properties. The latter may include, e.g., auxetic deformation
modes, negative compressibility, negative stiffness phases, high composite stiffness and damping, to name just a few
examples (cf. Lakes, 1987; Milton, 1992, 2002; Kadic et al., 2012; Spadoni and Ruzzene, 2012; Nicolaou and Motter, 2012;
Milton, 2013; Kochmann, 2014, and references therein). Extremal materials are well suited to manufacture composites with
enhanced toughness and shear strength (auxetic fiber reinforced composite), artificial blood vessels, energy absorption
tools, and intelligent materials (cf. Liu, 2006). Rapid prototyping techniques for the manufacturing of materials with nearly
pentamode behavior, and bistable elements with negative stiffness have been recently presented in Kadic et al. (2012) and
Kashdan et al. (2012), respectively.

Structural lattices are nowadays employed to manufacture phononic crystals and acoustic metamaterials, i.e., periodic
arrays of particles/units, freestanding or embedded in fluid or solid matrices with contrast in mass density and/or elastic
moduli, eventually engineered with local resonant inclusions (Lu et al., 2009). Such artificial materials are designed to gain a
variety of unusual acoustic behaviors, such as, e.g., phononic band-gaps, sound control, negative effective mass density,
negative effective bulk modulus, negative effective refraction index, and wave steering and directional behavior (cf. Liu et al.,
ali), gcarpentieri@unisa.it (G. Carpentieri), adaamendola1@unisa.it (A. Amendola).
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2000; Li and Chan, 2004; Ruzzene and Scarpa, 2005; Daraio et al., 2006; Engheta and Ziolkowski, 2006; Fang et al., 2006;
Gonella and Ruzzene, 2008; Lu et al., 2009; Zhang et al., 2009; Zhang, 2010; Bigoni et al., 2013; Casadei and Rimoli, 2013,
and the references therein). Particularly interesting is the use of geometrical nonlinearities for the in situ tuning of phononic
crystals (Bertoldi and Boyce, 2008; Wang et al., 2013), pattern transformation by elastic instability (Lee et al., 2012), as well
as the optimal design of auxetic composites, and soft metamaterials incorporating fluids, gels and soft solid phases
(Kochmann and Venturini, 2013; Brunet et al., 2013). Nonlinear metamaterials may support very compact compression
solitary waves, in correspondence with a stiffening elastic response of the unit cells; or alternatively rarefaction pulses,
when instead the unit cells exhibit a softening-type elastic behavior (cf. Friesecke and Matthies, 2002; Fraternali et al., 2012;
Nesterenko, 2001; Herbold and Nesterenko, 2013).

This paper presents a mechanical study of the axial response of tensegrity prisms featuring large displacements, varying
aspect ratios, prestress states, and material properties. We focus on the response of such structures under uniform axial
loading, showing that they can exhibit extreme stiffening or, alternatively, extreme softening behavior, depending on
suitable design variables. Interestingly, such a variegated mechanical response is a consequence of purely geometric
nonlinearities. By extending the tensegrity prism models already in the literature (Oppenheim and Williams, 2000;
Fraternali et al., 2012), we assume that the bases and bars of the tensegrity prism may show either elastic or rigid behavior.
The presented models lead us to recover the extreme stiffening-type response in the presence of rigid bases already studied
in Oppenheim and Williams (2000) and Fraternali et al. (2012). In addition, we discover a new, extreme softening-type
response. The latter is associated with a snap buckling phenomenon eventually leading to the complete axial collapse of the
structure. We validate our theoretical and numerical results through comparisons with an experimental study on the quasi-
static compression of physical models (Amendola et al., 2014). The extreme hard/soft behaviors of tensegrity prisms can be
usefully exploited to manufacture metamaterials supporting special types of solitary waves, and 2D or 3D highly anisotropic
systems including soft and hard units (Fraternali et al., 2012; Herbold and Nesterenko, 2013; Ruzzene and Scarpa, 2005;
Casadei and Rimoli, 2013). The structure of this paper is as follows: in Section 2, we formulate a geometrically nonlinear
model of a regular minimal tensegrity prism. Next, we present a collection of numerical results referring to tensegirity
prisms with different aspect ratios, prestress states, and material properties (Section 3). In Section 4, we validate such results
against compression tests on physical models. We end in Section 5 by drawing the main conclusions of the present study,
and discussing future applications of tensegrity structures for the manufacture of innovative periodic lattices and
metamaterials.
2. Geometrically nonlinear model of an axially loaded tensegrity prism

Let us consider an arbitrary configuration of a regular minimal tensegrity prism (Skelton and de Oliveira, 2010), which
consists of two sets of horizontal strings: 1–2–3 (bottom strings) and 4–5–6 (top strings); three cross strings: 1–6, 2–4, and
3–5; and three bars: 1–4, 2–5, and 3–6 (Fig. 1). The horizontal strings form two equilateral triangles with side length ℓ,
which are rotated with respect to each other by an arbitrary angle of twist φ. On introducing the Cartesian frame O x y z{ , , , }
depicted in Fig. 1, which has the origin at the center of mass of the bottom base, we obtain the following expressions of the
Fig. 1. Reference configuration of a minimal regular tensegrity prism.
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with h denoting the prism height. The bars 1–4, 2–5, and 3–6 have the same length b, which is easily computed by

φ= − +b h
2
3

cos( )
2
3 (2)

2 2
2

while the cross strings 1–6, 2–4, and 3–5 have equal lengths s given by

φ φ
=

− + +
s

h3 3 sin( ) cos( ) 2

3 (3)

2 2 2 2

We assume that the prism is loaded in the z direction by three equal forces (each of magnitude =f F/3) in correspon-
dence with the bottom base 1,2,3, and three forces of equal magnitude but opposite direction in correspondence with the
top base 4, 5, 6 (Fig. 1). Under such a uniform axial loading, it is easy to recognize that the deformation of the prism
maintains its top and bottom bases parallel to each other, and simultaneously changes the angle of twist φ and the height h.
The geometrically feasible configurations are obtained by letting φ vary between φ¼�π/3 (cross-strings touching each
other) and φ¼π (bars touching each other), as shown in Fig. 2. Hereafter, we refer to the configuration with the bars
Fig. 2. Sequence of configurations corresponding to feasible values of the twisting angle φ.
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touching each other as the ‘locking’ configuration of the prism. Let us consider the equilibrium equations associated with an
arbitrary node of the prism, which set to zero the summation of all the forces acting on the given node in the current
configuration. It is an easy task to show that such equations can be written as follows:
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where x1, x2 and x3 are the forces per unit length (i.e, the force densities) acting in the cross-string, base-strings, and bar
attached to the current node, respectively. Such force densities are assumed positive if the strings are stretched, and the bars
are compressed. We say that the prism occupies a proper tensegrity placement if one has ≥ ≥x x0, 01 2 (i.e., the strings are
either in tension or, at most, slack). It is not difficult to verify that the system of equations (4) admits the following general
solution:
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Restricting our attention to the geometrically feasible configurations φ π π∈ −( [ /3, ]), we note that the solution (5) be-
comes indeterminate when either φ¼�π/6, or φ¼5π/6, that is, when the quantity φ φ+3 sin( ) cos( ) is zero. This means
that the configurations corresponding to such values of φ may exhibit nontrivial states of self-stress, i.e., nonzero force
densities in the prism members for F¼0 (prestressable configurations). By solving the first two equations (4) for x2 and x3,
we characterize the self-stress states of the prism by
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for arbitrary x1. Eqs. (6) and (7) show that a nontrivial state of self-stress compatible with an effective tensegrity placement
is possible only for φ π= 5 /6. As a matter of fact, Eq. (6) highlights that x1 and x2 have opposite signs for φ π= − /6, which
implies that the prism is either unstressed = = =x x x( 0)1 2 3 , or has some strings stretched and the others compressed in
such a configuration. In contrast, Eq. (7) reveals that x1 and x2 have equal signs for φ π= 5 /6. The prism is loaded in
compression for θ > 0, and in tension for θ < 0, where θ φ π= − 5 /6 (cf. Section 3, and Oppenheim and Williams, 2000;
Fraternali et al., 2012). By manipulating Eqs. (1) and (5), we detect that all the cross strings are vertical and carry force
densities =x f h/1 , for φ π= 2/3 (θ¼�π/6). In the same configuration, the base strings and the bars carry zero forces

= =x x( 0)2 3 . We take as a reference the configuration of the prism such that φ φ π= = 5 /60 , and let s0, ℓ0 and b0 denote the
lengths of the cross-strings, base-strings and bars in such a configuration, respectively. By inserting ℓ0 and s0 into Eqs.
(2) and (3), we can easily compute the reference values of the prism height and bar length as follows:
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2.1. Fully elastic model

A fully elastic model is obtained by describing all the prism members (bars and strings) as linear springs characterized by
the following constitutive laws (Skelton and de Oliveira, 2010) :
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where k1, k2 and k3 are spring constants, and sN, N and bN are the rest lengths (or natural lengths) of cross-strings, base-
strings and bars, respectively. Upon neglecting the change of the cross-sectional areas of all members during the prism
deformation, we compute the spring constants as follows (Skelton and de Oliveira, 2010):

= = =k
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where E1, E2, E3, and A1, A2, A3 are the elastic moduli and the cross-section areas of the cross-strings, base-strings and bars,
respectively.
2.1.1. Reference configuration
Hereafter, we assume that N and sN are given, and that the cross-string prestrain is prescribed, i.e., the quantity
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Using (7), (9) and (13), we are led to the following reference values of the force densities in the base strings x( )2
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Eq. (14) can be solved for ℓ0 yielding
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2.1.2. The elastic problem
The substitution of Eqs. (9) into (4) leads us to the following elastic problem:
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2.1.3. Path-following method
We formulate a path-following approach to the nonlinear problem (20)–(22), by introducing the following ‘extended

system’ (Riks, 1984; Wriggers and Simo, 1990)
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We now introduce the notations ≔∇V gv and ≔∇ = −f g [0, 0, 1]f
T , and assume that V is invertible at ( = ¯v v , = ¯f f ). The
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and next the updates
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Eqs. (28) and (29) lead us to the new predictor ¯ + Δ ¯ + Δf fv v( , ), which is used to reiterate the updates (28) and (29),
until the residual ¯ f̄g v( , ) gets lower than a given tolerance. Once a new equilibrium point is obtained, the value of constant
c in Eq. (24) is updated and the path-following procedure is continued. The explicit expression for the V matrix is given in
Appendix.

Let us assume χ = − ¯h h (height control loading). By writing Eq. (28) in correspondence with a solution of the extended
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where η0 denotes the following aspect ratio:

η =
h
a (34)0

0

0

Eq. (33) highlights that Kh
el
0
is zero for =p 00 , and that the quantity − = +p p( )/ /(1 )N0 0 0 0 can be used to characterize the

state of prestress of the structure in place of p0 (Micheletti, 2013).
2.2. Rigid-elastic model

In a series of studies available in the literature, the mechanical response of tensegrity prisms has been analyzed by
assuming that the bases and bars behave rigidly, while the cross strings respond as elastic springs (rigid-elastic model, cf.,
e.g., Oppenheim and Williams, 2000; Fraternali et al., 2012). Such a modeling keeps b and ℓ fixed ( = =b b const0 ,
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= = const0 ), and relates h to φ through Eq. (2). Let us solve Eq. (2) for h, obtaining the following equation:

φ= − −h b
2
3

(1 cos )
(35)

2 2

which, once inverted (for π φ π− ≤ ≤/3 ), gives
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where =a / 3 denoted the radius of the circumference circumscribed to the base triangles. The response of the rigid-
elastic model is easily modeled by substituting (9)1 into the equilibrium equations (4), and solving the resulting system of
algebraic equations with respect to F, x2, and x3, for given h (or φ). It is not difficult to verify that such an approach leads to
the same constitutive law given in Oppenheim and Williams (2000) and Fraternali et al. (2012), that is
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It is easily shown that the rigid-elastic model predicts a progressively stiffening response under increasing axial strains,
with the exception of extremely ‘thick geometries (cf. Section 3.3). Once h (or φ) is given, x1 is computed through (9)1 and
(3); F is computed through (37); and x2 and x3 are obtained from the equilibrium equations (4). The differentiation of (37)
with respect to h gives the tangent axial stiffness of the present model (see Supplementary Data). The reference value of
such a quantity φ π=( 5/6 ) is given by

η= − ′ = =
+

K F h h k
p

p
( ) 12 3

1 (38)h
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0 1
0

0
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2

0

and it is immediately seen that also K0
rigel

is zero for =p 00 , as well as K0
el
(cf. also Supplementary Data).
3. Numerical results

The current section presents a collection of numerical results aimed to illustrate the main features of the mechanical
models presented in Section 2. We examine the mechanical response of tensegrity prisms having the same features as the
physical models studied in Amendola et al. (2014). Such prisms are equipped with M8 threaded bars made out of white zinc
plated grade 8.8 steel (DIN 976-1), and strings consisting of ®PowerPro braided ®Spectra fibers with 0.76 mm diameter
(commercialized by Shimano American Corporation – Irvine, CA). The properties of the employed materials are shown in
Table 1. Let Ā1, Ā2, Ā3 and Ē1, Ē2, Ē3 denote the cross-sectional areas and elastic moduli of the strings and bars defined
according to Table 1. In order to study the transition from the elastic to the rigid-elastic model, we hereafter study the
mechanical response of elastic prisms endowed with the following spring constants (cf. Section 2.1):

α β=
¯ ¯

=
¯ ¯

=
¯ ¯

k
E A
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k
E A

k
E A
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, ,
(39)N N N

1
1 1

2
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3
3 3

where α and β are rigidity multipliers ranging within the interval ∞[1, ). The case of α¼β¼1 corresponds to the fully elastic
(‘el’) model of Section 2.1.2, while the limiting case with α β= → ∞ corresponds to the rigid-elastic (‘rigel’) model presented
in Section 2.2. The equilibrium configurations of the elastic prism model are numerically determined through the path-
following method given in Section 2.1.3, letting the angle of twist φ to vary within the interval π π[2/3 , ), which corresponds
to effective tensegrity placements of the structure (cf. Section 2). We examine a large variety of prestrains p0, and both thick
and slender reference configurations (cf. Figs. 3 and 9, respectively). Let δ = −h h0 denote the axial displacement of the
Table 1
Properties of the materials employed in the numerical simulations.

Property Bars Strings

Area (mm2) 36.6 0.45
Mass density (kg/m3) 7850 793
Elastic modulus (GPa) 203.53 5.48



Fig. 3. Thick prism model. Left: photograph of a real-scale example (Amendola et al., 2014). Center and right: 3D view (center) and top view (right) of the
geometric model.
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prism from the reference configuration, and let ε δ= h/ 0 denote the corresponding axial strain (positive when the prism is
compressed). We name stiffening a branch of the δ−F response showing axial stiffness Kh increasing with δ| | (or ε| |), and
softening a branch that instead shows Kh decreasing with δ| | (ε| |). The axial forces carried by the cross-strings, base-strings,
and bars are denoted by N1, N2, and N3, respectively. We assume that N1 and N2 are positive in tension, and that N3 is instead
positive in compression.

3.1. Thick prism model

We hereafter name ‘thick’ the mechanical model of a prism featuring: sN¼0.08 m, = 0.132N m, and reference lengths s0,
ℓ0, b0, and h0 variable with the cross string prestrain p0 (cf. Section 2.1.1). Table 2 shows noticeable values of such variables
and Kh0

, for different prestrains p0; the fully elastic model; and the rigid-elastic model presented in Section 2. It is seen that
h0 is always smaller than ℓ0 in the present case, which justifies the name ‘thick’ given to the model under consideration. The
difference between Kh

el
0
and Kh

rigel
0

grows with the prestrain p0, being zero for =p 00 = =K K( 0)h
el

h
rigel

0 0
. Fig. 4 shows the force F

vs. δ curves of the ‘el’ samples for different values of p0. Fig. 5 provides the same curves for different values of the stiffness
multipliers α and β, and p0¼0.1. Finally, Figs. 6 and 7 illustrate the variations with the angle of twist φ of the axial stiffness
Kh; the prism height h; and the axial forces N1, N2 and N3. In the ‘el’ case, the results in Figs. 4 and 6 highlight that the
compressive response for ≤p 0.0050 initially features a stiffening branch, next a softening branch, and finally an unstable
phase (F decreasing with δ), as the axial strain ε increases. When p0 grows above 0.005, the initial stiffening branch dis-
appears, and the compressive response is always softening. The final unstable branch is associated with the snap buckling of
the prism to the completely collapsed configuration featuring zero height h (cf. Fig. 8). Such a collapse event can fully take
place when ≥p 0.050 , but is instead prevented by prism locking for lower values of p0 (Figs. 4 and 6). It is worth noting that
the maximum compression displacement δmax increases with p0. For what concerns the tensile response, we observe that
the ‘el’ model is always stiffening in tension, for any ∈p [0, 0.4]0 (Figs. 4 and 6). We also observe that the minimum axial
displacement δmin (i.e. the value of δ for φ π= 2/3 ) grows in magnitude with p0.

Let us now pass to studying the response of the thick prism model for different values of the rigidity multipliers α and β.
The F–δ curves in Fig. 5 show that the response in compression of such a model switches from extremely soft to extremely
stiff when α and β grow from 1 (‘el’model) to+∞ (‘rigel’model). In particular, we observe that α (i.e., the base rigidity) plays
a more substantial role in the mechanical response of such structures than does β (the bar rigidity multiplier). We indeed
Table 2
Geometric variables and initial axial stiffness Kh0

of the thick prism model, for different values of the cross-string prestrain p0; the fully elastic model

(α¼β¼1); and the rigid-elastic model α β= → + ∞( ).

α¼β p0 sN (m) s0 (m) N (m) ℓ0 (m) bN (m) b0 (m) h0 (m) Kh0
(MN/m)

1 0 0.080 0.0800 0.1320 0.1320 0.1628 0.1628 0.0696 0.0000
1 0.005 0.080 0.0804 0.1320 0.1326 0.1636 0.1636 0.0700 0.0026
1 0.1 0.080 0.0880 0.1320 0.1445 0.1785 0.1785 0.0767 0.0297
1 0.2 0.080 0.0960 0.1320 0.1569 0.1941 0.1940 0.0838 0.0393
1 0.3 0.080 0.1040 0.1320 0.1692 0.2095 0.2095 0.0909 0.0426
1 0.4 0.080 0.1120 0.1320 0.1814 0.2248 0.2248 0.0980 0.0435
→∞ 0 0.080 0.0800 0.1320 0.1320 0.1628 0.1628 0.0696 0.0000
→∞ 0.005 0.080 0.0804 0.1320 0.1320 0.1630 0.1630 0.0701 0.0027
→∞ 0.1 0.080 0.0880 0.1320 0.1320 0.1669 0.1669 0.0787 0.0496
→∞ 0.2 0.080 0.0960 0.1320 0.1320 0.1713 0.1713 0.0875 0.0920
→∞ 0.3 0.080 0.1040 0.1320 0.1320 0.1759 0.1759 0.0962 0.1290
→∞ 0.4 0.080 0.1120 0.1320 0.1320 0.1807 0.1807 0.1048 0.1617



Fig. 4. F–δ curves of the thick prism model, when loaded in compression (top), and tension (bottom), for α¼β¼1 and different values of p0.
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note that the F–δ curves for α¼β¼10 and α¼β¼100 are not much different from those corresponding to α¼10, β¼1 and
α¼100, β¼1, respectively. This is due to the fact that the axial stiffness of the bars is much higher than the axial stiffness of
the strings (cf. Table 1), which implies that the assumption of bar rigidity is more realistic than the assumption of base
rigidity, in the present case. When p0¼0.005, Fig. 7 shows that the response in tension of the current prism is always
stiffening, for all the examined values of α and β. In contrast, for p0¼0.4 we observe that such a response progressively
switches from stiffening to softening, as α and β grow to infinity (Fig. 7). Overall, we note that the stroke of the prism
(δ δ−max min) decreases with α and β (Fig. 5), and increases with p0 (Fig. 4). Conversely, the value of Kh at δ δ= max increases
with α and β (Fig. 7), and decreases with p0 (Fig. 6).

The results in Fig. 6 highlight that the unstable phases of the ‘el’ model are associated with a progressive decrease of the
force acting in the cross-strings (N1). The decrease of N1 with φ for α¼β¼1 is confirmed by the results given in Fig. 7, which
show that the cross-strings tend to become slack as φ approaches π δ δ→( )max , in the ‘el’ case. The N2 vs. φ curves of the
base-strings highlight that N2 grows monotonically with φ (starting with the value =N 02 at φ π= 2/3 ), independently of p0,
α and β (Figs. 6 and 7). In particular, the rate of growth of N2 decreases with p0, and increases with α and β, tending to
infinity for φ π→ δ δ→( )max , when α β= → ∞. This implies that, in real life, the base strings would yield before reaching the
‘locking’ configuration, in the ‘rigel’ limit. The axial force response of the bars resembles that of the base strings, and we note
that the bars tend to buckle before reaching the locking configuration in the‘rigel’ limit. For ≥p 0.050 , it is worth noting that
the maximum value of φ is less than π (cf. Figs. 6 and 7), since in such cases the axial collapse precedes the locking
configuration φ π= .



Fig. 5. F–δ curves of the thick prism model, when loaded in compression (top), and tension (bottom), for p0¼0.1 and different values of α and β.
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3.2. Slender prism model

The ‘slender’ prism model analyzed in the present study features: sN¼0.162 m, = 0.08 mN , and height about twice the
base side in the reference configuration (cf. Table 3). Figs. 10 and 11 show the force F vs. δ curves of such prisms for different
values of p0, α and β (see Supplementary Data for additional results). Some snapshots of the deformation history of the
slender prism model for φ π π∈ [2/3 , ]; α¼β¼1; and p0¼0.4 are illustrated in Fig. 12.

In the ‘el’ model with ≤p 0.30 , we observe that the compressive response first shows a stiffening branch, and next a
softening branch (cf. Fig. 10 and Supplementary Data). For p0¼0.4, the compressive branch of the F vs. δ (or F vs. φ) response
is instead always softening, and terminates with an unstable phase. Fig. 10 also shows that the tensile response of the
current prism is slightly softening for ≥p 0.10 . In contrast, for ≤p 0.050 the same response is instead slightly stiffening. It is
worth noting that the above behaviors are markedly different from those exhibited by the thick prism model analyzed in
Section 3.1, since the latter feature unstable response in compression under low prestrains p0, and always stiffening
response in tension (Figs. 4, 6 and 8). We now pass to examining the axial response of the slender prism model for different
values of the stiffness multipliers α and β, and p0¼0.1. Fig. 11 shows that the compressive response for p0¼0.1 is almost
linear when δ δ→ max in the ‘el’ case, and tends to get infinitely stiff in the ‘rigel’ limit. The tensile response is instead less
sensitive to α and β, and always softening (Fig. 11). The individual responses of the prism members highlight that the
softening response in compression is always associated with decreasing values of the force carried by the cross-strings, as in
the case of the thick prism model examined in the previous section (cf. Supplementary Data). The deformation history



Fig. 6. Kh vs. φ, h vs. φ, and N N N, ,1 2 3 vs. φ curves of the thick prism model for α¼β¼1, and different values of p0.
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illustrated in Fig. 12 highlights a marked stretching of the base-strings, in proximity to the locking configuration φ π= , when
there results α¼β¼1, and p0¼0.4.

3.3. Prisms with arbitrary aspect ratio

The nature of the axial response of a generic prism can be predicted by computing the derivative of Kh with respect to h
along the equilibrium path, that is, the quantity =H dK dh/h h . It is straightforward to realize that stiffening and softening
behaviors correspond to <H 0h (i.e., δ >dK d/ 0h ), and >H 0h ( δ <dK d/ 0h ), respectively. Making use of the results presented in
Section 2.1.3, we get
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Let Hh0
now denote the referential value of Hh (for φ= = hv v [ , , ]T

0 0 0 0 ). The plots presented in Fig. 13 show the variation
of Hh0

with the aspect ratio η0 and the prestrain p0, assuming h0¼0.1 m and the material constants of Table 1
(see Supplementary Data for the analytic expressions of Hh and Hh0

in the ‘el’ and the ‘rigel’ models). We let η0 range in the



Fig. 7. Kh vs. φ and N N N, ,1 2 3 vs. φ curves of the thick prism model for p0¼0.005 (left), p0¼0.4 (right), and different values of α and β.
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interval [0.01, 6.5] and p0 vary between 0.05 and 0.4. It is worth noting that the thick prism model analyzed in Section 3.1
has aspect ratio η0 varying between 0.91 (for =p 00 ) and 0.94 (p0¼0.4, cf. Table 2), while the slender prism model analyzed
in Section 9 has η0 varying between 3.47 =p( 0)0 and 4.48 (p0¼0.4, cf. Table 3). In correspondence with the examined values



Fig. 8. Member forces (kN) in different configurations of the thick prism model, for α¼β¼1, and p0¼0.05.

Fig. 9. Slender prism model. Left: photograph of a real-scale example (Amendola et al., 2014). Center and right: 3D view (center) and top view (right) of the
geometric model.
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of η0 and p0, we observe that the response of the ‘el’ model in the reference configuration switches from stiffening <H( 0)h0

to softening >H( 0)h0
when one increases p0 at constant η0, or decreases η0 at constant p0. The referential response of the

‘rigel’ model is, instead, almost always stiffening, and undergoes softening only in the case of extremely thick geometries
(η < 0.540 , cf. Fig. 13).



Table 3
Geometric variables and initial axial stiffness Kh0

of the slender prism model for different values of the cross-string prestrain p0; the fully elastic model

(α¼β¼1); and the rigid-elastic model α β= → + ∞( ).

α¼β p0 sN (m) s0 (m) N (m) ℓ0 (m) bN (m) b0 (m) h0 (m) Kh0
(MN/m)

1 0 0.1620 0.1620 0.080 0.0800 0.1834 0.1834 0.1602 0.0000
1 0.005 0.1620 0.1628 0.080 0.0801 0.1842 0.1842 0.1610 0.0185
1 0.02 0.1620 0.1652 0.080 0.0804 0.1865 0.1865 0.1635 0.0676
1 0.05 0.1620 0.1701 0.080 0.0811 0.1911 0.1911 0.1684 0.1444
1 0.1 0.1620 0.1782 0.080 0.0821 0.1989 0.1989 0.1765 0.2364
1 0.2 0.1620 0.1944 0.080 0.0840 0.2143 0.2143 0.1928 0.3609
1 0.3 0.1620 0.2106 0.080 0.0856 0.2299 0.2299 0.2090 0.4549
1 0.4 0.1620 0.2268 0.080 0.0871 0.2454 0.2454 0.2253 0.5377
→∞ 0 0.1620 0.1620 0.080 0.080 0.1834 0.1834 0.1602 0.0000
→∞ 0.005 0.1620 0.1628 0.080 0.080 0.1841 0.1841 0.1610 0.0192
→∞ 0.02 0.1620 0.1652 0.080 0.080 0.1863 0.1863 0.1635 0.0777
→∞ 0.05 0.1620 0.1701 0.080 0.080 0.1906 0.1906 0.1684 0.1964
→∞ 0.1 0.1620 0.1782 0.080 0.080 0.1979 0.1979 0.1766 0.4018
→∞ 0.2 0.1620 0.1944 0.080 0.080 0.2126 0.2126 0.1929 0.8401
→∞ 0.3 0.1620 0.2106 0.080 0.080 0.2275 0.2275 0.2092 1.3158
→∞ 0.4 0.1620 0.2268 0.080 0.080 0.2425 0.2425 0.2255 1.8295

Fig. 10. F–δ curves of the slender prism model, when loaded in compression (top), and tension (bottom), for α¼β¼1 and different values of p0.
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Fig. 11. F–δ curves of the slender prism model, when loaded in compression (top), and tension (bottom), for p0¼0.1 and different values of α and β.
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4. Experimental validation

The present section deals with an experimental validation of the models presented in Sections 2 and 3, against the
results of quasi-static compression tests on physical samples (Amendola et al., 2014) (cf. also Section 3). We first examine
the experimental responses of the thick prism specimens described in Table 4, where N1

(0) denotes the axial force carried by
the cross-strings in correspondence with the reference configuration. Fig. 14 compares the theoretical (‘th-el’) and
experimental (‘exp-el’) F–δ responses of such specimens, highlighting an overall good agreement between theory and
experiments. We note a more compliant character of the experimental responses, as compared to those predicted by the
fully elastic model presented in Section 2, and oscillations of the experimental measurements. Such theory vs. experiment
mismatches are explained by signal noise; progressive damage to the nodes during loading; string damage due to the
rubbing of ®Spectra fibers against the rivets placed at the nodes; and geometric imperfections (refer to Amendola et al., 2014
for detailed descriptions of such phenomena). In particular, geometric imperfections arising in the assembly phase prevent
the three bars of the current prisms from simultaneously coming into contact with each other when the angle of twist
approaches π. The marker ⊘ in Fig. 14 indicates the first configuration at which two bars touch each other, while the marker
⊗ indicates the first configuration with all three bars interfering. It is worth noting that the full locking configuration (‘⊗’)
occurs at an angle of twist φ appreciably lower than π, due to geometric imperfections and the nonzero thickness of the
bars. Both the theoretical and experimental results shown in Fig. 14 indicate a clear softening character of the compressive
response of the examined thick prisms.

We now pass to examining the experimental response of the slender prism specimens described in Table 5, which
include two samples with deformable bases (‘el’ samples), and two samples aimed at reproducing the rigid-elastic model
presented in Section 2.2 (‘rigel’ samples). The latter were assembled by replacing the base-strings of the ‘el’ systems with



Fig. 12. Member forces (kN) in different configurations of the slender prism, for α¼β¼1 and p0¼0.4.
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12 mm thick aluminum plates (cf. Fig. 15, and Amendola et al., 2014). Fig. 16 illustrates a comparison between the theoretical
and experimental responses of the ‘el’ samples, which shows a rather good match between theory and experiment. In the
present case, we observe reduced signal noise, as compared to the case of thick prisms, and all the bars getting simulta-
neously in touch at locking. The main mismatch between the theoretical and experimental responses shown in Fig. 16
consists of an anticipated occurrence of prism locking in the physical models, which has already been observed and
discussed in the case of the thick specimens. It is interesting to note that both the theoretical and the experimental results
shown in Fig. 16 indicate a slightly stiffening behavior of the ‘el’ samples with a ‘slender’ aspect ratio.



Fig. 13. Hh0 vs. η0 plots for different values of the cross-string prestrain p0. Inset: magnification of the η−Hh0 0 plot of the ‘rigel’ model for η ≤ 0.80 .

Table 4
Geometric and mechanical properties of thick prism samples.

Type p0 sN (m) s0 (m) N1
(0) (N) N (m) ℓ0 (m) b0 (m)

el 0.01 0.080 0.081 30.9 0.132 0.134 0.165
el 0.03 0.080 0.083 78.2 0.132 0.136 0.168
el 0.07 0.080 0.085 170.0 0.132 0.140 0.174

Fig. 14. Comparison of the theoretical and experimental responses of thick prisms with deformable bases.
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The final experimental results presented in Fig. 17 are aimed at validating the rigid-elastic model presented in Section 2.2
(‘rigel’ samples). One observes that the examined specimens with nearly infinitely rigid bases feature a markedly stiff
response in the proximity of the locking configuration, in line with the previsions of the model presented in Oppenheim and



Table 5
Geometric and mechanical properties of slender prism samples.

Type p0 sN (m) s0 (m) N1
(0) (N) N (m) ℓ0 (m) b0 (m)

el 0.07 0.162 0.173 165.9 0.080 0.081 0.194
el 0.09 0.162 0.176 219.9 0.080 0.082 0.197
rigel 0.06 0.162 0.172 150.0 0.080 0.080 0.192
rigel 0.11 0.162 0.181 286.0 0.080 0.080 0.200

Fig. 15. Photograph of a real-scale example of a slender prism endowed with thick aluminum bases (Amendola et al., 2014).

Fig. 16. Comparison of the theoretical and experimental responses of slender prisms with deformable bases.
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Williams (2000) for the current specimens. We observe a more compliant character of the experimental F–δ curves of ‘rigel’
samples, as compared to the theoretical counterparts, which is explained by the not perfectly rigid behavior of the bases and
the bars (physical samples), and the partial unthreading of the cross-strings from the lock washers placed at the nodes
(Amendola et al., 2014). The latter is induced by large tensile forces in the horizontal strings, when the system gets close to
the locking configuration (cf. Supplementary Data).



Fig. 17. Comparison of the theoretical and experimental responses of slender prisms with rigid bases.
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5. Concluding remarks

We have presented a fully elastic model of axially loaded tensegrity prisms, which generalizes previous models available
in the literature (Oppenheim and Williams, 2000; Fraternali et al., 2012). The mechanical theory presented in Section 2.1
assumes that all the elements of a tensegrity prism respond as elastic springs, and relaxes the rigidity constraints introduced
in Oppenheim and Williams (2000). On adopting the equilibrium approach to tensegrity systems described in Skelton and
de Oliveira (2010), we have written the equilibrium equations in the current configuration, thus developing a geometrical
nonlinear model allowing for large displacements (Section 2.1). In addition, we have presented an incremental formulation
of the equilibrium problem of axially loaded tensegrity prisms, which is particularly useful when using Netwon's iterative
schemes in numerical simulations (Section 2.1.3).

The numerical results presented in Section 3 highlight a rich variety of behaviors of tensegrity prisms under uniform
axial loading and large displacements. The variegate mechanical response of such structures includes both extremely soft
and markedly stiff deformation modes, depending on the geometry of the structure, the mechanical properties of the
constituent elements, the magnitude of the cross-string prestrain p0 (characterizing the whole state of self-stress), and the
loading level (deformation-dependent behavior). We have found that ‘thick’ prisms exhibit softening response in com-
pression under relatively low prestrains, and, on the contrary, stiffening response in tension over a large window of p0
values (Figs. 4, 6 and 8). The softening response in compression of such structures is often associated with a snap buckling
event, which might lead the prism to axial collapse (prism height tending to zero). In contrast, we have noted that ‘slender’
prisms need large cable prestrains to show softening response in compression, and relatively low prestrains in order to
feature softening response in tension (Figs. 10, 12, and Supplementary Data). By letting the base and bar rigidities tend
to infinity, we have numerically observed that the compressive response of thick and slender prisms progressively switches
to stiffening (Figs. 5, 7 and 11), with the exception of extremely ‘thick’ geometries (cf. Section 3.3). In the rigid-elastic limit
we have also noted that thick prisms typically exhibit stiffening response in tension (except for cases characterized by
extremely high values of p0, cf. Fig. 7), while slender prisms instead typically feature a slightly softening response in tension
(cf. Fig. 11 and Supplementary Data). The softening response of prisms featuring a height h decreasing to zero is explained by
the fact that the configuration with h¼0 necessarily shows zero axial force, since all members are horizontal. An experi-
mental validation of the mechanical models presented in Section 2 has been conducted against the results of quasi-static
compression tests on physical samples (Amendola et al., 2014), with good agreement between theory and experiments. The
given experimental results have confirmed the switching from softening to stiffening of the compressive response of the
tested samples, in relation to the prism aspect ratio, the magnitude of the applied prestress, and the rigidity of the terminal
bases.

The outcomes of the present study significantly enlarge the known spectrum of behavior of tensegrity prisms under axial
loading, as compared to the literature to date (Oppenheim and Williams, 2000; Fraternali et al., 2012), and pave the way to
the fabrication of innovative metamaterials featuring extremal (softening/stiffening) deformation modes. It has been shown
in Fraternali et al. (2012) that 1D lattices of tensegrity prisms exhibiting elastic stiffening support extremely compact
solitary waves. The ‘atomic scale localization’ of such waves (Friesecke and Matthies, 2002) may lead to create acoustic
lenses capable of focusing pressure waves in very compact regions in space; to target tumors in hyperthermia applications;
and to manufacture sensors/actuators for the nondestructive evaluation and monitoring of materials and structures
(Spadoni and Daraio, 2010; Daraio and Fraternali, 2013). On the other hand, tensegrity lattices showing elastic softening can
be used to design nonlinear metamaterials supporting special rarefaction waves, and innovative shock absorption devices
that do not require energy dissipation (Herbold and Nesterenko, 2013).

This paper examines only one of many possible choices of tensegrity structures. Section 3.7 of Skelton and de Oliveira
(2010) entitled ‘Tensegrity Columns’ shows a class 2 tower composed of either right-handed or left-handed prisms
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connected bar-to-bar. Alternative (class 1) columns are produced by stacking left-handed and right-handed prisms that are
allowed to overlap, as in, the well-known tensegrity tower artworks by Kenneth Snelson (cf., e.g. Skelton and de Oliveira
(2010, Sections 1.2 and 1.4.3)). In the near future, we intend to study the mechanical behavior of tensegrity columns, towers
and plates by allowing the individual prisms to exhibit infinitesimal mechanisms (cf. Micheletti, 2013), and the overall
structure to show geometrically nonlinear response. We also intend to investigate the dynamics of arrays of tensegrity
columns, with the aim of generalizing available literature results on similar granular systems (Spadoni and Daraio, 2010).
Intriguing mechanical behaviors are also offered by multistable tensegrity structures, and/or structures showing strings with
zero or negative rest lengths (refer to Guest, 2006, 2011; Schenk et al., 2007; Micheletti, 2013; Favata et al., 2014, and the
references therein, where the classification of tensegrity systems as ‘prestress stable’ or 'superstable’ is introduced). The
mechanical modeling of such structures is reserved for future studies, and comparisons with the results herein will be very
insightful for the uncovered question of what is the best tensegrity metamaterial that matches a target (nonlinear) response
law.

Particularly challenging is the topology optimization of 3D tensegrity lattices showing soft and hard units, with the aim
of designing metamaterials featuring exceptional directional and band-gap properties (refer, e.g, to Ruzzene and Scarpa,
2005; Fraternali et al., 2010; Porter et al., 2009; Daraio et al., 2010; Ngo et al., 2012; Leonard et al., 2013; Manktelow et al.,
2013; Casadei and Rimoli, 2013; Skelton et al., 2014, and the references therein). The results of the present study highlight
that the self-stresses of the basic units are peculiar design variables of tensegrity metamaterials, which can be finely tuned
in order to switch the local response from softening to stiffening, according to given anisotropy patterns. Additional future
extensions of the present study might involve the design of locally resonant metamaterials incorporating tensegrity con-
cepts; the multiscale additive manufacturing of tensegrity structures through electron beam melting, laser lithography and/
or projection micro-stereolithography (van Grunsven et al., 2014; Böckmann et al., 2014; Zheng et al., 2012); and the
numerical modeling of large-scale tensegrity lattices under general loading conditions, via the quasicontinuum method and
local maximum-entropy schemes (Knap and Ortiz, 2001; Bompadre et al., 2012; Fraternali et al., 2012).
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