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Abstract

Presented is the numerical analysis of plane elastic problems involving stress concentrations and/or singularities
using a physically meaningful complementary energy variational approach. The continuum body is modeled by a non-
conventional truss structure. Stress distributions in laminated composite bodies and orthotropic sheets with a through
crack are obtained. The present results are compared with the analytical solutions for different numerical meth-

ods. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent studies [1,2], a numerical method has
been proposed for plane elastic problems of sim-
plyconnected bodies. Polyhedral approximations
are used for the Airy stress function over triangular
meshes. Such approximations are non-conforming
and give rise to singular stresses at the interfaces
between the triangular elements. In particular, the
“skeleton” of the mesh can be regarded as pin-joint
truss structure that discretizes the continuum.

The method known as the lumped stress meth-
od (LSM) involves a relaxation of the comple-
mentary energy that enlarges the space of
admissible stress functions. It considers the stress
field as linear Dirac deltas. Beside the (primary)
triangular mesh, a dual mesh of polygons is in-
troduced to average the stress singularities in the
neighborhood of the nodes of the primary mesh.
Statically admissible approximate solutions are
found by an unconstrained process of minimiza-
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tion. Numerical integrations are not required and
singular behavior such as concentrated forces,
cracks or structures composed of both two-
dimensional and one-dimensional elements can be
easily treated. The basic idea of the method is
derived from previous studies for biharmonic
problems [3] and thin plates [4].

From the physical point of view, LSM offers a
rational way to approximate the behavior of a 2D
continuum body using a (non-conventional) truss
structure.

The present work deals with applications of the
lumped stress method to plane elastic problems
involving anisotropic behavior and stress concen-
trations or singularities. The convergence of LSM
approximations is shown by comparing the results
with analytical solutions and others available in
the literature.

2. The lumped stress method

Consider the elastic problem of a plane elastic
body @ of polygonal boundary 0%2. It is subjected
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to body force b in Q, surface tractions p over a
portion I', of 0Q, and displacements u over
I', =0Q —TI',. In what follows, x;,x, denote the
Cartesian coordinates in the plane Q. T is the stress
field and T" is an arbitrary solution of the equi-
librium equation divT + b = 0. Note that

Tocﬁ - T*ﬂ = eot)'eﬁé]{y5(q0)7 (1)

o

where ¢ is the Airy stress function, and

Hol= (50 52) @

The range of the Greek indices is {1,2} with e,
being the two-dimensional alternator.

2.1. Minimization

It is easy to show from the principle of mini-
mum complementary energy that the elastic
problem at hand is equivalent to minimizing the
functional

Bo) =5 [ M) /M) da-tlo) ()

over the set of admissible stress functions. This set
consists of those stress functions ¢ which belong to
the Sobolev space H*(Q) and matches suitable
boundary conditions on I', with the surface trac-
tions p* = p — T"n [2]. In Eq. (2), £(¢) is the work
of reactive stresses and .7 is the fourth-order
tensor defined by

A s = €aupy€yp€seAyups, (4)
where A,,,, are the components of the elastic
compliance tensor A.

2.2. Discretization

Now, introduce a triangulation (primary mesh)
o, ={Q,, me{l,2,... M}} (5)

of the domain Q, expanding outside 2 in corre-
spondence with I',, and having the external nodes
arbitrarily close to the boundary (¢ — 0 in Fig. 1).
Introduce also a dual mesh

ﬁ,,:{fz,,, ne{1,2,...,zv}} (6)

whose elements Q, are polygons which enclose the
nodes x, of the primary mesh, and have edges
crossing at the middle points with those of the
triangles Q,,, Fig. 1.

The lumped stress method considers a discrete
set Spn (f=mesh size) of polyhedral approxima-
tions @ of the stress function over the primary
mesh I1,. It seeks for the optimal approximation
¢, in S,y by minimizing the modified energy
functional

Notice that H(¢) consists of a combination of
linear Dirac deltas along the edges of the trian-
gles Q,. Consider, in particular, the edge con-
necting the nodes x, and x,;, and denote by
13:(4)) the jump of V(Z)-ﬁ;‘; across this edge
(b} =unit vector orthogonal to X, —x,). Such a
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Fig. 1. Primary and dual meshes.
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quantity can be regarded as the axial force car-
ried by the bar n — s of a pin-joint truss with the
same geometry as the “skeleton” for the primary
mesh.

Now, express the functional in Eq. (7) in terms
of the quantities P*() [2]

. 1 N S A B Ny . a
Eh(q)) = E Zl lﬂntprf(q))Pri((p) - Zan(q)) s Uy,
n=1 sgt= n=

(8)
where S, is the number of connections of the node
X,, N, the number of nodes belonging to I',, u, the

7 _3F(h% 4x})
il 2bh3

2h E, = Ix10° psi
E, = 25x10°psi
G»= 0.5x10%psi
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Fig. 2. Mesh and stress contours for a laminated beam: (a) LSM discretization; (b) bhTy,/F contours; (c) bhT» /F contours.
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Fig. 3. Comparisons of LSM and other methods for tangential stresses in a thick laminated beam: (a) x, = 0.1254; (b) x, = 0.98754A.



132 F. Fraternali | Theoretical and Applied Fracture Mechanics 35 (2001) 129-135

value of u at x, € I',, and R,(®) is the support
reaction at the node x, € I', corresponding to the
forces P)(¢). In Eq. (8),
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Fig. 4. Through crack in infinite orthotropic sheet.
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£ and ¢ being the lengths of the “bars” n — s and
t — s, respectively. The unit vector l:r; is in the di-
rection of x; — Xx,,.

Eq. (8) shows that the modified functional E,
can be interpreted as the complementary energy of
a non-conventional pin-joint truss. It couples the
contribution due to axial forces at each node.

Since every ¢ € Sy is completely determined by
its nodal values, it is a simple task to find the
optimum conditions of Ej, that can be reduced
to a linear system in the unknown @, = {@,,,
@pys--+> Ppy y- Such a system can be easily con-
structed [2] by using the summation and assem-
bling operations. Numerical integrations are not
necessary.

Let ¢, denote the minimizer of the original
functional E in Eq. (3). In [1,2], the convergence of
the LSM solutions ¢, to ¢, (as # — 0) has been
shown, under some regularity and uniformity as-
sumptions about the meshes I, and I1,. Note that
LSM can be embedded in the general theory of
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Fig. 5. Stress contours for orthotropic sheet with through crack in Mode II: (a) Ti»/7 (8, = 1,5 = 10); (b) Tia/ (f; = 1, = 0.1).
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Fig. 6. Stress contours for orthotropic sheet with through crack in Mode I: (a) T /a (8, = 1,3 = 10); (b) Tna/a (f; = 1,4 = 0.1);
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mixed finite element methods. In particular, it is
possible to prove that the quantities

1 S A

T.(p) =——=— Y 2P(¢,)k} @K}
(@) -y ; 5 P(01)
Vne{l,2,... N} (10)

approximate the mean values of T — T" over the
dual elements Q,,. Thus, they can be interpolated
to obtain an approximation of the actual stress
distribution of the body.

3. Numerical results

Numerical results will be presented for two
typical problems with stress concentrations and
border effects.

3.1. Laminated beam

The first deals with a thick laminated beam
clamped at one end and subjected to a parabolic
distribution of tangential tractions at the other
end. This distribution is equivalent to a shear force
F. The composite material is characterized by a
high ratio between the Young’s modulus in the
fiber direction x» and that in the transverse
direction xy, i.e., Ey/Ey =25. The laminated
stacking sequence is 0/90/0, while the length-to-
thickness ratio ¢/h is 2. For this example, high
stress gradient prevails near the 0/90 interface and
at the clamped end [5]. In Fig. 2, the LSM dis-
cretization is shown (558 DOF) together with the
corresponding results for tangential and axial
stresses (b =Dbeam width). In particular, the con-
tour lines of 7}, and 7», obtained by interpolation
of the nodal values T,(¢,) and Txn(¢p,) are
displayed.

In Fig. 3 a comparison between the LSM ap-
proximation for 7}, and the numerical solution in
[5] for two different values of the longitudinal co-
ordinate x, are obtained. Note that x, = 0.1254
corresponds to a cross-section of the beam that is
very close to the clamped end. Here, the stress
distribution is strongly influenced by border
effects.

3.2. Crack in orthotropic sheet

The second problem deals with a through crack
in an infinite orthotropic sheet (Fig. 4). In this
case, the material properties were expressed in
terms of dimensionless parameters f; and f,

Bipr = VE/Ex,
Bi+ By = \/2(\/E1/E2 + E1/2G1; — vio).

The problem was reduced to a domain of side five
times larger than the crack length a by applying
boundary forces corresponding to the traction of
the analytical solution given in [6]. In particular,
only a quarter of the domain was discretized,
employing a 25 x 25 grid (676 DOF) for mode 1
loading, and a 50 x 50 grid (2601 DOF) for mode
IT loading.

Figs. 5 and 6 compare the contour lines of the
Cartesian stress components obtained through the
LSM (broken lines) with those descending from
the analytical solution (solid lines). Two couples of
values of f;, and f, were considered. They are:
p=1, ﬂ; =10 (x; =strong axis) and f, =1,
B3 = 0.1 (x, = strong axis).

(11)

4. Conclusion

It can be concluded that the lumped stress
method is an unconstrained force method suited
for treating plane elastic problems with stress sin-
gularities. This is accomplished by modeling the
plane body through a non-conventional pin-joint
truss structure. It requires a reduced number of
degrees of freedom using only the summation and
assembling operations. Generalization of the
method to problems with stress constraints, such
as those involving zero-tension or elasto-plastic
materials, will be developed in future works.
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