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The equilibrium problem of unreinforced masonry vaults is analyzed via a constrained thrust network
approach. The masonry structure is modeled as no-tension membrane (thrust surface) carrying a discrete
network of compressive singular stresses, through a non-conforming variational approximation of the
continuous problem. The geometry of the thrust surface and the associated stress field are determined
by means of a predictor–corrector procedure based on polyhedral approximations of the thrust surface
and membrane stress potential. The proposed procedure estimates the regions exposed to fracture dam-
age according to the no-tension model of the masonry. Some numerical results on the thrust network and
crack pattern of representative vault schemes are given.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The use of force network models for the form finding and stabil-
ity analysis of masonry vaults and domes has attracted the interest
of architects and scientists since antiquity. Some of the main ingre-
dients of such models are the determination of funicular curves (or
inverted hanging chains) of given force systems (Poleni, 1991;
Heyman, 1966); the slicing technique for the subdivision of 2D
thrust surfaces into suitable arches or strips (Wittmann, 1879;
Ungewitter, 1890; Heyman, 1966, 1977; Boothby, 2001; Como,
2010); physical or virtual hanging chain models (Tomlow et al.,
1989; Kilian and Ochsendorf, 2005; Andreu et al., 2007; Kilian,
2007), famous for their use in the architecture by Antoni Gaudí;
and the equilibrium approach to the limit analysis of no-tension
structures (Heyman, 1966, 1995; Del Piero, 1998; Huerta, 2001).
The latter allows the designer to formulate the structural stability
problem as the search for at least one purely compressive state of
thrust in equilibrium with the applied loads. Recent contributions
to the ongoing research in this area have been proposed by
O’Dwyer (1999), Fraternali (2001), Fraternali et al. (2002a,b), Block
and Ochsendorf (2005, 2007), and Ochsendorf and Block (2009),
dealing with analytical, computational and graphical methods for
the design of statically admissible thrust networks. Particularly
interesting is the use of polyhedral stress potentials to generate
equilibrated force networks (Fraternali et al., 2002a,b). For a review
of the available approaches to the statics of masonry vaults and do-
ll rights reserved.
mes we refer the reader to Di Pasquale (1975), Heyman (1995),
Lucchesi et al. (2008), Tomasoni (2008), Como (2010), and Block
(2009).

This work presents a thrust network approach (TNA) to the
equilibrium problem of unreinforced masonry vaults. The pro-
posed TNA assumes that such structures resist to the external loads
through a compressive membrane state of stress ‘‘condensed”
across a material surface S (thrust surface), which is contained in
a bounded region of the 3D space. The membrane stress is de-
scribed through a discrete network of compressive forces, accord-
ing to the no-tension model of masonry (Giaquinta and Giusti,
1985; Del Piero, 1989; Heyman, 1995). Use is made of a variational
formulation of the membrane equilibrium problem, and polyhedral
test functions for the thrust surface and membrane stress poten-
tial. An iterative procedure is proposed to enforce the no-tension
constraint and suitable geometric bounds on the thrust surface,
through geometrical and topological adaption of an initial candi-
date solution. Numerical results are given for a hemispherical
dome, a groin vault, and a cloister vault, predicting equilibrated
thrust networks and associated crack patterns of the examined
structures, and showing the ability of the proposed TNA in predict-
ing frequently observed real crack mechanisms.
2. A variational formulation of the equilibrium of masonry
vaults

Let us refer to a masonry vault as a no-tension membrane or
thrust surface S contained in a bounded region of the 3D space
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Fig. 1. Thrust surface S.
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(Fig. 1). We introduce the projection X of S onto the horizontal
plane (platform of S), and Cartesian coordinates {x1, x2, x3}, with
unit base vectors {e1, e2, e3}, such that x3 is perpendicular to X.
Looking at x1 and x2 as curvilinear coordinates on S (Monge’s coor-
dinates), we are led to define the following covariant base vectors

a1 ¼ e1 þ @f=@x1e3; a2 ¼ e2 þ @f=@x2e3; a3 ¼ 1=Ja1 � a2; ð1Þ

where f = f(x1, x2) is a function describing the graph of S (shape func-
tion of the thrust surface), and it results:

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@f=@x1Þ2 þ ð@f=@x2Þ2

q
: ð2Þ

It is convenient to project the equilibrium equations of S onto the
non-orthogonal basis {e1, e2, a3}, obtaining:

@Pab

@xb
þ qðaÞ ¼ 0;

@2f
@xa@xb

Pab � @f
@xa

qðaÞ þ qð3Þ

¼ 0 ðsummation on a;bÞ: ð3Þ

Here, q(i) (i = 1, 2, 3) denote the external forces per unit area of X
acting on S, while Pab = JNab (a, b = 1, 2) denote the projections of
the membrane stress resultants Nab (Fig. 1) onto X. Assuming pure
vertical loading (q(1) = q(2) = 0), we derive the projected stresses Pab

from the Airy potential (or stress function) u such that:

P11 ¼ @2u=@x2
2; P22 ¼ @2u=@x2

1; P12 ¼ �@2u=@x1@x2; ð4Þ

reducing (3) to the second order differential equation:

aab@
2u=@xa@xb � q ¼ 0 in X; ð5Þ

where

a11 ¼ @2f=@x2
2; a22 ¼ @2f=@x2

1; a12 ¼ �@2f=@x1@x2; q ¼ �qð3Þ:

If the surface tractions along the boundary of S are prescribed, one
can solve (5) with the aid of the boundary condition

u ¼ lðsÞ on @X ð6Þ

where s is the arc-length of oX, and l(s) is the moment of the
boundary tractions with respect to a vertical axis along oX. A vari-
ational formulation of (5) and (6) consists of seeking u such that it
results:Z

X
aab

@u
@xa

@du
@xb

dXþ
Z

X
qdudX ¼ 0 ð7Þ

for each du that vanishes on oX. It is not difficult to show that the
no-tension model for the masonry implies that u in addition must
be concave (Giaquinta and Giusti, 1985).
3. Thrust network approach

Conforming finite element formulations of (7) are obtained on
introducing C1 approximations f̂ of the shape function f and C0

approximations û of the stress function u. We hereafter instead
consider a partially non-conforming scheme (cf. Ciarlet, 1978),
which assumes C0 approximations to both f and u, i.e. polyhedral
test functions f̂ and û defined on a triangulation Xh of X (Fig. 2).

Such an approximation scheme leads to the following discrete
version of (7):

X
edges

bAj
i

ûj � ûi

hj
i

ðdûj � dûiÞ þ
X
nodes

Q idûi ¼ 0; ð8Þ

where hj
i is the length of the edge of Xh connecting nodes i and j;

û1; . . . ; ûN are the nodal values of û; bAj
i is the jump of the derivative

@ f̂=@n along the normal to the edge i–j; Qi is the resultant vertical
force in correspondence with node i.

It is not difficult to show that (8) corresponds to the system of
linear algebraic equations:

Ri ¼
X

j

bPj
i

f̂ i � f̂ j

hj
i

� Q i ¼
X

j;k

Uijkûj f̂ k � Q i ¼ 0; i ¼ 1; . . . ;N; ð9Þ

In (9), bPj
i is the jump of the normal derivative @û=@n across the edge

i–j of Xh; Uijk are coefficients depending only on the geometry of the
mesh; the summations are extended to all the nodes connected to
the node i; and N is the total number of nodes forming Xh. One
can regard the quantities bPj

i as the axial forces carried by the bars
of a planar truss structure having the same geometry of the skeleton
of Xh. Analogously, one can look at the quantities bPj

iðf̂ j � f̂ iÞ=hj
i as

the axial forces carried by the spatial truss Sh, which is obtained
from Xh through the mapping x3 ¼ f̂ ðx1; x2Þ. Eq. (9) furnishes the
nodal equilibrium equations of Sh, associating a unique polyhedral
stress function û to a given polyhedral shape function f̂ , and vice-
versa. A concave polyhedral stress function û gives rise to all com-
pressive forces in the bars of Sh and Xh. It is worth noting that the
modeling of a continuous membrane through a pin-jointed bar net-
work actually corresponds to a non-conforming (or external) varia-
tional approximation of the membrane equilibrium problem.

4. Constrained TNA

Let us assume that the vertical load q and the boundary values
of f̂ and û on oXh are prescribed. The search for the corresponding
thrust surface consists of seeking a couple (f̂ ; û) such that the dis-
crete equilibrium equation (9) is satisfied, under geometry con-
straints of the form

f̂ lb
i 6 f̂ i 6 f̂ ub

i ði ¼ 1; . . . ;NÞ; ð10Þ



Fig. 2. Polyhedral approximations to f (left) and u (right).
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and the concavity constraint on û. Limitations (10) require that the
thrust surface is contained in a given 3D domain D, coinciding either
with the region comprised between the extrados and the intrados of
an existing vault, or with a suitable design space. A constrained
thrust network approach (CTNA) can be formulated as follows,
assuming that an in initial guess f̂ 0 of f̂ is available:

(1) compute û0 from the linear system ðUijkf̂ 0
kÞû0

j ¼ Qi;
(2) compute the ‘‘concave-hull” û0 of û0;
(3) compute a new shape function f̂ 0 from the linear system
ðUijkûjÞf̂ 0k ¼ Qi;

(4) if f̂ 0 satisfies the geometry constraints (10) stop with f̂ ¼ f̂ 0

and û ¼ û0; otherwise correct f̂ 0 so as to verify (10), set
f̂ 0 ¼ f̂ 0 and go back to 1.

Overall, the CTNA admits the quantities Q i; f̂ lb
i ; f̂

ub
i ði ¼ 1; . . . ;NÞ,

and the nodal values of f̂ and û on oXh as input. It produces the
quantities f̂ i; ûi at the inner nodes of Xh as output, according to
the elastic no-tension model of masonry (cf. Giaquinta and Giusti,
1985; Del Piero, 1989). It is worth noting that the concave-hull
construction of step (2) provides topological adaption of the cur-
rent force network, while step (3) performs geometrical adaption
(see the results of the next section). The CNTA allows one to obtain
a statically admissible, purely compressive thrust network. This
ensures the stability of the structure under consideration, accord-
ing to the master ‘safe’ theorem of no-tension materials (Heyman,
1966, 1995; Del Piero, 1998), if the geometrical constraints (10)
can be satisfied. The no-tension model assumes that fracture dam-
age can occur in regions where the material is subject either to
zero stress, or uniaxial compressive stress. In the latter case, frac-
Fig. 3. Stress function (left), thrust network and potential crack patter
tures are expected to run along the compressive principal stress
directions. Once the solution (f̂ ; û) of the CTNA is known, one
can predict the portions of Sh and Xh exposed to fracture, as it will
be shown in the next section. The continuum limit u of the poly-
hedral stress function û will exhibit either a flat (zero stress) or
a single-curvature (uniaxial stress) profile in correspondence with
such regions. Cracks will run at the extrados if the thrust surface
lies towards the intrados, and vice-versa.
5. Numerical examples

In order to show how the CTNA operationally works and its
capability in predicting the state of stress and the crack pattern
of real masonry structures, we applied such a procedure to some
benchmark examples, examining the equilibrium problems of a
hemispherical dome, a groin vault, and a cloister vault.

Fig. 2-left shows the examined hemispherical dome (co-latitude
opening equal to 0.9p), while Fig. 2-right illustrates the stress func-
tion û obtained by letting f̂ coincide with the middle-surface, and
applying a uniform vertical load per unit area of the platform. The
above stress function assumes a convex shape towards the basis of
the structure, which is associated with not-admissible circumfer-
ential tensile stresses. The concave-hull construction is able to
transform the initial guess of Fig. 2-right into the concave profile
shown in Fig. 3-left, which corresponds to the no-tension thrust
network depicted in Fig. 3-right. The latter predicts biaxial com-
pression towards the crown of the dome, and uniaxial meridian
compression towards the basis. We are hence lead to predict a
meridional crack pattern near the basis of the structure (‘‘orange-
n (right) of a hemispherical dome under uniform vertical loading.



Fig. 4. Geometry and loading data for a groin vault.

Fig. 5. Thrust surface and stress function of an unreinforced groin vault under vertical loading.

Fig. 6. Final meshing (left) and force network (right) of a groin vault under vertical loading.
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Fig. 7. Geometry and loading data for a cloister vault.

Fig. 8. Thrust surface and stress function of an unreinforced cloister vault under vertical loading.

Fig. 9. Potential crack pattern of a cloister vault under vertical loading.
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slice” cracking mode), accordingly to what is observed in many real
masonry domes of similar shape (cf. e.g. Heyman, 1995).

The second example deals with a groin vault with base dimen-
sions 7.5 m � 7.5 m, parabolic web panels of thickness 20 cm, diag-
onal ribs of thickness 40 cm, and maximum rise equal to 3.2 m. The
vault has self-weight of 20 kN/m3, and bears a material with weight
of 6 kN/m3 filling the space in between the extrados and the horizon-
tal plane through the vertex (Fig. 4). We assumed û ¼ 0 and let f̂
coincide with the middle-surface on oXh. The quantities f̂ ; û, bPj

i

and the potential crack pattern obtained for the present example
are illustrated in Figs. 5 and 6. One observes from Figs. 5 and 6 that
cracks may run parallel to the wall ribs at the extrados (‘‘Sabouret”
cracks), along the groin ribs, and near the crown at the intrados of
the examined vault, which is in good agreement with the cracking
‘‘pathology” frequently observed in real quadripartite vaults (cf.
Heyman, 1995; Como, 2010). As a matter of fact, the final profile of
the stress function shown in Fig. 5 bottom-right, and the associated
thrust network depicted in Fig. 6-right, indicate that the no-tension
state of stress is uniaxial in such regions. The topology of the final
thrust network is illustrated in Fig. 6-left.

As a final example, we examine the cloister vault shown in
Fig. 7, which has a 3.5 m � 3.5 m wide platform, and maximum rise
of 1.2 m. The vault is made of tufe bricks with unit weight of 18 kN/



Fig. 10. Comparison between predicted (left) and experimentally observed (right) fracture damage of a cloister vault under the combined action of vertical loads and vertical
movements of corner supports.
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m3, and thickness varying from 37 cm to 17 cm. It carries the self-
weight, a filling of 10 kN/m3, and a dead load of 18 kN/m2 per unit
area of the platform (cf. Fig. 7).

The thrust surface f̂ , the stress function û, and the forces bPj
i ob-

tained for such a vault through the CTNA are illustrated in Figs. 8
and 9. In this case, we assumed û ¼ l̂ on oXh, with l̂ computed
from a finite element analysis of the vault under simply supported
boundary conditions (Formato, 2007). The results presented in
Figs. 8 and 9 underline that the crack pattern of the vault under
examination may include diagonal fractures along the web joints
and radial fractures along the walls at the extrados, in conjunction
with crown cracks at the intrados (we refer e.g. to Tomasoni (2008)
for typical cracking mechanisms of cloister vaults). We analyzed
the cloister vault also under the combined action of vertical loads
and upward/downward movements of the base supports, in corre-
spondence with a corner of the supporting perimeter. For this case,
we compared the CTNA predictions with an experimental study
carried out on a real scale sample of the structure (Formato,
2007). Fig. 10-left shows the numerically computed thrust network
and the associated crack pattern, while Fig. 10-right illustrates the
experimentally detected cracking mechanism of the vault sample,
after few cycles of lifting and release of the corner supports. One
notices a rather good matching between the CNTA predictions
and the experimentally observed damage.

6. Concluding remarks

The CTNA presented in this work allows for the prediction of the
thrust surface and the crack pattern of unreinforced masonry
vaults. Some numerical results have shown the potential of such
an approach in predicting the equilibrium configuration and the
crack pattern of real vaulted structures. It has been sown that
the modeling of a membrane as a thrust network has a variational
foundation, and that the concave-hull of the membrane stress
function provides statically admissible force networks for no-ten-
sion materials, through topological and geometrical adaption of
an initial candidate solution.

The no-tension constraint can be suitably relaxed and piece-
wise enforced over selected portions of a given structure, analyzing
substructures, mixed structures, pre-defined arrangements of ma-
sonry bonds, and reinforced masonry.

It is interesting noting that the no-tension model is symmetrical
of the so-called tension field model of wrinkling membranes
(Mansfield, 1968; Steigmann, 1990; Wong and Pellegrino, 2006).
On replacing the concavity constraint of the stress potential with
a specular convexity constraint (convex-hull technique, cf. Avis
and Fukuda, 1992), one can easily generalize the CNTA presented
in this work to membranes carrying only tensile stresses.

References

Andreu, A., Gil, L., Roca, P., 2007. Computational analysis of masonry structures with
a funicular model. J. Eng. Mech. – ASCE 133 (4), 473–480.

Avis, D., Fukuda, K., 1992. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geomet. 8,
295–313.

Block, P., 2009. Thrust network analysis – exploring three-dimensional equilibrium.
Ph.D. Dissertation, Massachusetts Institute of Technology, USA.

Block, P., Ochsendorf, J., 2005. Interactive thrust line analysis for masonry
structures. In: Mochi, G. (Ed.), International Seminar on Theory and Practice
of Construction: Knowledge, Means, and Models, Ravenna, Italy, pp. 13–24.

Block, P., Ochsendorf, J., 2007. Thrust network analysis: a new methodology for
three-dimensional equilibrium. IASS J. 48 (3), 167–173.

Boothby, T.E., 2001. Analysis of masonry arches and vaults. Prog. Struct. Eng. Mater.
3, 246–256.

Ciarlet, P.G., 1978. The Finite Element Method for Elliptic Problems. North-Holland,
Amsterdam.

Como, M., 2010. Statica delle costruzioni in muratura. Aracne Editrice, Roma.
Del Piero, G., 1989. Constitutive equations and compatibility of the external loads

for linear elastic masonry-like materials. Meccanica 24, 150–162.
Del Piero, G., 1998. Limit analysis and no-tension materials. Int. J. Plast. 14, 259–271.
Di Pasquale, S., 1975. Scienza delle costruzioni. Introduzione alla progettazione

strutturale. Tamburini, Milano.
Formato, F., 2007. A theoretical and experimental study on the statics of masonry

vaults. Ph.D. Dissertation, University of Salerno, Italy.
Fraternali, F., 2001. Complementary energy variational approach for plane elastic

problems with singularities. Theor. Appl. Fract. Mech. 35, 129–135.
Fraternali, F., Angelillo, M., Fortunato, A., 2002a. A lumped stress method for plane

elastic problems and the discrete–continuum approximation. Int. J. Solids
Struct. 39, 6211–6240.

Fraternali, F., Angelillo, M., Rocchetta, G., 2002b. On the stress skeleton of masonry
vaults and domes, PACAM VII, January 2–5, 2002, Temuco, Chile, pp. 369–372.

Giaquinta, M., Giusti, G., 1985. Researches on the equilibrium of masonry
structures. Arch. Ration. Mech. Anal. 88, 359–392.

Heyman, J., 1966. The stone skeleton. Int. J. Solids Struct. 2, 249–279.
Heyman, J., 1977. Equilibrium of Shell Structures. Oxford Engineering Science

Series. Clarendon Press, Oxford.
Heyman, J., 1995. The Stone Skeleton. Cambridge University Press, Cambridge.
Huerta, S., 2001. Mechanics of masonry vaults: the equilibrium approach. In:

Lourenço, P.B., Roca, P. (Eds.), Proceedings of Historical Constructions,
Guimarães, pp. 47–69.

Kilian, A., 2007. Steering of form. IASS J. 48 (4), 17–21.
Kilian, A., Ochsendorf, J., 2005. Particle-spring systems for structural form finding.

IASS J. 46 (2), 77–85.
Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N., 2008. Masonry Constructions:

Mechanical Models and Numerical Applications. Lecture Notes in Applied and
Computational Mechanics, vol. 39. Springer-Verlag, Berlin, Heidelberg.

Mansfield, E.H., 1968. Tension field theory. In: Hetenyi, M., Vincenti, W.G. (Eds.),
Proceedings of the 12th International Congress on Applied Mechanics, pp. 305–
320.

Ochsendorf, J., Block, P., 2009. Designing unreinforced masonry. In: Allen, E.,
Zalewski, W. (Eds.), Form and Forces: Designing Efficient, Expressive Structures.
John Wiley Sons, New York (Chapter 8).



204 F. Fraternali / Mechanics Research Communications 37 (2010) 198–204
O’Dwyer, D., 1999. Funicular analysis of masonry vaults. Int. J. Solids Struct. 73,
187–197.

Poleni, G., 1991. Memorie istoriche della gran cupola del Tempio Vaticano. Edizioni
Kappa, Rome, Italy (Anastatic reprint of the original edition of 1748).

Steigmann, D.J., 1990. Tension-field theory. Proc. Roy. Soc. Lond., Ser. A, Math. Phys.
Sci. 429 (1876), 141–173.

Tomasoni, E., 2008. Le volte in muratura negli edifici storici. Tecniche costruttive e
comportamento strutturale. Aracne Editrice, Roma, Italy.
Tomlow, J., Graefe, R., Otto, F., Szeemann, H. 1989. Das Modell/The Model/El
Modelo. Number 34 in Mitteilungen des Instituts for Leichte Flchentragwerke
(IL). Universität Stuttgart, Stuttgart.

Ungewitter, G., 1890. Lehrbuch der gotischen Konstruktionen. Weigel Nachfolger,
Leipzig.

Wittmann, W., 1879. Zur Theorie der Gewölbe. Z. Bauwesen 26, 61–74.
Wong, Y.W., Pellegrino, S., 2006. Wrinkled membranes. Part I: experiments; part II:

analytical models; part III: numerical simulations. J. Mech. Mater. Struct. 1, 1–93.


	A thrust network approach to the equilibrium problem of unreinforced  masonry vaults via polyhedral stress functions
	Introduction
	A variational formulation of the equilibrium of masonry vaults
	Thrust network approach
	Constrained TNA
	Numerical examples
	Concluding remarks
	References


